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Abstract

In this article, we wish to point out some of the recent advances in the study of step dynamics on crystal surfaces. We
list some approaches to steps dynamics, based on irreversible thermodynamics, kinetic roughening concepts, and ma
mechanisms. In a second part, we shall analyze step motion coupled to the diffusion of mobile atoms on terraces. A spe
will be given on pattern formation on vicinal surfaces and two-dimensional islands. Finally, we will report on the conseq
of elastic and electronic relaxation on the dynamics of steps and adatoms.To cite this article: O. Pierre-Louis, C. R. Physique
6 (2005).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Dynamique des marches atomiques. Nous présentons quelques avancées récentes dans l’étude de la dynamique des
cristallines. Nous mentionnerons tout d’abord différentes approches pour la modélisation de la dynamique des march
sur la thermodynamique des processus irréversibles, les théories de rugosification, et le transport de masse. Dans un
partie, nous analyserons le mouvement de marches couplées à la diffusion des atomes mobiles à la surface. Nous dév
particulièrement le cas des surfaces vicinales et des îlots bidimensionnels. Finalement, nous étudierons les conséqu
relaxation élastique et électronique du solide sur la dynamique des marches et des adatomes.Pour citer cet article : O. Pierre-
Louis, C. R. Physique 6 (2005).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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Mots-clés :Marche atomique ; Croissance cristalline ; Électromigration ; Fluctuation de marche ; Accumulation de marches ; Dynamiq
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1. What is a step?

1.1. Steps, terraces and adatoms

When one looks at a crystal at small scales during growth, the first surprising observation is that growth usually proc
the lateral flow of atomic steps (see Fig. 1). Rather than sticking to the crystal at the place where they have landed, ato
diffuse until they attach to a step, thereby leading to the forward motion of steps. As reported in the work of Burton,
and Frank in 1951, the analysis of crystal growth can therefore be based on the analysis of step motion. Following t
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1631-0705/$ – see front matter 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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Fig. 1. Monoatomic crystal step, terrace, and adatom.

step motion has been widely studied to understand the formation of patterns at the nanometer and micrometer sca
review, we wish to present some of the recent advances in the analysis of step motion. More specifically, three ques
be our main focus: (i) What are the equations of motion and the structure of steps in non-equilibrium conditions, and
scales? (ii) What are the patterns that are induced by step motion? (iii) What are the interactions between steps and a

These three questions are the keys to the understanding of nanostructure formation, as a result of the nonlinear dy
fronts in non-equilibrium conditions, and involving long range interactions.

1.2. Buron–Cabrera–Frank model

Following the famous work of Burton Cabrera and Frank [1], we shall first model step kinetics in a macroscop
phenomenological fashion, i.e. without referring to the underlying discreteness.

At the steps, mass conservation imposes:(
1

Ω
+ c− − c+

)
Vn = −Dn · ∇c− + Dn · ∇c+, (1)

whereVn is the normal step velocity,± respectively denote the upper and lower sides of the steps,D is the diffusion of mobile
atoms on terraces,c is their concentration, andΩ is the atomic area. On terraces (between the steps), we have, for exa
during growth or sublimation:

∂t c = D∇2c + F − c

τ
, (2)

whereF is the incoming flux andτ is the typical adatom desorption time. The kinetic boundary conditions for the concent
in the vicinity of the steps are obtained by an assumption of linear kinetics, i.e. the diffusion mass flux arriving at the
taken to be proportional to the departure from equilibrium at the step [2]:

Dn · ∇c+ = ν+(c+ − c∗
eq) + ν0(c+ − c−),

−Dn · ∇c− = ν−(c− − c∗
eq) + ν0(c− − c+), (3)

whereν± andν0 are attachment-detachment and transparency kinetic coefficients, the role of which will be discussed la
local equilibrium concentrationc∗

eq is computed from the Gibbs–Thomson relation,

c∗
eq= ceqexp(µ/kBT ), (4)

whereceq is the reference equilibrium concentration. One hasµ = Ωγ̃ κ , whereκ is the step curvature, and̃γ = γ + γ ′′
is the step stiffness, withγ the line tension of the step. When the radius of curvature of the step 1/κ is much larger than
Γ = Ωγ̃ /kBT , we may linearize Eq. (4), so that:

c∗
eq= ceq(1+ Γ κ). (5)

Additional contributions toµ coming for example from interactions between steps will be considered in the next section
Eqs. (1), (3) are not the only possible formulation of the boundary conditions. Indeed, linear combinations of the b

conditions give rise to new formulations, some of which are listed in [3].
The kinetic coefficientν0 was introduced in [2], and accounts for ‘direct’ exchange between terraces: this phenom

called step transparency, or step permeability. When steps are perfectly transparentν0 → ∞, the boundary conditions can b
expressed as
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c+ = c− = ceq(1+ Γ κ),+β̃
Vn

Ω
, (6)

whereβ̃ = (ν+ + ν−)−1. This boundary condition is used for solidification fronts [4]. Experimental evidence of step
parency has been found from the decay of small mounds on Si(100) [5], and from electromigration induced step bun
vicinal Si(111) [6,7].

An important consequence of step transparency is that it makes step dynamics non-local on stepped surfaces. Ind
ν0 is large, atoms may diffuse through many steps before attachment, allowing a coupling between structures that are

The second important effect related to step kinetics is the so-called step Ehrlich–Schwoebel effect (sESe), which
for the asymmetry between the upper and the lower terraces (i.e.ν+ �= ν−). Typically, attachment-detachment kinetics fro
the upper terrace is slower (ν+ > ν−). Nevertheless, mass transport in the step region may be quite complex [8], with
funelling, exchange mechanisms, etc., and we shall therefore not exclude the possibility of an inverted sESe.

In non-equilibrium situations, this kinetic asymmetry may result in macroscopic mass fluxes along vicinal surfaces
orientation-dependent mass fluxes are a major source of pattern formation. For example, they lead to mound form
and step meandering [12] during growth at moderate temperatures, to step bunching during sublimation [13], and t
instabilities under oscillatory driving of the surface [14].

1.3. Internal step dynamics

1.3.1. Around equilibrium
On Cu(100) surfaces at room temperature, mass transport is dominated by diffusion of atoms along the steps

lengthscales larger than the distance between kinks, steps then obey Mullins’ model for self-diffusion [16]:

Vn = −∂s(aDL∂sµ/kBT ), (7)

whereDL is a diffusion constant, anda is an atomic length.
The diffusion of mobile atoms along the step edge will lead to the diffusion of monolayer islands. A model based on

and augmented with Langevin forces leads to a cluster diffusion constantDc ∼ 1/R3 [17], whereR is the radius of the island
However, from the observation of small islands on Cu(100) [18], in agreement with Kinetic Monte Carlo Simulations [
one finds thatDc ∼ R−α . α varies fromα = 3 for large islands and high temperatures, toα = 1 for small islands and low
temperatures. Similarly low temperature deviations were observed in temporal correlations of the fluctuations of strai
on Cu(100) vicinal surfaces [15].

We shall first notice that these observed deviations occur at low temperatures where the distance between thermaLk

is quite large (using the experimental results of [15] on Cu(100), we findLk ∼ 102 at room temperature). When the typic
distance between thermal kinks is larger than the island size, we do not expect Eq. (7) to be valid, and the timesca
motion of a mobile atom along the step is essentially limited by the probability of presence of a thermal kink. In this regi
findsDc ∼ 1/R. Using Markov chains for the description of atomic motion, this result has been analyzed in details by
et al. [20].

A simple continuum phenomenological model which explicitly accounts for the dynamics of a concentration of mobile
diffusing along the step from kink to kink was proposed [21]. This model exhibits low temperature deviations in agr
with the above-mentioned observations, and also provides an expression for the diffusion constant:DL = acsDs/(1+ d/Lk),
with d = a(exp(Eks/kBT ) − 1) whereEks is the additional energy needed for an atom to go around a kink,cs andDs are
respectively the concentration and the diffusion constant of mobile atoms along the straight parts of the steps. This e
for DL was confirmed by Monte Carlo simulations [22]. Nevertheless, such a simple model does not explain the sin
two-dimensional islands studied by Liu et al. [23], which involves far from equilibrium concave shapes.

Similar deviations from the macroscopic theories were observed when steps exchange atoms with the terraces. T
detachment of atoms from 2D clusters, was for example studied in [24]. We shall also mention that similar problems occ
context of solution growth. For example, Chernov has pointed out the crucial role of kink emmited by corners for poly
steps during spiral growth [25].

1.3.2. Far from equilibrium
Let us start with the famous contribution of Kardar, Parisi, and Zhang (KPZ) [26], who proposed a simple nonlin

general equation for the roughening of fronts during growth:

∂t ζ = V + ∂xxζ + (∂xζ )2 + η, (8)

where ζ is the position of the step,x is the abscissa along the average step orientation,V is the velocity of a straigh
front, andη is a white noise. This model, for example, indicates that the r.m.s. roughness of a long enough step
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Fig. 2. STM images of step meandering during MBE growth on a vicinal surface. Left panel Cu(1,1,17) surface (Courtesy of L. D
CEA-Saclay, France). Right panel Si(111) vicinal surface at the transition temperature between(1 × 1) and(7 × 7) (Courtesy of H. Hibino,
Atsugi, Kanagawa, Japan).

W = 〈(ζ − 〈ζ 〉)2〉1/2 ∼ tβ , with β = 1/3. Although there are some numerical checks from Kinetic Monte Carlo simula
[9], we are not aware of experimental evidence of step roughening in agreement with this model.

Mean field theories have also been developed. For example, it is found in [27] that the kink density along high sy
steps is proportional toV 1/3. Nevertheless, and once again, we are not aware of an experimental validation of this pre
Moreover, mean field models do not provide the asymptotic power-law behavior expected from the KPZ model.

An additional complication comes from the presence of reconstructions on the surface. For example, a precise
of the kinetics of the GaAs surface [28] seems to show that reconstruction itself may be the origin of complex regim
morphological instabilities.

In the context of solution growth, mean field models have also been developed. We may for example cite the recen
Balykov et al. [29], who showed that growth may either lead to roughening or smoothening depending on the precise at
path of the atoms to the steps.

In many epitaxial systems (such as for Cu(100) surfaces in vacuum already mentioned above), atoms do not de
the steps, but may diffuse along them. If we assume that no vacancy is created during step motion, the evolution o
morphology results from a mass fluxj along the step and one has:∂t ζ = V + ∂xj . The nonlinear term which occurs in Eq. (
cannot be written as the divergence of a flux. Hence, other nonlinear terms such as∂xx [(∂xζ )2] have been included, which i
turn lead to new scaling laws for the roughness [30].

In the presence of diffusion along steps, the kink-Ehrlich–Schwoebel effect (kESe), which accounts for the diffic
atoms to diffuse around a kink, becomes crucial. The kESe has consequences on step stability similar to that o
Ehrlich–Schwoebel effect (sESe) on the stability of surfaces. For example, Schwoebel [13] has shown that the sESe
vicinal surfaces during growth. Following the same lines, Aleiner and Suris [31] have shown that vicinal steps are s
during growth in presence of kESe. Even more drastic consequences are found for nominal steps, which exhibit a morp
instability similar to Villain’s mounding instability on surfaces [11], leading to the spontaneous formation of step meand
ing growth [32]. A quantitative study of the shape of the meander [33] reveals that it follows the nonlinear theory develo
sESe-induced mound formation by Politi and Villain [34]. The predictions of this meandering instability seems to be com
with the observations on Cu vicinal surfaces [35] (see Fig. 2).

A more surprising feature is the formation of mounds in presence of kESe found in [32]. This effect results from a
mass flux along vicinal surfaces, which comes from the stabilization of the steps via line diffusion [32]. A detailed ana
this mass flux indicates that it should also lead to step bunching [36].

1.4. Phase field models

Let us give an explicit example of a phase field model for step motion. The first equation is an evolution equation
phase fieldφ which is the height of the surface:

τp∂tφ = W2∇2φ − ∂φf + λ(c − ceq)∂φg, (9)

whereW is the step width.τp andλ are constants.f , andg are functions ofφ. f is an energy density having minima fo
values ofφ corresponding to terraces.g is a coupling function. The second equation accounts for the evolution of the ad
concentrationc:

∂t c = ∇[M∇c] + F − c − ∂th, (10)

τ
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whereM andh are functions ofφ. M is the non-constant adatom diffusion constant, andh is the solid concentration (i.e. th
number of solid atoms per unit area above an arbitrary reference level).

The link between phase field models and the discontinuous step model of Section 1.2 is performed via an asymptoti
where the width of the interfaceW is small as compared to a cut-off length from the diffusion field. In the so-calledsharp inter-
face asymptotics[37], the coupling constant is small:λ ∼ W . In this weak coupling limit, one obtains the strong transpare
boundary conditions (6) [3]. Other asymptotics are possible. For example, in the so-calledthin interface asymptotics[38], one
keeps a small deviation from equilibrium at the step, i.e.c − ceq ∼ W . We therefore obtain a discontinuous step model w
fast kinetics [3], whereν± ∼ 1/W , andν0 ∼ 1/W . Singular adatom mobility may be used to obtain a significant sESe [39
order to obtain arbitrary kinetics, a phase field model with one concentration field per terrace was proposed [3].

Phase field models can for example provide expressions for step kinetic coefficients as a function of the microsc
bilities [3]. Nevertheless, they have essentially been used up to now as a numerical tool for solving the traditional ste
depicted in Section 1.2. Indeed, in the step model, the tracking of the step position on which boundary conditions
imposed is a delicate and complex task. On the other hand, the determination of the step position and the boundary
at the steps are intrinsic properties of the phase field model, which do not have to be computed during the numerical in
Some examples of use of the phase field models where reported for spiral growth [40], relaxation of bunches [41], gr
nucleation from nominal surfaces [42], step meandering [3], or dynamics of adsorbates with elastic interactions [43]. S
fluctuations can also be introduced in phase field models by means of Langevin forces, as shown in [41].

2. Step motion

2.1. Step meandering

2.1.1. Origin of the meandering instability
Here we shall forget about the complexity of internal steps dynamics, and analyze the motion of steps due to their

to adatom diffusion on terraces based on the model of Section 1.2.
In 1990, Bales and Zangwill [12] have showed that the steps are morphologically unstable during growth in prese

sESe. The instability is due to the fact that the step velocity will be larger in convex step regions due to the geometrical
of the adatom capture zone when attachment is not symmetric.

The sESe does not have to be localized precisely at the step. Elastic relaxation of the step edges [44] or ste
reconstructions [45] may induce a slower diffusion on the upper terrace in the vicinity of the step leading to the same in
As shown in Fig. 2, a meandering instability was indeed observed on Si(111) surfaces during growth, where terraces ar
reconstructed in the vicinity of the steps [45].

Another origin of the meandering instability was pointed out in [46] in presence of a drift of the adatoms. Electro
tion induced step meandering was observed on Si(111) surfaces at high temperature [47]. Nevertheless, the interp
these experiments is still controversial. Other more complex effects may also occur when the electromigration dir
arbitrary [48].

2.1.2. Nonlinear dynamics
The first studies of the nonlinear dynamics of step meander were performed in [49], which focus on the dynamics of t

and Zangwill instability in the presence of significant desorption on terraces. The nonlinear dynamical equation is foun
self-consistent expansion of the model equations close to the instability threshold, where the spatio-temporal scales in
the instability are large. This expansion, called multi-scale analysis, allows one to eliminate the stable short wavelengt
which relax fast. The meander is then found to obey the Kuramoto–Sivashinsky equation:

∂t ζ = −ε∂xxζ − ∂xxxxζ + (∂xζ )2, (11)

which leads to spatio-temporal chaos. A full solution of the step model with a phase field approach, as well as kineti
Carlo simulations confirms the existence of the chaotic regime [3,9]. Moreover, when steps are not isolated, i.e. whe
tance between steps is smaller than the desorption length on terracesxs = (Dτ)1/2, the vicinal surface obeys a two-dimension
anisotropic Kuramoto–Sivashinsky equation, which also leads to chaos [49].

In typical MBE experiments, desorption of adatoms is negligible, andτ → ∞. The multi-scale analysis reveals featu
which markedly differ from the previous case. A highly nonlinear evolution equation [50] is obtained for the in phase m
on a vicinal surface:

∂t ζ = ∂x

[
−F�2

2

∂xζ

1+ (∂ ζ )2
+ M

(1+ (∂ ζ )2)1/2
∂xµ

]
, (12)
x x
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whereM = (DΩceq�/(1 + (∂xζ )2)1/2 + DLa)/kBT , and � is the interstep distance. As will be discussed in Sectio
interactions of elastic origin are present between steps. This leads to an additional term in the chemical potential [51]

µ = Ωκ

(
γ̃ + 3A

�2

(
1+ (∂xζ )2

)(
1+ 2(∂xζ )2

))
, (13)

whereA is the elastic interaction constant. The step stiffness is therefore corrected with a nonlinear contribution com
elastic interactions.

Eq. (12) leads to meandering ripples whose amplitude grows in time ast1/2. In absence of elastic interactions, the late
wavelength is fixed from the first stages of the instability. Nevertheless, endless coarsening of the meandering ripples is
whenA �= 0. The amplitude and coarsening exponents can be calculated from a heuristic self-affine ansatz, as shown

In presence of anisotropy, Danker et al. [52] have shown that a different scenario appears, where the waveleng
meander freezes after some finite amount of coarsening. Asymptotically, the amplitude of the meander still increaset1/2.
This scenario leads to a nonlinear wavelength selection mechanism. Unexpectedly, the final wavelength may also b
by a pre-patterning of the substrate [52].

These results on meandering exhibit some generic features of the nonlinear dynamics of non-equilibrium fronts
when an instability occurs in the vicinity of thermodynamic equilibrium in a conserved system, the dynamics is always
nonlinear [53]. Moreover, the existence of only three possible scenarios (no coarsening, interrupted coarsening o
coarsening) is related to the structure of the steady-states, as shown in [54].

2.2. Step bunching

2.2.1. Mechanism of the instability
Another instability is the formation of bunches of steps from a vicinal surface (Fig. 3). Step bunching may be caus

wide variety of effects, such as an ES effect during sublimation [13], the presence of impurities [55], elastic relaxation
edges [44], or electromigration [56]. Therefore, following [57], we shall consider a simple model where the velocity o
is a function of the width of the neighboring terraces only:

V = f+(�+) + f−(�−). (14)

We now want to analyze the stability of a vicinal surface where step velocities obey equation (14). If the average
between the steps is�, the average step velocity isV = f+(�)+f−(�). We then consider a small perturbationζ = exp(ωt + inφ)

of the position of the steps, so that the position of thenth step isn� + ζn. From the linearization of Eq. (14), we find:

ω = (
1− cos(φ)

)
∂�Ψ + i sin(φ)∂�V, (15)

whereΨ = f−(�) − f+(�). The perturbations are unstable if the real part ofω is positive, i.e.∂�Ψ > 0; they are stable whe
∂�Ψ < 0. Hence, the origin of the instability is a bias towards the upper terrace of the sensitiveness of the step ve
the width of the neighboring terraces [57], which can be written:∂�f−(�) > ∂�f+(�). At long wavelengths,Ψ is the mass
flux along the surface, and the stability criterion can be related to the variations ofΨ as a function of the step density [58
Nevertheless, we shall not adopt this language here, which is not adapted to the description of non-continuous step de
pairing instabilities mentioned below.

We shall also mention that step bunching is not always a kinetic instability, i.e. bunches are sometimes observed in
of a linear instability. Bunching can then be understood as the production of shock waves within kinematic wave the
Such a situation may be found during etching [60].

2.2.2. Nonlinear dynamics
A multiscale analysis of the kinetic instability can be performed following the same lines as in Section 2.1.2. The r

equation is the Benney equation:

∂t ζ = −ε∂yyζ − b∂yyyζ − ∂yyyyζ + (∂yζ )2, (16)

where the surface heighty is obtained from the continuum limit of the step indexes. When the parameterb is large enough, the
dynamics lead to an array of ordered bunches. Whenb is small, one recovers the spatio-temporal chaos related to the KS
equation (11). In the case of electromigration-induced step bunching [61],b is large, and the ordered regime is observed.
Benney equation was also found for the meandering of anisotropic steps [62].

As in the case of step meandering, when desorption is small, the multi-scale analysis shows that bunching dynami
highly nonlinear.1 The evolution equation for the surface profile is now [64]:

1 This is not a general rule, and a weakly nonlinear equation can be obtained, such as in [63].
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Fig. 3. Left panel: STM image step bunching on Si(111) under electromigration (Courtesy of E.D. Williams). Right panel: Reflection
Microscopy image of kinetic pairing of identical steps on Si(111) under electromigration.

∂t ζ = aDc0
eq∂y

[
1/ξ − aAρ∂yyρ3

1+ dρ

]
, (17)

whereρ = 1/(�−a∂yζ ) is the local step density. The numerical solution of Eq. (17) shows that the amplitude of the pertu
increases rapidly and the step density approaches zero at some singular points [64]. At these points, wide terraces a
bunches become separate entities. The separation of the bunches is observed in most step bunching experiments. O
are separated, the continuum approach breaks down. Therefore, the coarsening exponents can be extracted from
analysis of the morphology of the bunches, as done in [66,57,64,67]. Another approach has been suggested for step
during growth [65], following the same power-counting method as in [51]. Nevertheless, the role of the singularities
density profile on the coarsening dynamics is not yet understood.

2.3. Step pairing

An instability towards a stable train of pairs was recently observed on Si(111) surfaces under electromigration
1230◦C [7]. Using a step model, it was shown that this instability is a non-local effect, which can be obtained when s
very transparent. Surprisingly, the experimental observation of this instability indicates that the transparency kinetic co
ν0 in Eq. (3) is negative. With the help of a phase field model [3], this can be traced back to a faster adatom diffusion in
region.

A qualitatively different scenario is observed on Si(100) during growth[68]. Indeed, the surface then exhibits an al
dimer-row reconstruction(1 × 2)/(2 × 1) from one terrace to the other. Therefore, there are two types of steps denotSA

andSB . Since the attachment kinetics is different onSA andSB steps, these move at different velocities and kinetic pairin
observed during growth. The faster steps are theSB steps, which are rougher and exhibit more attachment sites thanSA steps.
This train of pairs of steps in then unstable with respect to step bunching [68]. In Section 3, we will see that there is al
pairing transition of energetic origin on these surfaces.

2.4. Monolayer islands

2.4.1. Growth
During the growth of monolayer islands at low temperatures, atoms which are attached to a step cannot move to a ne

site of lower energy. This conditions correspond to the regime of Diffusion Limited Aggregation (DLA), and the resulting
shape is fractal. At higher temperatures, local relaxation at the steps is possible. Nevertheless, the steps may be unsta
of: (i) internal steps dynamics, such as that related to line diffusion with a kESe; (ii) an asymmetric coupling to the d
field, as mentioned in Section 2.1.2, coming from the sESe [69], or from the asymmetry of the terrace widths adjacent
This latter meandering scenario was observed by Homma et al. [70].

2.4.2. Migration
When mobile atoms drift (e.g. in presence of electromigration), two-dimensional islands may also drift. The occurre

direction of the drift depend on the dominant mass transport mechanism and on the presence of a sESe [10]. This
observed for monolayer islands on Si(100) and Si(111) [71]. The latter case leads to the first proof of the presence o
on Si(111).

The morphological stability of islands under electromigration was studied in [10]. Depending on the mass transpor
nism, island splitting or slit formation was found.
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3. Elastic relaxation

Adding a defect (e.g. a step, an atom, a reconstruction phase boundary) at the surface of a crystal leads to an
localized distribution of forces around the defect, which has two main consequences: (i) firstly, this leads to an int
energy between two defects; and (ii) secondly, the displacement field induced by a defect will change the diffusion ba
the mobile atoms. Therefore, kinetics will also be affected by the elastic relaxation of the crystal.

3.1. Interaction between defects

From mechanical equilibrium, the leading order contribution of the forces around a punctual defect is a dipole. Th
interaction energy between two defects separated by the distancer is therefore found to be repulsive and∼1/r3 [72]. Peyla and
Misbah [73] have shown that anisotropy may drastically change this picture, changing the sign, or the power law exp
these interactions.

If a linear defect at the surface separates two identical surfaces, a density of dipoles is located in its vicinity, whi
to an interaction energy between parallel linear defects∼1/r2 [74]. Nevertheless, if the linear defect separates two surf
which exhibits different surface stress tensors, mechanical equilibrium now imposes the presence of a density of for
the defect. The interaction energy per unit length is then∼ ln(r). These interaction energies are of course modified in pres
of step meander [75].

Such logarithmic interactions are found on Si(100) surfaces, which exhibits a bi-periodic(1×2) reconstruction, turned from
90 degrees from one layer to the next one. These two types of steps have the possibility to form double steps of lowe
Nevertheless, the strong logarithmic interaction of single steps allows the surface to gain an energy proportional to the
of the terrace width. Therefore, single steps are stabilized for small miscut angles [76].

In the case of hetero-epitaxy, the lattice mismatch between adsorbate and substrate leads to a stress accumula
adsorbate. A step on the adsorbate surface may therefore also be seen as a linear defect separating two different s
accumulated stress being larger on the higher side.

Feng Liu et al. [77] have shown that during hetero-epitaxy, a train of steps can be destabilized by the logarithmic a
interactions between steps. Combining growth and the destabilizing effect of the elastic interactions, arrays of bunc
long range order may be obtained.

A phononic contribution to the interaction energy between surface defects is also present, which is not always neglig

3.2. Kinetics

Elastic relaxation may also affect adatom diffusion, and doing so, it may also produce kinetic asymmetries whi
source of morphological instabilities. As an example, Duport, Nozières and Villain [44] have shown that elastic relax
the vicinity of the step edges may lead to a change of the mobility of adatoms thereby leading to an effective ES e
inverted ES effect. Therefore, step bunching or step meandering could be observed. This effects may also change si
the dynamics of submonolayer growth, as mentioned by Wolf et al. [79].

The Stransky–Krastanov growth mode, where 3D growth is preceded by growth of some complete mono-layers
discussed in details in another contribution of the present issue. We shall therefore only briefly mention how step motio
into play in the early stages of this growth mode.

First, it was shown, for example in [80], that the initial stages of growth in Si/Ge at low misfits exhibit a large k
roughness of the surface. One can therefore conclude that a continuum model for the surface is more adapted than a
Nevertheless, designing a continuum model which quantitatively accounts for the kinetic roughness is a delicate matte
the case of high misfits, the role of steps as possible nucleation sites was recently suggested by Villain [82].

In the next stage of this growth mode, Molecular Dynamics studies [83] and experiments of Ag/Si [84] indicate tha
is sometimes sucked from the wetting layer to form 3D mounds. This dewetting process seems to be controlled by the
of individual steps.

4. Electronic relaxation

Electronic relaxation leads to effects that are similar to that of elasticity, i.e. interactions between defects [85] an
also change the kinetics. The novelty here is the possibility of oscillatory interactions.

For example, the interaction between defects on metal surfaces result from the screening of the perturbation by c
electrons. The interaction energy between adatoms is∼ cos(2kF r)/rm, and between steps∼ cos(2kF r + π/4)/rm−1/2. One
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invited to

between
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finds thatm = 5 when the interaction is mediated by the bulk electronic surface states, butm = 2 when the interaction is
mediated by surface states [85]. The oscillatory character of the interactions was confirmed by experiments [86,87].

In thin metallic layers, the total electronic contribution to the energy results from a delicate interplay between q
confinement of the electrons, charge spilling in the substrate, and interface induced Friedel oscillations. The stability o
absorbates was found to be affected by these effects by Zhang et al. [88]. One of the most striking effects is the ex
magic thicknesses, which were observed in experiments for the growth of Ag/GaAs [89].

5. Conclusion

We have presented a rapid overview on recent advances and open questions about step dynamics on crystal sur
brief review has of course missed many topics in the very active research field of step dynamics, and the reader is
consult extended reviews [90,91,25,30,34].

We would also like to mention the recent progress on the persistence of step fluctuations [92]. The competition
statistical noise and deterministic chaotic meander was also a great achievement for the roughening theories [93].
studies on irreversible nucleation [94] and on mound formation [34], have now reached a mature level of understandin

To conclude, the past 15 years have seen a drastic improvement of the understanding of step dynamics. These ad
provide tools for a better control of the morphology of nanostructures.
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