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Abstract

I concisely review the results of previous articles that shed some light on“La Grande Bouffe”, the pantagruelic Higg
mechanism, whereby HS gauge fields eat lower spin Goldstone fields. Mass generation in the AdS bulk is hologr
dual to the emergence of anomalous dimensions in the boundaryN = 4 SYM theory.To cite this article: M. Bianchi, C. R.
Physique 5 (2004).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

(Brisure de) symétrie de grand spins dans la théorie de SYM N = 4 et holographie. Je passe briévement en rev
des résultats précedents qui apportent un certain éclairage sur «La Grande Bouffe », le mécanisme de Higgs pantagruéliq
où les champs de jauge de HS absorbent les champs de Goldstone de plus bas spin. La génération de masse d
holographiquement duale à l’apparition de dimensions anormales pour la théorie de SYMN = 4 au bord.Pour citer cet
article : M. Bianchi, C. R. Physique 5 (2004).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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This article concisely reviews the results of [1–3].
Formulating the dynamics of higher spin (HS) fields is a long standing problem, see e.g. [4–6] and references the1 In

the massless bosonic case, Fronsdal wrote down linearized field equations for totally symmetric tensorsϕ(µ1...µs ) that inD = 4
arise from a Lorentz covariant (quadratic) action upon imposing ‘double tracelessness’ηµ1µ2ηµ3µ4ϕµ1...µs = 0. HS gauge
invariance correspond to restricted transformationsδϕµ1...µs = ∂(µ1εµ2...µs ) with traceless parameters. Fang and Fronsdal
extended the analysis to fermions, while Singh and Hagen formulated equations for massive fields that reduce to Fr
Fang–Fronsdal’s in the massless limit upon removing certain auxiliary fields. String theory in flat spacetime can be consider
as a theory of an infinite number of HS gauge fields of various rank and (mixed) symmetry in a broken phase. At high
these symmetries should be restored resulting in a new largely unexplored phase. Upon coupling HS fields to (external) gravity
the presence of the Weyl tensor in the variation of the action fors > 2, resulting from the Riemann tensor in the commutato
two covariant derivatives, spoils HS gauge invariance even at the linearized level and for on-shell gravitational backgro

E-mail address: Massimo.Bianchi@roma2.infn.it (M. Bianchi).
1 For lack of space, I will often need to refer to comprehensive review papers rather than the original literature. I apologize for this

nience and warmly invite the interested reader to consult the exhaustive list of reference in [7].
1631-0705/$ – see front matter 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.
doi:10.1016/j.crhy.2004.10.006
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fields of spins � 2, where, at most, the Ricci tensor appears. Problems with interactions for HS gauge fields in flat sp
are to be expected since the Coleman–Mandula theorem and its generalization by Haag–Lopusanski–Sohnius imp
S-matrix whenever the Poincaré group is extended by additional spacetime generators such as HS symmetry currents.
closure of the HS algebra requires an infinite tower of symmetries as soon as HS fields withs > 2 enter the game. A complete
new approach to the interactions, if any, is to be expected in order to deal with an infinite number of HS fields and a
high derivatives [4–6].

According to Fradkin and Vasiliev, the situation improves significantly when the starting point is taken to be a ma
symmetric AdS space2 with non-vanishing cosmological constantΛ = −(D−2)(D−1)/R2 rather than flat spacetime. One c
then use the HS analogue of the MacDowell, Mansouri, Stelle, West (MDMSW)SO(D − 1,2) formulation of gravity in order
to keep HS gauge symmetry manifest and compactly organize the resulting higher derivative interactions and the a
non-locality. Vasiliev has been able to pursue this program till the very end, i.e. at the fully non-linear level, for massless boso
in D = 4 [4]. In Vasiliev’s equationsΛ plays a double role. On the one hand it organizes higher derivative interactions
much like the string scaleMs = 1/

√
α′ in string theory. On the other hand it allows one to define a generalizedSO(D − 1,2)

curvature that vanishes exactly for AdS. The AdS/CFT correspondence at the HS enhancement point seems exactl
doctor ordered. At generic radiusR, superstring theory should describe HS fields in a broken phase. At some critical rad
Vasiliev’s equations or some generalization thereof should govern the dynamics of the exactly massless phase.

In the much studied case ofN = 4 SYM theory ind = 4 with SU(N) gauge group, the holographic corresponde
with type IIB superstring theory onAdS5 × S5 with N units of RR 5-form flux has been a fruitful source of insights
the duality between (superconformal) gauge theories and AdS gravity [8–11]. At vanishing coupling,N = 4 SYM exposes
HS symmetry enhancement [12–14]. Conformal invariance indeed implies that a spins current, such asJ(µ1µ2···µs)| =
Tr(ϕiD(µ1 · · ·Dµs)|ϕi) + · · · saturating the unitary bound∆ = 2 + s be conserved.N = 4 superconformal symmetr
(P )SU(2,2|4) implies that twist two operators are either conserved currents or superpartners thereof [15–17]. Altoget
form thedoubleton representation ofHS(2,2|4), the HS extension of(P )SU(2,2|4). The weak coupling regime on the boun
ary should be holographically dual to a highly stringy regime in the bulk, where the curvature radiusR is small in string
units R ≈ √

α′ and the string is nearly tensionless. Although quantizing the superstring inAdS5 × S5 is a difficult and not
yet accomplished task [18], Sezgin and Sundell have been able to write down linearized field equations for the ‘m
HS(2,2|4) doubleton [19–21]. As in Vasiliev’s case the field content can be assembled into a master connectionA and a maste
scalar (curvature)Φ. The former transform in the adjoint representation ofHS(2,2|4) and contains physical gauge fields w
s � 1 and chargeB = 0,±1. The latter transform in the twisted adjoint representation and contributes physical field
spin s � 1/2 or s � 1 and charge|B| � 3/2 such as self-dual two-form potentials. The field strengthsFA = dA + A ∧ ∗A

andDAΦ = dΦ + A ∗ Φ − Φ ∗ Ã transform covariantlyδFA = [FA, ε]∗, δDAΦ = DAΦ ∗ ε̃ − ε ∗ DAΦ under HS gauge
transformationsδA = dε + [A,ε]∗, wherebyδΦ = Φ ∗ ε̃ − ε ∗ Φ. The linearized constraints and integrability conditions lead
after some tedious algebra to the correct linearized field equations for the ‘matter’ fields withs � 1/2, for the HS gauge field
and for the antisymmetric tensors with generalized self-duality [19–21].

Possibly because of the presence of these generalized self dual tensors, an interactingHS(2,2|4) gauge theory has not ye
been formulated. In some sense, however, non-linear equations of Vasiliev’s type encode combinatorial interactions which are
present even in a free field theory, where HS symmetry is unbroken, or couplings to multi-particle states at finiteN .3 Although
truncation to the HS massless multiplet (doubleton) should be consistent at thepoint of HS enhancement this should no more
be the case for genericR. When interactions are turned on, i.e. atλ �= 0, only a handful of HS fields remain massless. T
vast majority participates in a pantagruelic Higgs mechanism, termed“La Grande Bouffe”4 in [1–3], whereby HS gauge field
eat lower spin Goldstone fields. In the dualN = 4 SYM description only the 1/2 BPS short multiplets with 28p2(p2 − 1)/12
components, corresponding toN = 8 gauged supergravity and its Kaluza–Klein (KK) recurrences, are protected against
tum corrections to their dimensions. Except for theN = 4 supercurrent multiplet, the infinite tower of conserved doubleto
multiplets acquire anomalous dimensionswhich violate the conservation of the HScurrents at the quantum level. At one-loo
one has [23]

γ1-loop(2n) = g2
YM N

2π2
h(2n), h(j) =

j∑
k=1

1

k
, (1)

2 Results for dS space can be formally obtained by analytic continuation.
3 Precisely for this reason they are relevant in thed = 3 O(N) model on the boundary ofAdS4 [22].
4 Several people asked me the origin of this terminology. It is the title ofa movie directed by Marco Ferreri, interpreted, among oth

by Marcello Mastroianni and Ugo Tognazzi and presented in 1973 atFestival du Cinema in Cannes where it received the International Crit
Award.
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This elegant ‘number theoretic’ formula gives a clue on how to compute generic anomalous dimensions at first order i
bation theory relying on HS symmetry breaking considerations and leads to integrability of the super spin chain Ham
that represents the action of the (one-loop) dilatation operator [23]. For the purpose of describing the breaking ofHS(2,2|4)

to PSU(2,2|4) one should identify the Goldstone multiplets that provide the ‘longitudinal’ lower spin modes to the massle
HS doubleton and hopefully determine their couplings by imposing (linearized) HS symmetry. At largeN , this problem might
turn out to be easier to solve than constructing a fully non-linear masslessHS(2,2|4) theory because it should only require
little bit more than theknowledge of the linearized field equations. For the (long)N = 4 Konishi multiplet [24,25], with 216

components, dual to the first massive level of string excitations, for instance one expects a decomposition like

Klong ↔ Kshort+K1/4 +K1/8 +K∗
1/8, (2)

i.e. the HS semishort multiplet (Kshort) eats the lower spin Goldstone multipletsK1/8, K∗
1/8 and K1/4, belonging to the

‘massive’ HS multiplets associated to the totally antisymmetric ‘tripleton’ and the window-like ‘tetrapleton’.
The huge enhancement of symmetry allows us to not only determine the HS content of the freeN = 4 SYM spectrum at

largeN [3] but also match it with the superstring spectrum extrapolated to the point of HS symmetry enhancement [1,
at finite coupling, nearly BPS operators with large R-chargeJ and dimension∆ ≈ J can be built by successively insertin
impurities inside Chiral Primary Operators (CPOs) of the form Tr(ZJ ). Berenstein, Maldacena and Nastase (BMN) arg
that the sector withJ ≈ √

N is described by type IIB superstring on the maximally supersymmetric pp-wave emerging
Penrose limit ofAdS5 × S5 [26]. Despite the presence of a null RR 5-form fluxF+1234= F+5678= µ, superstring fluctuation
can be quantized in the light-cone gauge, wherep+ = J/µα′. The spectrum of the light-cone Hamiltonian

HLC = p− = µ(∆ − J ) = µ
∑
n

Nnωn, ωn =
√

1+ n2λ

J2
, (3)

with the level matching condition
∑

n nNn = 0, represents a prediction for the spectrum of anomalous dimensions of th
called BMN operators, that form(P )SU(2,2|4) multiplets at large but finiteJ . For our purposes it is crucial that any single-tra
operator inN = 4 SYM be identified with some BMN operator with an arbitrary but finite number of impurities.

In flat spacetime, the single-particle type IIB superstring spectrum results from combining left- and right-moving
with the same chirality projection on the vacuum and imposing level-matching� = ∑

nNL
n = ∑

n nNR
n . In the light-cone,

where onlySO(8) ⊂ SO(9,1) is manifest, the chiral groundstates|Q〉L/R consists of8V bosons and8S fermions. At� = 0 one
finds the ‘transverse’ modes of type IIBN = (2,0) supergravity(8V − 8S) × (8V − 8S). At higher levels,� � 1, the (chiral)
spectrum assembles into full representations of the massive transverse Lorentz groupSO(9). For instance at� = 1, one finds
44+84−128 of SO(9), corresponding to a symmetric tensor (‘spin 2’), a 3-index totally antisymmetric tensor and a spin
(‘spin 3/2’). At higher levels the situation is similar. The spectrum actually can be organized intoN = (2,0) supermultiplets,
whose groundstates are annihilated by half of the 32 supercharges. For� = 1 the groundstate cannot be other than anSO(9)

singletV L/R
�=1 = 1, i.e. a scalar, since 28 × 28 = 216 equals the number of d.o.f. at this level. At higher levels the situation is

so straightforward, but one can eventually deduce a recurrence relation that yieldsV
L/R
�=1 = 1,V

L/R
�=2 = 9,V

L/R
�=3 = 44 − 16, . . .

for the first few levels. In summary, the Hilbert space of type IIB superstring excitations in flat space can be written as

Hflat = Hsugra+ Tsusy
∑
�

V L
� × V R

� (4)

whereTsusyrepresents the action of the 16 ‘raising’ supercharges. States with maximum spinsMax = 2� + 2 at level� belong
to the first Regge trajectory which is generated by oscillators with lowest non-trivial mode number. Moreover, the partial su∑1,K

�
V L

�
×V R

�
form SO(10) multiplets. This is related to the possibility of ‘covariantizing’ the massive spectrum of type

which is identical to the one of type IIA, toSO(10), by lifting it to D = 11 [27], or toSO(9,1), by introducing worldshee
(super)ghosts [18].

In order to extrapolate the massive string spectrum from flat space toAdS5 × S5 at the HS symmetry enhancement po
one should first decomposeSO(9) into SO(4) × SO(5), the relevant stability group of a massive particle. This straight
wardly determines two of the quantum numbers of the(P )SU(2,2|4) superisometry group, namely the two spins(jL, jR) of
SO(4) ⊂ SO(4,2). The set of allowed representations of theS5 isometry groupSO(6) ≈ SU(4) are those that contain a give
representation ofSO(5) under the decompositionSO(6) → SO(5). Denoting irreps by their Dynkin labels,[m,n] for SO(5) and
[k,p,q] for SO(6), group theory yields the KK towers

KK [m,n] =
m∑

r=0

n∑
s=0

∞∑
p=m−r

[r + s,p, r + n − s] +
m−1∑
r=0

n−1∑
s=0

∞∑
p=m−r−1

[r + s + 1,p, r + n − s]. (5)
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Any ambiguity in the lift, say, of the (pseudo-real) spinor4 of SO(5) ≈ Sp(4) to the complex4 of SO(6) ≈ SU(4) or to its
complex conjugate4∗ is resolved by the infinite sum over KK recurrences. Once theSO(4) × SO(6) quantum numbers ar
determined, the perturbative superstring spectrum turns out to be encoded in

HAdS = Hsugra+ TKKTsusy
∑
�

V L
� × V R

� (6)

whereTKK = ∑
p[0,p,0] represents KK towers that boil down to sums over scalar spherical harmonics, i.e.p-fold symmetric

traceless tensors ofSO(6). Tsusyrepresents the action of the 16 ‘raising’ Poincaré superchargesQ and �Q. V
L/R
� , defined in flat

space, are to be decomposed underSO(4) × SO(5) and lifted toSO(4) × SO(6). Formula (6) looks deceivingly simple, almo
trivial, since the most interesting information, the scaling dimension∆, denoted by∆0 at the HS enhancement point, is s
missing.

So far we have tacitly assumed that there are no non-perturbative states that can appear in the single-particle spectrum
as a result of strings or branes wrapping nontrivial cycles. Indeed there are no such states with finite mass at smags , i.e.
large N , since the only nontrivial cycles ofS5 are a 0-cycle (a point) or a 5-cycle (the full space). Although there ca
ambiguities in extrapolating theperturbative spectrum from large radius, where KK technology is reliable, to small radiu
where HS symmetry is restored, we expect ‘level repulsion’ at largeN [14]. This guarantees that any state identified at la
radius (strong ’t Hooft coupling) can be smoothly if not explicitly followed to small radius (weak coupling) since trajectories
of different fields/operators with the same quantum numbers never intersects.

One can thus start with identifying the string excitations that are expected to become massless at the point of
HS symmetry [19–21]. In particular, the totally symmetric and traceless tensors of rank 2� − 2 at level� > 1 appearing in
the product of the groundstatesV L

� × V R
� become massless and thus correspond to the sought for conserved HS curr

the boundary if one assigns them∆0 = 2�, that works fine for� = 1, too. The states withPSU(2,2|4) quantum numbers
{2�; (� − 1, � − 1); [0,0,0]} are HWS’s of semishort multiplets [15–17,25]. Moreover the KK recurrences of these states
floor p arising from the action ofTKK are naturally assigned [1]

∆0 = 2� + p (7)

which represents thePSU(2,2|4) unitary bound for a spins = 2� − 2 current in theSO(6) irrep with Dynkin labels[0,p,0]. It
is remarkable how simply assuming HS symmetry enhancement fixes the AdS masses, i.e. scaling dimensions, of a
fraction of the spectrum. Nevertheless, even at this particularly symmetric point there should be operators/states w
the unitary bounds. Surprisingly, (7) turns out to be correct for all primary states with mass/dimension∆0 � 4. Notice that
‘commensurability’ of the two contributions – spins ≈ � and KK ‘angular momentum’J ≈ p – suggests thatR = √

α′, for
what this might mean. In order to find a mass formula that could extend and generalize (7), it is convenient to take t
formula (3) as a hint. Although derived under the assumptions of largeλ andJ [26], there seems to be no serious problem
extrapolating it to finiteJ at vanishingλ, whereωn = 1 for all n. Indeed, Niklas Beisert has shown that (two-impurity) BM
operators formPSU(2,2|4) multiplets at finiteJ and are thus amenable to the extrapolation [23]. The resulting formula c
written [2]:

∆0 = J + ν (8)

whereν = ∑
n Nn is the number of oscillators applied to the ‘vacumm’|J = µα′p+〉 andJ is theU(1) charge in the decom

position ofSO(10) into SO(8) × U(1)J , whereSO(8) is the massless little group. In turn,SO(10) arises from ‘covariantizing
SO(9). Although cumbersome, the procedure is straightforward and can be easily implemented on a computer. Given thSO(10)
content of the flat space string spectrum, Eq. (8) uniquely determines the dimensions∆0 of the superstring excitations aroun
AdS5 × S5 at the HS point. The case� = 1 is almost trivial, as an illustration, let us thus consider the string levels� = 2,3:

V2 = [1,0,0,0,0]2 − [0,0,0,0,0]3
SO(8)×SO(2)→ [1,0,0,0]20 + [0,0,0,0]21 + [0,0,0,0]2−1 − [0,0,0,0]30 (9)

(8)→ [1,0,0,0]2 + [0,0,0,0]1, (10)

V3 = [2,0,0,0,0]3 − [1,0,0,0,0]4 − [0,0,0,0,1]5/2

SO(8)×SO(2)→ [2,0,0,0]30 + [1,0,0,0]31 + [1,0,0,0]3−1 + [0,0,0,0]30 + [0,0,0,0]32
+ [0,0,0,0]3−2 − [1,0,0,0]40 − [0,0,0,0]41 − [0,0,0,0]4−1 − [0,0,0,1]5/2

1/2 − [0,0,1,0]5/2
−1/2

(8)→ [2,0,0,0]3 + [1,0,0,0]2 + [0,0,0,0]1 − [0,0,1,0]3 − [0,0,0,1]2. (11)
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With the above assignments of∆0, negative multiplicities are harmless since they cancel in the sum over KK recurr
after decomposingSO(10) w.r.t. SO(4) × SO(6). For these low massive levels, the conformal dimensions determined by (
saturateSO(10) unitary bounds of the form∆± = 1 + k + 2l + 3m + 2(p + q) ± (p − q)/2. At higher levels, starting from
the ∆0 = 3 singlet at level� = 5, this bound is still satisfied but no longer saturated: the correct conformal dimensions are
rather obtained from (8). The results for string levels� = 4 and� = 5 are displayed in the following tables and organized un
SO(10) × SO(2)∆0, with Dynkin labels[k, l,m,p,q] and[k, l,m,p,q]∗ ≡ [k, l,m,p,q] − [k−1, l,m,p,q].
� = 4:

∆0 R
4 [3,0,0,0,0]∗
7/2 [1,0,0,0,1]∗
3 [0,1,0,0,0]

� = 5:
∆0 R
5 [4,0,0,0,0]∗
9/2 [2,0,0,0,1]∗
4 [0,0,1,0,0] + [1,1,0,0,0]∗
7/2 [1,0,0,0,1]
3 [0,0,0,0,0]

In order to test the above prediction for the single-particle superstring spectrum onAdS5 × S5 at the HS point against th
spectrum of freeN = 4 SYM theory at largeN , one has to devise an efficient way of computing gauge-invariant single
operators [13,14,1]. For anSU(N) gauge group this means taking care of the ciclicity of the trace in order to avoid mu
counting. Moreover one should discard operators which would vanish because of the field equations and deal with the
of the elementary fields. The mathematical tool one has to resort to is Polya theory that allows one to count ‘words’A,B, . . .

of a given ‘length’n composed of ‘letters’ chosen from a given ‘alphabet’{ai}, modulo some symmetry operation:A ≈ B

if A = gB for g ∈ G. In order to compute Polya cycle index it is convenient to decompose the discrete groupG ⊂ Sn into
conjugacy classes whose representatives[g] = (1)b1(g)(2)b2(g) . . . (n)bn(g) are characterized by the numbersbk(g) of cycles of
lengthk. For cyclic groups,G = Zn, conjugacy classes are labelled by divisorsd of n, [g]d = (d)n/d , and the cycle index is
simply expressed

PZn

({ai}
) = 1

n

∑
d |n

E(d)

(∑
i

ad
i

)n/d

(12)

whereE(d) is Euler’s totient function which counts the number of elements in the conjugacy class[g]d . E(d) equals the numbe
of integers relatively prime to and smaller thand, with the understanding thatE(1) = 1, and satisfies

∑
d |n E(d) = n.

For N = 4 SYM, the alphabet is given by the elementary fields and their derivatives (modulo the field equ
{∂kϕ, ∂kλ, ∂kF } that transform in thesingleton representation ofPSU(2,2|4). As a first step, one computes the on-shell sin
letter partition function or rather the Witten indexZ1(q) = Tr(−)F q∆0 , in order to take statistics into account. For a sin
(Abelian)N = 4 vector multiplet, one has

Z1(q) = 2q
(3+ √

q )

(1+ √
q )3

. (13)

Plugging (13) into (12) one finds the single-trace partition function [13,14,1]

ZN=4(q) =
∞∑

n=2

∑
n|d

E(d)

n

[
2q(3 + qd/2)

(1+ qd/2)3

]n/d

(14)

= 21q2 − 96q5/2 + 376q3 − 1344q7/2 + 4605q4 − 15456q9/2 + 52152q5 − 177600q11/2

+ 608365q6 − 2095584q13/2 + 7262256q7 − 25299744q15/2 + 88521741q8 − 310927104q17/2

+ 1095923200q9 − 3874803840q19/2 + 13737944493q10 +O(q21/2) (15)

for SU(N) at largeN , where mixing with multi-trace operators is suppressed.
In order to identify superconformal primaries, one can passZN=4(q) through an Eratosthenes super-sieve, that rem

superdescendants. This task can be accomplished by first subtracting 1/2 BPS multiplets

ZBPS(q) = q2(20+ 80q1/2 + 146q + 144q3/2 + 81q2 + 24q5/2 + 3q3)

(1− q)(1 + q1/2)8
, (16)
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from (14) and then dividing by

TSO(10,2)(q) = (1− q2)
(1− q1/2)16

(1− q)10
= Tsusy(q)TKK (q) (17)

that not only removes superconformal descendants generated byTsusy(q) = (1− q1/2)16/(1− q)4 but also the operators du
to the KK recurrences generated byTKK (q) = (1− q2)/(1− q)6, where the numerator implements theSO(6) tracelessnes
condition. ForZSO(10,2)(q) = [ZN=4(q) −ZBPS(q)]/TSO(10,2)(q) one eventually finds the expansion

ZSO(10,2)(q) = q2 + 100q4 + 236q5 − 1728q11/2 + 4943q6 − 12928q13/2 + 60428q7 − 201792q15/2 + 707426q8

− 2550208q17/2 + 9101288q9 − 32568832q19/2 + 116831861q10 +O(q21/2)

that can be reorganized in the form

ZSO(10,2)(q) = (q1)2 + (10q2 − q3)2 + (−16q5/2 + 54q3 − 10q4)2

+ (45q3 − 144q7/2 + 210q4 + 16q9/2 − 54q5)2 + · · · . (18)

It is not difficult to recognize that

Z(N=4)
SO(10,2)

(q) =
∑
�

V L
� (q) × V R

� (q) (19)

whereq keeps track of the dimensions assigned via∆0 = J + ν after lifting SO(9) to SO(10). The origin of theSO(10,2) spec-
trum symmetry calls for deeper understanding possibly in connection with Bars’s two-time formulations of the superstr

In order to set the stage for interactions that lead to HS symmetry breaking, one has to decompose the spectrum
trace operators in freeN = 4 SYM at largeN or, equivalently, of type IIB superstring onAdS5 × S5 extrapolated to the
point of HS symmetry into HS multiplets [3]. To this end, following [4,19] we need to recall some basic properties
infinite dimensional HS (super)algebrahs(2,2|4), that extends theN = 4 superconformal algebrapsu(2,2|4). The latter can
be realized in terms of (super-)oscillatorsζΛ = (ya, θA) with [ya, ȳb] = δa

b and{θA, θ̄B } = δB
A. ya, ȳb are bosonic oscillator

with a, b = 1, . . . ,4, a Weyl spinor index ofso(4,2) ∼ su(2,2), while θA, θ̄B are fermionic oscillators withA,B = 1, . . . ,4 a
Weyl spinor index ofso(6) ∼ su(4).

Generators ofpsu(2,2|4) are ‘traceless’ bilinears of superoscillators:Ja
b = ȳayb − 1

4Kδa
b with K = ȳaya , T A

B =
θ̄AθB − 1

4BδA
B

with B = θ̄AθA, QA
a = θ̄Aya , andQ̄a

A
= ȳaθA. The central elementC ≡ K +B = ζ̄ΛζΛ generates an Abelia

ideal that can be modded out e.g. by consistently assigningC = 0 to the elementary SYM fields and their (perturbative) co
posites. The hyperchargeB acts as an external automorphism ofpsu(2,2|4).

The HS extensionhs(2,2|4) is roughly speaking generated by odd powers of the above generators i.e.

hs(2,2|4) =
⊕
�

A2�+1 =
∞∑

�=0

{J2�+1 = P
Λ1...Λ2�+1
Σ1...Σ2�+1

ζ̄Σ1 · · · ζ̄Σ2�+1ζΛ1 · · · ζΛ2�+1}, (20)

with elementsJ2�+1 in A2�+1 at level� parameterized by (graded) traceless rank(2�+1) symmetric tensorsP
Λ1...Λ2�+1
�1...�2�+1

.
More precisely, one first considers the enveloping algebra ofpsu(2,2|4), which is an associative algebra and consists o
powers of the generators, then restricts it to the odd part which closes as a Lie algebra modulo the central chargeC, and finally
quotients the ideal generated byC. It is easy to show thatB is never generated in commutators (butC is!) and thus remains a
external automorphism ofhs(2,2|4) [19].

To each element inA2�+1 with spins(jL, jR) is associated an HS currents and a dual HS gauge field in the AdS bulk
spins(jL + 1

2, jR + 1
2). Thepsu(2,2|4) quantum numbers can be read off from (20) by expanding the polynomials in po

of θ ’s up to 4, sinceθ5 = 0. There is a single superconformal multipletV2� at each level� � 2. The lowest spin cases� = 0,1,
i.e. V̂0,2, are special. They differ from the content of doubleton multipletsV0,2 by spins = 0,1/2 states [19]. The fundament

representation ofhs(2,2|4) turns out to coincide with the singletonV1,0
(0,0)[0,1,0] of psu(2,2|4). Its HWS |Z〉 or simply Z

is one of the complex scalars ofN = 4 SYM. Any stateA in this representation can be found by acting on the vacuumZ,
or any other stateB, with a sequence of superconformal generators. Looking at the singleton as an irrep ofhs(2,2|4) the
sequence of superconformal generators connectingB to A is replaced by a single HS generatorJAB̄ . This property is crucia
in proving the irreducibility of YT-pletons with respect to the HS algebra. Indeed the tensor product ofL � 1 singletons is

generically reducible not only underpsu(2,2|4) but also underhs(2,2|4) since the HS generatorsJ2�+1 ≡ ∑L
s=1J

(s)
2�+1,

being completely symmetric, commute with (anti)symmetrizations of the indices. The tensor product thus decompos
sum of representations characterized by Young tableauxYT with L boxes. To prove irreducibility ofL-pletons associated to
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specific YT’s underhs(2,2|4), it is enough to show that any state in theL-pleton under consideration can be found by acting
the relevant HWS with HS generators. This is easy for the totally symmetric YT. More effort is needed to extend the a
to generic YT’s [3].

Only a subset of YT’s, those compatible with cyclicity ofSU(N) traces, enters the generating function of single-tr
operators inN = 4 SYM theory, i.e. of cyclic words of lengthL = n.

Z(q) =
∑
n�2

Zn(q) =
∑

n�2,d |n

E(d)

n
Z (qd )n/d . (21)

Observe thatZ (qd ) can be rewritten as the alternating sum over length-d YT’s of hook type:

Z (qd ) = Z ·· (q) −Z ·· (q) +Z ·· (q) −Z ·· (q) + · · · . (22)

Plugging this expansion into (21), we find for the first few cases:

Z2 = Z ,

Z3 = Z +Z ,

Z4 = Z +Z +Z ,

Z5 = Z +Z + 2Z +Z +Z , etc. (23)

As anticipated, HS multiplets associated to the tableaux, , and two out of the three of type are projected out

Under the superconformal grouppsu(2,2|4), the HS multipletZYT , associated to a given Young tableauYT with L boxes,
decomposes into an infinitesum of multiplets. The HWS’s can be found by computingZYT and eliminating the superconform
descendants by passingZYT through a sort of Eratosthenes (super)sieve [1]. In thepsu(2,2|4) notationV∆,B

(jL,jR)[q1,p,q2] one
finds forL = 2,3

Z =
∞∑

n=0

V2n,0
(−1+n∗,−1+n∗)[0,0,0], (24)

Z =
∞∑

n=0

cn

[
V1+n,0

(−1+ 1
2n∗,−1+ 1

2n∗)[0,1,0] + (
V

11
2 +n, 1

2

( 3
2+ 1

2n∗,1+ 1
2n∗)[0,0,1] + h.c.

)]
+

∞∑
m=0

∞∑
n=0

cn

[
V4+4m+n,1

(1+2m+ 1
2n∗, 1

2n)[0,0,0] + V9+4m+n,1
( 7

2+2m+ 1
2n∗, 3

2+ 1
2n)[0,0,0] + h.c.

]
, (25)

Z =
∞∑

n=0

cn

[
V4+n,0

( 1
2+ 1

2n∗, 1
2+ 1

2n∗)[0,1,0] + (
V

5
2+n, 1

2

( 1
2n∗,− 1

2+ 1
2n∗)[0,0,1] + h.c.

)]
+

∞∑
m=0

∞∑
n=0

cn

[
V6+4m+n,1

(2+2m+ 1
2n∗, 1

2n)[0,0,0] + V7+4m+n,1
( 5

2+2m+ 1
2n∗, 3

2+ 1
2n)[0,0,0] + h.c.

]
. (26)

The multiplicitiescn ≡ 1 + [n/6] − δn,1 mod 6 with [m] the integral part ofm, of psu(2,2|4) multiplets insidehs(2,2|4)

count the number of ways one can distribute derivatives (HS descendants) among the boxes in the tableaux.
In addition to the1

2-BPS withn = 0, the symmetric doubletonZ , corresponding to the quadratic Casimirδab, contains
the multiplets of conserved HS currentsV2n. The antisymmetric doubletonZ is ruled out by cyclicity of the trace, cf. (23
The ‘symmetric tripleton’Z , corresponding to the cubic Casimirdabc, contains the first KK recurrences of twist 2 sem
short multiplets, the semishort-semishort seriesV±1,n starting with fermionic primariesand long-semishort multiplets. Th
antisymmetric tripletonZ , corresponding to the structure constantsfabc, on the other hand contains the Goldstone multip

that merge with twist 2 multiplets to form long multiplets when the HS symmetry is broken, in particular, fermionic sem
semishort multiplets and long-semishort multiplets [3].

The holographic formulation ofLa Grande Bouffe we have in mind is of the Stückelberg type [28,29]. Let us illustrate it f
broken singlet vector current. The Lagrangian describing the bulk Higgs mechanism à la Stückelberg should be (sche
of the form

L = −1
F(V )2 + 1

(∂α − MV )2 (27)

4 2
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whereF is the field-strength of the bulk vector fieldV dual to the currentJ and α is the bulk (pseudo)scalar dual to th
‘anomaly’ A = ∂µJµ. Gauge invariance under

δVm = ∂mϑ, δα = Mϑ (28)

is manifest for constantM . For M = 0, V andα decouple. ForM �= 0, V eatsα and becomes massive. In practiceM should
depend on the dilaton and other massless scalars. Since we want to preserve superconformal invariance,M can at most acquire
constant vev and the above analysis seems valid, at least for a vector current. Althoughlittle is known about massless HS boson
and fermionic fields with mixed symmetry [4–6], whenever they are part of the HSdoubleton multiplet, supersymmetry shou
be enough to determine their equations from the more familiar equations for symmetric tensors. By the same token, the var
manifestations of the symmetry breaking mechanism should be related by (extended) supersymmetry. For instanc
N = 4 Konishi multiplet the axial anomaly is part of an on-shell anomaly supermultiplet [10,24,17]

�DA �DBKlong = gym Tr
(
WEF [WAEWBF ]) + g2

ym

8π2
DEDF Tr

(
WAEWBF

)
. (29)

For symmetric tensors of ranks in any dimensionD, the set of Stückelberg fields that participate in the spontan
breaking of HS symmetry can be elegantly derived performing a formal KK reduction of the (quadratic) HS Lagrangia
D + 1 dimensions [6]. The a priori complex Fourier modesψM

(s−t )
(x)exp(iMy) with t = 0, . . . , s exactly account for the

correct number of d.o.f.’sνM �=0(D, s). Indeed it is easy to check thatνM �=0(D, s) = νM=0(D, s) + νM �=0(D, s − 1) and, by
iteration, thatνM �=0(D, s) = ∑s

t=0νM=0(D, t). After reduction, i.e. integration overy, one can take real combinationsφ(s−t )

of ψ(s−t )’s. More explicitly, from a massless doubly traceless spins field Φ(s) in D + 1 dimensions one gets ‘massless’ fie
φ(s−t ) with t = 0, . . . , s satisfying certain trace conditions inD dimensions. The resulting HS field equations are invar
by construction under gauge transformationsδφ(s−t ) = ∂(1)ε(s−t−1) + tMε(s−t ) with t = 0, . . . , s, resulting fromδΦ(s) =
∂(1)E(s−1) with restricted (traceless) parameters that expose the role of the lower spin fields in the Higgsing of the HS sy

Although the way to go is still long, we wish the reader could at least glimpseLa Grande Bouffe.
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