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Abstract

This article describes a new exact 3D reconstruction algorithm dedicated to cylindrical positron emission tomogra
does not require an estimation of missing projection data nor complex 3D interpolation procedures. This algorithm use
Fast Fourier Transform of non-transaxial projections to place suitable voxel values in the 3D FFT of the radioactive dist
This leads to a direct fully 3D reconstruction algorithm with a limited amount of computation that requires only 1D interp
procedures and benefits from redundant projection data to improve the signal to noise ratio in the radioactive distribTo
cite this article: D. Mariano-Goulart, J.-F. Crouzet, C. R. Physique 6 (2005).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Une nouvelle méthode de reconstruction 3D dans le domaine de Fourier en tomographie par émission de positons. Cet
article décrit un nouvel algorithme exact de reconstruction 3D dédié aux tomographes par émission de positons cyli
Il ne nécessite pas l’estimation des données de projection manquantes ni d’interpolations délicates dans l’espace 3D
la transformée de Fourier 2D de signaux construits à partir des projections obliques acquises pour calculer la trans
Fourier 3D de la distribution de radioactivité à déterminer. On obtient ainsi un algorithme de reconstruction tridimen
rapide qui ne nécessite que des interpolations 1D et tire profit de la redondance des données de projection 3D pou
un meilleur rapport signal sur bruit dans l’objet reconstruit.Pour citer cet article : D. Mariano-Goulart, J.-F. Crouzet, C. R.
Physique 6 (2005).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction

The recent development of Positron Emission Tomography (PET) in functional imaging has made possible the u
projection data in the tomographic reconstruction process. As collimators are no longer necessary when recording c
events in a cylindrical PET scanner, this imaging technique provides measurements of line integrals of the radioact
distribution (LOR) that are not restricted to lie within a plane perpendicular to the axis of the detector surface. Compa
the usual 2D reconstruction procedures used in Single Photon Computed Tomography, the LOR measured in a large s
surrounding the radioactive distribution are redundant so that the reconstruction algorithms that benefit from the m
number of oblique projections are likely to produce a 3D reconstruction with a minimum amount of stochastic noise.

The generalization to 3D of usual 2D reconstruction algorithms based on the Fourier Slice Theorem (such as th
backprojection algorithm) requires measurements of projection data in a complete hemisphere. This condition is not sa
commercially available cylindrical PET scanners so that not all the projections that are necessary to reconstruct the ra
distribution are recorded. As a consequence, the generalization to 3D of the usual backprojection algorithm [1–3] r
first estimate of the unmeasured projection data [3–6]. This estimate is generally computed thanks to the forward p
of a first volumetric distribution reconstructed using 2D filtered backprojection (2D FBP) [6]. To date, the comput
burden of this fully 3D reconstruction algorithm, as well as the complex 3D interpolation procedures required by th
implementation of the Fourier slice theorem make these methods hardly compatible with clinical applications [7]. Mo
the truncated projections are computed from a first noisy volumetric estimate of the radioactive distribution so that thei
characteristics are decreased compared to the projections that are actually recorded.

A different approach uses approximations that sort the 3D projections into a 2D dataset containing one sinogram
transaxial slice to be reconstructed. The resulting sinograms are processed using conventional 2D tomographic reco
algorithms. However, these rebinning algorithms are based on approximations that limit the resolution of the reconstr
break down when the axial aperture of the scanner increases [7].

The purpose of this theoretical paper is to describe a new exact 3D reconstruction algorithm dedicated to cylindr
scanners that does not require estimation of missing projection data or complex 3D interpolation procedures. This algor
the 2D Fast Fourier Transform (FFT) of non-transaxial projections to place suitable voxel values in the 3D FFT of the rad
distribution. This leads to a direct fully 3D reconstruction algorithm that requires only a limited amount of computation

2. Posing the problem

Let us consider a cylindrical PET scanner of radiusR and lengthH , with its horizontal axis along thex3-axis (Fig. 1). Any
plane orthogonal to the axial directionx3 will be called a transaxial plane. Any pointa on the detector surface can be defin
by a = (R cosθa,R sinθa, za), with 0� θa < 2π and 0� za � H . A couple of photons emerging from an elementary volu
of activity corresponds to a certain LOR intersecting the detector at two opposite pointsa anda′, and having an unit directiona
vectorω = (cosθ sinϕ,sinθ sinϕ,cosϕ), with the Euler’s angles ranging 0� θ < 2π and 0� ϕ � π .

For whole body measurements, the heightH of the cylinder is much smaller than the heightL of distribution of activity in
the patient. This is the reason why it is necessary to operate a sequence of translations of the PET scanner along thex3-axis. Let
us denoteλH (typically with λ = 1/4) the length of the superposition of two consecutive translations of the PET detecγ

andγ ′ the distances covered by the translations of the PET scanner before and after the radioactive distribution. The
field of view of the PET scanner will be the cylindrical volumeV = {(x1, x2, x3) ∈ R

3, x2
1 + x2

2 � R2, 0 � x3 � γ + L + γ ′}
(Fig. 2).

If one considers a couple of opposite points(a, a′) and all the vectorsω of the unit sphere, one can make a first natu
restriction on the angleϕ: 0 � ϕ � π

2 . Let us consider the directionω of a given coincidence ray coming from any element
distribution of radioactivity located in the cylindrical volumeV . The invariance by translations of the 3D projection data st
that for all pointa on the detector surface, the line integral corresponding to(a,ω) is actually recorded. As shown in Fig.

Fig. 1. Transverse and longitudinal projection views of a cylindrical PET scanner.



D. Mariano-Goulart, J.-F. Crouzet / C. R. Physique 6 (2005) 133–137 135

e 3D
ed in

ue

d-
ity

al PET
Fig. 2. Three translations of a cylindrical PET scanner illustrating the definitions ofϕc , γ andγ ′.

this condition leads to tanϕ � (2R)/(λH). We will demonstrate in the next paragraph that invariance by translations of th
projection data as well as a last condition stating thatϕ �= π

2 are necessary and sufficient to construct the algorithm propos
this article. This leads to the final conditions:

arctan

(
2R

λH

)
= ϕc � ϕ <

π

2
, (1)

with γ > λH andγ ′ > λH .

Remark 1. In the case of focal acquisitions, no translation of the cylindrical PET is necessary and one gets the valϕc =
max(arctan(2R

γ ),arctan(2R
γ ′ )).

3. The Fourier-based 3D reconstruction method

Let f ∈ L2(R3) with support in{(x1, x2, x3) ∈ R
3, x2

1 +x2
2 < R2, γ < x3 < L+γ } be the finite energy signal correspon

ing to the distribution of radioactivity. The positions of the detectorsa which record signals from the distribution of radioactiv
correspond toza ∈ [0,L + γ ] along thex3-axis. Consider the line integralPf (a,ω) measured by the pair of detectors(a, a′)
in the directionω. For allθa ∈ [0,2π [, za ∈ [0,L + γ ], θ ∈ [0,2π [, ϕ ∈ [ϕc,

π
2 [ :

Pf (a,ω) =
∫
R

f (a + tω)dt =
∫
R

f (R cosθa + t cosθ sinϕ,R sinθa + t sinθ sinϕ, za + t cosϕ)dt. (2)

The change of variableu = za + t cosϕ, with cosϕ > 0, leads to

Pf (a,ω) =
∫
R

f

(
R cosθa + u − za

cosϕ
cosθ sinϕ,R sinθa + u − za

cosϕ
sinθ sinϕ,u

)
du

cosϕ
. (3)

If one denotes

(X1,X2) = (R cosθa − za tanϕ cosθ, R sinθa − za tanϕ sinθ), (4)

Eq. (3) becomesPf (a,ω) = 1
cosϕ

∫ L+γ
γ f (X1 + u tanϕ cosθ,X2 + u tanϕ sinθ,u)du. Let us define,∀(x1, x2) ∈ R

2, ∀θ ∈
[0,2π [, ∀ϕ ∈ [ϕc,

π
2 [

pθ,ϕ(x1, x2) = 1

cosϕ

L+γ∫
γ

f (x1 + u tanϕ cosθ, x2 + u tanϕ sinθ,u)du. (5)

This leads to

Pf (a,ω) = pθ,ϕ(X1,X2). (6)

We now look for a necessary and sufficient condition under which the set of projections recorded by the cylindric
scanner makes possible the computation ofpθ,ϕ over its whole support.

Let us define the line segmentLθ,ϕ = {(−za tanϕ cosθ,−za tanϕ sinθ), 0 � za � L + γ }, for any given values forθ
andϕ (Fig. 3). A LOR can be recorded only ifθ − θa ∈]π

2 ,3π
2 [. Thus forθa ∈]θ + π

2 , θ + 3π
2 [, and forza ∈ [0,L + γ ],
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Fig. 3. The domainDθ,ϕ .

(X1,X2) describes a reunion of semi-circles with radiusR, centered onLθ,ϕ . If one assumes that tanϕ � (2R)/(λH), the
length(L+γ ) tanϕ of Lθ,ϕ is greater than the diameter 2R of the semi-circles. Then the points(X1,X2) fill the whole domain

Dθ,ϕ = {x = (x1, x2) ∈ R
2, d(x,Lθ,ϕ) � R}, where d(x,Lθ,ϕ) is the Euclidian distance from a pointx to the setLθ,ϕ .

Consider any pointx = (x1, x2) /∈ Dθ,ϕ verifying d(x,Lθ,ϕ) > R.

Thus,∀u ∈ [0,L + γ ], (x1 + u tanϕ cosθ)2 + (x2 + u tanϕ sinθ)2 > R2. As the support of the distribution of radioactivi
f is included in a cylinder of radiusR, whose horizontal axis is thex3-axis, the term in the integral of Eq. (5) is zero.

Then(x1, x2) /∈ Dθ,ϕ ⇒ pθ,ϕ(x1, x2) = 0. Thus the values ofpθ,ϕ are known on a domainDθ,ϕ that contains the suppo
of pθ,ϕ .

Reciprocally, let us assume that tanϕ < (2R)/(λH), that isλH < 2R/(tanϕ). For any pair of detectorsa anda′, say for
any ray(a,ω), one easily shows thatza′ − za = −(2R cos(θ − θa))/ tanϕ � (2R)/(tanϕ). As a consequence, there exists
infinite set of couples of detectorsa anda′ for which λH < za′ − za � 2R/ tanϕ whose LORPf (a,ω) cannot be recorde
by the PET (Fig. 1). AsX1 andX2 in Eq. (4) are continuous with respect to the angular variableθa and to the longitudina
variableza , there exists subsets ofDθ,ϕ of non-zero measure inR2 that are not reached by any(X1,X2).

This completes the proof thatϕ � ϕc = arctan((2R)/(λH)) is necessary and sufficient to calculatepθ,ϕ over its whole
support from the projection data measured in a cylindrical PET scanner. Thus the condition (1) makes possible the com
of its 2D Fourier transform̂pθ,ϕ .

Let us denotef̃ the Fourier transform off along the two first variables. The inversion formula of the Fourier transfor
L2 and the definition (5) leads to

pθ,ϕ(X1,X2) = 1

cosϕ

L+γ∫
γ

(∫ ∫
R2

f̃ (ξ1, ξ2, u)e2iπ((X1+u tanϕ cosθ)ξ1+(X2+u tanϕ sinθ)ξ2) dξ1 dξ2

)
du. (7)

Using a truncation of the integrals onR2, Fubini’s theorem and the definition of the Fourier transform inL2, one can show
that Eq. (7) leads to

pθ,ϕ(X1,X2) = 1

cosϕ

∫ ∫
R2

( L+γ∫
γ

f̃ (ξ1, ξ2, u)e2iπ(u tanϕ(ξ1 cosθ+ξ2 sinθ)) du

)
e2iπ(X1ξ1+X2ξ2) dξ1 dξ2 (8)

= 1

cosϕ

∫ ∫
R2

( +∞∫
−∞

f̃ (ξ1, ξ2, u)e−2iπ(−u tanϕ(ξ1 cosθ+ξ2 sinθ)) du

)
e2iπ(X1ξ1+X2ξ2) dξ1 dξ2 (9)

= 1

cosϕ

∫ ∫
2

f̂
(
ξ1, ξ2,− tanϕ(ξ1 cosθ + ξ2 sinθ)

)
e2iπ(X1ξ1+X2ξ2) dξ1 dξ2. (10)
R
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Let us callp̂θ,ϕ the 2D Fourier transform inL2 of the functionpθ,ϕ . As we have shown thatpθ,ϕ(X1,X2) provides a
complete knowledge ofpθ,ϕ , the uniqueness of the inverse Fourier transform leads to

∀(ξ1, ξ2) ∈ R
2, p̂θ,ϕ(ξ1, ξ2) = 1

cosϕ
f̂

(
ξ1, ξ2,− tanϕ(ξ1 cosθ + ξ2 sinθ)

)
. (11)

Last, let us show that for all realξ3 and(ξ1, ξ2) �= (0,0), there exists a couple(θ,ϕ), with 0 � θ < 2π andϕc � ϕ < π
2 ,

verifying ξ3 = − tanϕ(ξ1 cosθ + ξ2 sinθ).

Sinceξ3 describes the interval[− tanϕ

√
ξ2
1 + ξ2

2 , tanϕ

√
ξ2
1 + ξ2

2 ] and limϕ→ π
2

tanϕ = +∞, thenξ3 describesR. There-

fore (ξ1, ξ2, ξ3) describesR3 except the two half-lines defined by{(ξ1, ξ2, ξ3) ∈ R
3, |ξ3| > 0, ξ1 = ξ2 = 0}.

As a consequence, the Fourier transformf̂ is known almost everywhere so that its inverse Fourier transform can be
puted.

This completes the proof thatf can be determined from the projection dataPf (a,ω) by means of Eqs. (6) and (11
The practical conditions for performing the various FFTs are not discussed in the present article. They will be descr
forthcoming publication.

4. Conclusion

In this theoretical article, we proved that a volumetric distribution of radioactivity can be reconstructed using
Fast Fourier Transform of data derived from non-transaxial projections and 1D interpolation procedures. As for
(ξ1, ξ2) ∈ R

2∗, the function(θ,ϕ) → − tanϕ(ξ1 cosθ + ξ2 sinθ) is surjective but not injective onR, Eq. (11) allows redun
dant evaluation off̂ almost everywhere in the 3D space. As the projections acquired in an actual PET scanner are no
redundancy can be averaged to improve the signal to noise ratio in the evaluation off̂ . This will provide a full 3D reconstruc
tion algorithm in which the use of oblique projections will allow a better control of stochastic noise compared with the
achieved with usual 2D reconstruction algorithms.

Moreover, the use of only one 3D FFT in the reconstruction of the whole distribution ensures that this algorithm will
to provide reconstructions more rapidly than other usual 3D reconstruction algorithms.
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