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Abstract

We review the main aspects of Ricci flows as they arise in physics and mathematics. In field theory they describe t
malization group equations of the target space metric of two-dimensional sigma models to lowest order in the per
expansion. As such, they provide an off-shell approach to the problem of tachyon condensation and vacuum selection
string theory in the weak gravitational regime. In differential geometry they introduce a systematic framework to find ca
metrics on Riemannian manifolds and make advances towards their classification by proving the geometrization co
We focus attention to geometric deformations in low dimensions and find that they also exhibit a rich algebraic struct
Ricci flow in two dimensions is shown to be integrable using an infinite-dimensional algebra with antisymmetric Cartan
that incorporates the deformation variable into its root system. The deformations of two-dimensional surfaces also co
Ricci flow on 3-manifolds and their decomposition into prime factors by applying surgery prior to the formation of singu
along shrinking cycles. A few simple examples are briefly discussed including the notion of Ricci solitons. Other appl
to physical systems are also listed at the end.To cite this article: I. Bakas, C. R. Physique 6 (2005).
 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Flots de Ricci et leurs propriétés d’intégrabilité en deux dimensions. Dans cet article, nous résumons les principa
résultats sur les flots de Ricci en physique et en mathématique. En théorie des champs, dans les modèles sigma bidim
les flots de Ricci décrivent la renormalisation de la métrique de l’espace cible. En tant que tels ils permettent de com
le problème de la condensation de tachyons hors de la couche de masse, et de la sélection du vide en cordes ferm
régime gravitationnel faible. Dans le contexte de la géométrie différentielle, ils offrent le moyen de déterminer des m
canoniques sur les variétés riemanniennes et de faire des progrès dans leur classification (conjecture de géométrisa
attention sera plus particulièrement portée aux déformations géométriques de basse dimension, pour lesquelles on dé
riche structure algébrique. A deux dimensions, nous montrons que le flot de Ricci est intégrable ; ceci grâce à une a
dimension infinie avec un noyau de Cartan antisymétrique qui incorpore la variable de déformation dans son système d
Les déformations de surfaces bidimensionnelles contrôlent également le flot de Ricci sur des variétés à trois dimens
que leur décomposition en facteurs premiers. L’exérèse des singularités potentielles le long de cycles évanescents es
nécessaire. Nous discutons enfin quelques exemples simples parmi lesquels les solitons de Ricci, et dressons un
d’applications à d’autres systèmes physiques.Pour citer cet article : I. Bakas, C. R. Physique 6 (2005).
 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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The Ricci flow equations arose independently in physics and mathematics in the early 1980s. Since then, they hav
a major tool for addressing a variety of problems in the quantum theory of fields and strings, as well as in geometry, wh
ground breaking results have been obtained in recent years (see, for instance, [1] for a recent collection of important m
ical papers on the subject). The Ricci flows are second order non-linear parabolic differential equations for the comp
the metric of ann-dimensional Riemannian manifold which are driven by the Ricci curvature tensor,

∂

∂t
Gµν = −Rµν. (1)

As such they describe geometric deformations of the Riemannian metric with parametert (called time) that generalize th
heat flow equation beyond the weak field approximationGµν � δµν + hµν , which is only valid for small and slowly varyin
perturbations of the metrichµν . From the analysis of such partial differential equations one obtains existence and uniq
theorems of solutions on some time interval starting from any smooth initial metric; in some cases the solutions exis
infinitely long time in the sense that the metric does not become singular anywhere. Our purpose is to review the main p
of these equations and consider some of their current applications in physics and mathematics. It is a hopeless task t
general solution in arbitrary number of dimensionsn, since the fixed point configurationsRµν = 0 are already quite difficult to
determine exactly. Fortunately, several important results depend only on the qualitative properties of the flows and no
solutions, but many times it is also useful to have explicit expressions, as in the theory of gravitation.

We will first present the general aspects of Ricci flows in arbitrary number of dimensions and then specialize the di
to low dimensions. It will be shown that the Ricci flow defines an integrable system in two dimensions using a local
of conformally flat coordinates. In this case, the general solution can be obtained by Bäcklund transformations as
field equations associated to simple Lie algebras. A few special solutions will also be described together with their
interpretation. An important feature of our method is the use of infinite-dimensional algebras that incorporate the defo
variablet into their root system. Thus, apart from the ability to linearize the Ricci flow and parametrize all geometric de
tions in two dimensions using free fields, we uncover a novel algebraic structure which might be valuable for the reform
of more general dynamical problems in gravitational theories. Our approach also brings to light the class of Lie algeb
non-symmetrizable Cartan matrices which have been very poorly studied in mathematics and have never been used
so far. Finally, we will discuss the relevance of two-dimensional flows to the topology of 3-manifolds and summarize s
the recent developments in the geometrization of 3-manifolds via the Ricci flow.

A simple solution that illustrates the main qualitative features of the Ricci flow in all dimensions is derived by conside
initial metricGµν(0) of constant Ricci curvatureRµν = aGµν . Then, the evolution proceeds by rescaling the metric unifor
in all directions, as

Gµν(t) = (1− at)Gµν(0). (2)

Clearly, the metric has constant Ricci curvature at all later times but its size depends on the sign ofa; if a > 0 the metric
will contract uniformly and the formation of singularity becomes inevitable as in a big crunch, whereas ifa < 0 the metric will
expand smoothly for ever. This simple solution admits a physical interpretation in the renormalization theory of two-dime
sigma models. Consider theO(N) sigma model which is defined by the two-dimensional action

S = 1

g2

∫
d2w (∂n)2 (3)

using anN -dimensional unit vector fieldn. Its target space isSN−1 = SO(N)/SO(N − 1) and has positive constant Ric
curvature. The quantum theory is not conformal but it is perturbatively renormalizable with coupling constantg2 changing (to
lowest order) as follows,

1

g̃2
= 1

g2
+ N − 2

4π
log

Λ̃

Λ
(4)

under changes of the world-sheet length scaleΛ−1 (see, for instance, [2]). Setting

t = logΛ−1, (5)

it follows that the renormalization of the coupling proceeds by uniform contraction of the target space sphere, as in
above witha > 0. This is in accord with the celebrated result that theO(N) sigma model becomes asymptotically free in
ultra-violet regiont → −∞ whenN � 3. Likewise, two-dimensional sigma models with target spaces of negative con
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curvature become asymptotically free in the infra-red regiont → +∞, as they tend to expand according to Eq. (2) above w
a < 0. Also, when they flow backwards they develop a singularity, as in the heat equation.

Next, let us consider more general sigma models which are defined on Riemannian manifoldsM using a local system o
target space coordinates{Xµ; µ = 1,2, . . . , n} with metricGµν . Using the two-dimensional world-sheet metrichij their action
is

S =
∫

d2w
√

dethhij (∂iX
µ)(∂jXν)Gµν. (6)

In general the beta function is not zero and one finds within perturbation theory that the metric changes under wo
rescaling as [3]

Λ−1 ∂

∂Λ−1
Gµν = −β(Gµν) = −Rµν − 1

2
Rµρστ R

ρστ
ν + · · · . (7)

Here,Rµν summarizes the lowest order terms but there are also quadratic and higher curvature terms in the perturba
expansion. Again, settingt = logΛ−1, one can readily identify the Ricci flow (1) with the renormalization group equatio
the target space metric by retaining only the lowest order term. The higher loop terms, as they are indicated above, ca
effect in regions where the curvature of the space grows large, for example close to the formation of singularities, but
not be considered in the following. It should be noted, nevertheless, that the perturbative renormalization of sigma m
higher loops suggests the inclusion of specific higher curvature terms to the Ricci flow equation which might also be o
to the mathematics community.

The Ricci flow equations admit a natural generalization when arbitrary reparametrizations of the target space co
δXµ = −ξµ are also included. They become

∂

∂t
Gµν = −Rµν + ∇µξν + ∇νξµ, (8)

where the vector fieldξµ can depend on all target space coordinates as well as on timet . The role of reparametrizations alon
the flow is better understood by considering the renormalization group equations for a general background with meGµν

and dilaton fieldΦ̃. Their general form in the sigma model frame is to lowest order

∂

∂t
Gµν = Rµν − 2∇µ∇νΦ̃ + ∇µξν + ∇νξµ,

∂

∂t
Φ̃ = −(∇Φ̃)2 + 1

2
∇2Φ̃ + ξµ∇µΦ̃, (9)

where arbitrary reparametrizations are also included. We observe that the effect of the dilaton is similar to reparame
generated by a gradient vector fieldξµ. In particular, choosingξµ = ∇µΦ̃ the equations simplify to

∂

∂t
Gµν = −Rµν,

∂

∂t
Φ̃ = 1

2
∇2Φ̃. (10)

The first is the Ricci flow (1) and the second is an ordinary heat equation forΦ̃. In general, reparametrizations assign non-triv
Weyl transformation laws to the target space coordinates which act as dilaton gradient in the renormalization group e
of two-dimensional sigma models according to

δεhij = εhij , δεX
µ = ε∇µΦ̃. (11)

Note in passing that adding the dilaton leads to interesting fixed point configurations of the beta function equations w
characterized by the conditionRµν = 2∇µ∇νΦ̃. A particularly simple solution in two dimensions is given in polar coordina

ds2 = dr2 + tanh2 r dθ2, Φ̃(r) = log(coshr), (12)

and describes the geometry of an infinitely long cigar with its tip located atr = 0. This solution arose as model for tw
dimensional Euclidean black hole in the context of gauged WZW models [4] (but see also [5]). Equivalently, it can be r
as special instance of the original Ricci flow (1) by considering solutions whereGµν(t) is the pull-back of an initial metric
Gµν(0) by a one-parameter family of diffeomorphisms generated by a vector fieldξµ(t). These are self-similar solutions of th
partial differential Eq. (1), called Ricci solitons, which satisfy the special condition

Rµν = ∇µξν + ∇νξµ (13)

as they move along by diffeomorphisms [6]. They arose in the mathematics literature as limits of dilations of singula
the Ricci flow. Thus, it is not surprising that the cigar configuration (12) was discovered independently in mathematic
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example of a steady gradient Ricci soliton withξµ = ∇µΦ̃ as given above [7]. It will also be relevant later in our discuss
of axially symmetric deformations of the round sphere (sausage model) where the ultra-violet limit can be viewed as
solitons glued together in their asymptotic region. Higher-dimensional examples of rotational symmetric Ricci solito
exist in the literature. Finally, it should be noted that Ricci solitons saturate the Harnack inequality and occupy a centr
the whole subject [8].

In the mathematics literature one often considers the normalized Ricci flows as variant of (1). To motivate their defin
us consider the volume of the spaceM ,

V =
∫
M

√
detGdnX. (14)

Its change is controlled by the Einstein–Hilbert action, since the Ricci flow (1) implies

∂V

∂t
= 1

2

∫
M

dnX
√

detGGµν ∂Gµν

∂t
= −1

2

∫
M

dnX
√

detGR[G]. (15)

Thus the volume of a closed manifold is not preserved under the flow. It will decrease if the Ricci scalar curvatureR > 0 and
increase ifR < 0, in agreement with the behavior of the simple solution (2) that describes deformations of spaces with c
curvature forward in time. Volume preserving deformations are defined by considering the normalized Ricci flow

∂

∂t
Gµν = −Rµν + 1

n
RGµν, (16)

whereR is the average (mean) scalar curvature of the manifoldM ,

R = 1

V

∫
M

dnX
√

detGR[G]. (17)

SinceR is only a function oft , it follows that the fixed point solutions of (16) correspond to configurations of constant curv
The normalized flow follows from the unnormalized Eq. (1) by reparametrizing in time and rescaling the metric in

by a function oft . Note in this respect that the rescaling of the metric by an arbitrary function oft , G̃µν = f (t)Gµν , does not
affect the Ricci curvature tensor asRµν = R̃µν , but it transforms the unnormalized Ricci flow into the general form

∂

∂t̃
G̃µν = −R̃µν + λ(t̃)G̃µν, (18)

where the new time variablẽt and the functionλ(t̃) are determined as follows,

t̃ =
∫

dt f (t), λ(t̃) = f ′(t)
f 2(t)

. (19)

Clearly, the normalized Ricci flow (16) corresponds to the choiceλ(t) = R/n (after dropping the tilde in the notation) and h
∂V/∂t = 0. Again, the simple solution (2) is useful to understand the equivalence between the two flows by time resca

The normalized deformation (16) has better chance to admit long-lived solutions compared to the unnormalized on
solutions typically exist only for short time. Indeed, the uniformly contracting metrics (2) become extinct in finite tim
reaching a singularity att = 1/a, whereas their description as steady state solutions of the normalized Ricci flow allows
to exist for infinitely long time. Of course, this is not an issue for the case of uniformly expanding metrics as they e
long time. The main task is to determine the conditions under which the solutions of the normalized Ricci flow e
sufficiently long time and converge to canonical metrics, i.e., metrics of constant curvature in various forms. This is p
the starting point for using the Ricci flow to explore the geometrization conjecture, but the results depend heavily on the
of dimensions. It is important in this respect to determine first the time evolution of the curvature. The Ricci flow equa
yields the following non-linear heat equation for the Ricci scalar curvature,

∂R

∂t
= 1

2
∇2R + RµνRµν, (20)

which in turn implies that positivity ofR is preserved on closed manifolds in any number of dimensions; negative scalar
ture is not preserved in general. On the other hand, the time evolution of the components of the Ricci curvature tenso
complicated as it also involves the components of the Riemann curvature tensor and positivity is not necessarily ma
In low dimensions the situation is expected to be more tractable simply because of numerology: in two dimensions
scalar curvature determines algebraically all the components of the Ricci as well as the Riemann curvature tensors
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in three dimensions the number of independent components of the Riemann curvature tensor is six and equals the
independent components of the Ricci curvature tensor. In the following we focus our discussion to two and three dim
and present a brief survey of the main results.

Let us first consider the Ricci flows on two dimensional manifoldsM2 which also extend easily to three dimension
geometries of the formS1 × M2. Closed surfaces are topologically classified by their Euler number given by the genusg,

χ(M) = 1

4π

∫
M

d2X
√

detGR[G] = 2(1− g). (21)

The classic uniformization theorem of Poincaré and Koebe describes their geometrization by asserting the existence o
curvature metrics onM whose form depends on whether the genus is 0, 1 org � 2: in general they are quotients ofS2, R2

or H2 (with curvature+1, 0 or−1 respectively) by a discrete subgroupΓ acting freely and isometrically. The Ricci flow of
metric onM depends crucially on the genus, since its volume changes at a constant rate,

∂V

∂t
= −2πχ(M), (22)

following Eq. (15) for the unnormalized Ricci flow. Forg = 0 there is contraction as in the simple solution (2) witha > 0, for
g = 1 there is no deformation at all since the torus defines a conformally invariant sigma model, and forg � 2 there is expansion
as in (2) witha < 0. The normalized Ricci flow fixes the volume and it has been shown in all cases that the solutions c
to constant curvature metrics (depending on the genus) for any initial metric onM [7,9]. Thus, the Ricci flows provide anoth
proof of the uniformization theorem of closed two-dimensional surfaces by new method. This is precisely the idea on
apply to higher (three) dimensional manifolds in favor of the geometrization conjecture.

The Ricci flow equation (1) also exhibits a very rich algebraic structure in two dimensions as outlined below. It
particularly simple form in a local system of conformally flat coordinates

ds2
t = 2eΦ(z+,z−;t) dz+ dz−. (23)

Since the only non-vanishing component of the Ricci curvature isR+− = −∂+∂−Φ, we obtain the following non-linear differ
ential equation for the conformal factor,

∂

∂t
eΦ(z+,z−;t) = ∂+∂−Φ(z+, z−; t). (24)

This equation is integrable for it can be brought into zero curvature form using gauge connections that take values in
part of an infinite-dimensional algebra with Cartan kernelK(t, t ′) = ∂t δ(t − t ′) [10]. This mathematical structure fits into th
general class of continual Lie algebras by incorporating the deformation variablet into the root system, but it has the pecul
feature that the Cartan kernel is antisymmetric. Eq. (24) is actually the Toda system associated to this algebra, and th
general solution can be expressed in terms of a one-parameter family of two dimensional free fields using the group t
formulae that are available in such cases.

More precisely, let us consider a Lie algebra with Cartan–Weyl generators that satisfy the commutation relations[
X+(ϕ),X−(ψ)

] = H(ϕψ),
[
H(ϕ),H(ψ)

] = 0,
[
H(ϕ),X±(ψ)

] = ∓X±(ϕ′ψ). (25)

Here,ϕ andψ are functions of the continuous variablet and prime denotes the derivative with respect to it. Equivalently, we
consider generatorsX±(t) andH(t) that depend on the continuous variablet and write down their commutation relations usi
the Cartan kernelK(t, t ′) = ∂t δ(t − t ′). We prefer to define the algebra by smearing the generators with arbitrary functiont ,
as it is commonly done in the theory of distributions, in which case the Cartan operator isK = d/dt . Then, the zero curvatur
condition[

∂+ + A+(z+, z−), ∂− + A−(z+, z−)
] = 0, (26)

whereA± take values in this infinite-dimensional algebra with

A+ = H(Ψ ) + iX+(1), A− = iX−(
eΦ

)
(27)

reads as follows,

∂−Ψ = eΦ, ∂+Φ = ∂tΨ. (28)

Eliminating the variableΨ we arrive at the two-dimensional Ricci flow (24) as advertised above.
The Toda field formulation of the Ricci flow allows for the construction of its general solution in terms of free fie

Bäcklund transformations. The group theoretical expressions that have been known for Toda systems associated
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finite-dimensional Lie algebras can be easily extended to the case of continual Lie algebras [11,12]. For this let us
(formally) a highest weight state

X+(t ′)|t〉 = 0, 〈t |X−(t ′) = 0, H(t ′)|t〉 = δ(t − t ′)|t〉 (29)

subject to the normalization〈t |t〉 = 1. Then, the general solution of the Toda field equation (24) which is associated
continual Lie algebra with Cartan operatorK = d/dt takes the form [10]

Φ(z+, z−; t) = Φ0(z+, z−; t) + ∂t

(〈t |M−1+ (z+; t)M−(z−; t)|t〉), (30)

whereM± are the path-ordered exponentials

M±(z±; t) = P
(

i

z±∫
dz′±

t∫
dt ′ ef ±(z′±;t ′)X±(t ′)

)
. (31)

Φ0(z+, z−; t) = f +(z+; t) + f −(z−; t) is a one-parameter family of two-dimensional free fields with∂∓f ±(z±; t) = 0 for
all t .

In practice, one obtains a formal power series solution around the free field configuration by expanding the path
exponentials as

〈t |M−1+ M−|t〉 = 1+
∞∑

m=1

z+∫
dz+

1 · · ·
z+
m−1∫

dz+
m

z−∫
dz−

1 · · ·
z−
m−1∫

dz−
m

×
∫ m∏

i=1

dti

∫ m∏
i=1

dt ′i expf +(z+
i

; ti )expf −(z−
i

; t ′i )D
{t1,t2,...,tm;t ′1,t ′2,...,t ′m}
t , (32)

where

D
{t1,t2,...,tm;t ′1,t ′2,...,t ′m}
t = 〈t |X+(t1)X+(t2) · · ·X+(tm)X−(t ′m) · · ·X−(t ′2)X−(t ′1)|t〉. (33)

The computation of these elements can be done recursively using the commutation relations of the Cartan–Weyl g
The resulting terms encode all the information about the underlying Lie algebra of the Toda system.

A remarkable feature of this approach is the emergence of a new description of geometric deformations based o
dimensional algebras. The time variablet of the Ricci flows assumes an intrinsic role in the structure of the infinite-dimens
Lie algebra used in the zero curvature formulation of the problem. The gauge connectionsA±(z+, z−) take values in the loca
partG−1 ⊕ G0 ⊕ G+1 of a continual contragradient Lie algebra with Cartan operatorK = d/dt , which is denoted byG(d/dt).
Although the complete structure of the algebra is not needed for the present purposes, it will be interesting to construc
elements and their commutation relations beyond the fundamental system of its Cartan–Weyl generators. The only kno
so far is the exponential growth of the number of independent generators of the subspacesGn = [Gn−1,G+1] with n > 1 and
Gn = [Gn+1,G−1] with n < −1, which are obtained by taking successive commutation relations of the elementsX± ∈ G±1 as
in all contragradient Lie algebras. In particular, ifdn denotes the dimension of the subspacesGn relative toG0 generated by the
Cartan elementH , it follows by induction thatdn = 2|n|−2 for all |n| � 2 [12]. Clearly, this is a rather exotic algebraic structu
that calls for further attention in the future. It will be interesting to have the analogue of Serre relations forG(d/dt), construct
representations, and examine the relevance of its exponential growth in the algebraic formulation of dynamical proble
as the Ricci flow. It is also of independent interest in the theory of generalized Kac–Moody algebras with non-symme
Cartan matrices. For now, we are only satisfied with its use for the integration of the two-dimensional Ricci flow.

Next, we present some explicit examples of Ricci trajectories on two-dimensional manifolds which have attracted c
able attention in the physics literature. They all have axial symmetry and represent mini-superspace solutions of a mo
dynamical system defined in the space of all possible metrics. The existence of such special trajectories relies on th
of the Ricci flow to preserve all isometries of an initial metric. Thus, they can also be derived by elementary techni
allowing the metric to depend on a small number of time dependent moduli, as in all consistent mini-superspace tru
The resulting configurations are easier to visualize when written in proper coordinates than in conformally flat frame
change of variables needs to be compensated by a vector fieldξµ that generates the necessary reparametrization along the
In this case we seek solutions of the modified Ricci flow equations (8), although equally well we can describe them u
initial system (1) in conformally flat coordinates. It should be noted that all the examples we present in the following
a free field realization according to the general solution of the corresponding Toda field equation given above; we
reader to the literature for further details [10]. Such comparison is also useful to demonstrate the validity and conver
the infinite power series expansion (32), which is only formally defined for the case of infinite-dimensional algebras.



I. Bakas / C. R. Physique 6 (2005) 175–184 181

spherical

ere
frame

of
at look

wo
es

oloid is

oid.

metric
ter

rity (lo-
ental
ear heat

t
vacuum

acua by
lization
The sausage model provides the simplest non-trivial example of geometric deformations of compact spaces with
topology,S2 [13]. The solution is described in proper coordinates using the Jacobi elliptic function,

ds2
t = k

γ

(
du2 + sn2(u;k)dφ2)

with k = tanh(−γ t), (34)

where 0� u � 2K(k), γ � 0 is an arbitrary constant that parametrizes the family of trajectories and 0� φ � 2π [10]. The
modulusk runs from 1 to 0 ast ranges from−∞ to 0 andK(k) denotes the complete elliptic integral of the first kind. Th
is also a corresponding gradient vector fieldξu(u) that compensates the change of coordinates from the conformally flat
to (34) so that the deformation is consistently described by Eq. (8). Whenγ = 0, we havek = 0 in which case sn(u;0) = sinu.
Sincek/γ = −t , the metric flows as ds2

t = −t (du2 + sin2 udφ2) with the angular variableu ranging from 0 to 2K(0) = π .
This particular solution describes a round sphere with linearly diminishing scale ast runs from the ultra-violet regiont → −∞
to the big crunch pointt = 0; it coincides with the simple solution (2) witha > 0 for n = 2 that dictates the running coupling
theO(3) sigma model. Whenγ > 0, the solution describes more general axially symmetric deformations of the sphere th
like sausages with characteristic size 2K(k) given by the periodicity of the function sn2(u;k). In the ultra-violet limitk → 1
the sausage is infinitely long becoming a cylinderR × S1 of radius 1/

√
γ . It can be alternatively viewed as a configuration t

semi-infinite cigars glued together in their asymptotic region, since sn(u;1) = tanhu and the metric around the tips assum
the form (12). The sausage tends to diminish in size whenk decreases until it shrinks to a point whenk = 0 for all values of the
parameterγ .

Another solution in two dimensions that describes axially symmetric deformations of a negatively curved hyperb
given in proper coordinates

ds2
t = k′2

γ

(
du2 + 1

dn2(u;k)
dφ2

)
with k = 1

cosh(γ t)
, (35)

where−K(k) � u � K(k), γ � 0 and 0� φ � 2π [10]. The modulusk ranges from 1 to 0 ast varies from 0 to the infra-red
limit t → +∞. There is also a gradient vector fieldξu(u) to compensate the change of coordinates, as before. Whenk = 1,
the Jacobi elliptic function dn(u;k) equals 1/coshu and the geometry looks like an infinite negatively curved hyperbol
Whenk = 0, we have dn(u;0) = 1 and the geometry looks like a segment of flat cylinder of radius 1/

√
γ asu ranges from

−π/2 to π/2. The special trajectory withγ = 0 corresponds to the linear rescaling of the metric (2) witha < 0, which leads
to uniform expansion. However, this cannot be readily seen from the form of the metric (35) unless a factork′ is appropriately
absorbed and the remaining scale of the line element becomesk′/γ = t .

In the same context we can also consider deformations of the Poincaré metric on the upper half-planeH2 which are described
by the simple family of trajectories

eΦ(z+,z−;t) = 2t

γ 2t2 + (z+ + z−)2
(36)

in conformally flat frame [10]. Forγ = 0 the solution describes a uniform linear expansion of the standard Poincaré
dz+ dz−/(z+ + z−)2, as in Eq. (2), since the curvature is negative. Forγ �= 0 the deformation is more drastic and it is bet
visualized using proper coordinates. It will be interesting to have explicit examples of geometric deformations ofH2/Γ for
appropriate choices of discrete subgroupsΓ ∈ SL(2,Z) that correspond to higher genus Riemann surfaces.

Finally, we consider the simplest example of a two-dimensional non-compact space with initial curvature singula
calized at the tip of a coneC/Zn) which dissipates away after infinitely long time [14]. It can be regarded as a fundam
solution of the non-linear equation (20) for the scalar curvature, which generalizes the Gaussian solution for the lin
equation∂tR = ∇2R/2 on the plane. The solution is best described in the frame

ds2
t = f 2(r; t)dr2 + r2 dφ2, ξr = 1

2t
rf (1− f ), ξφ = 0, (37)

where 0� φ � 2π/n. The modified Ricci flow equation determines the form of the shape functionf (r; t),(
1

f
− 1

)
exp

(
1

f
− 1

)
= (n − 1)exp

(
n − 1− r2

2t

)
. (38)

When t → 0+ we havef → 1, which corresponds to the metric ds2 = dr2 + r2 dφ2 of a cone with opening angle 2π/n.
On the other hand, the infra-red limitt → +∞ yields f → 1/n, which corresponds to the metric ds2 = dr2 + r2 dφ̃2 of the
two-dimensional plane in polar coordinates with 0� φ̃ � 2π . The decay of a coneC/Zn to the planeR2 � C has paramoun
importance to the problem of (localized) tachyon condensation in closed string theory since the ten-dimensional string
C/Zn ⊕ R7,1 has tachyonic states in the twisted sector of the conical block. They induce transitions to more stable v
reducing the order of the singularity, which eventually becomes completely resolved in the infra-red limit of the renorma
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group flow. There are generalizations of this phenomenon to more complicated backgrounds that exhibit tachyon
explicit solutions are known for their decay patterns.

The final topic in this article is the application of Ricci flows to three-dimensional geometries on closed Riem
manifolds (see, for instance, [15] for an excellent exposition and [16] for comprehensive reviews of the latest math
developments). Positivity of the Ricci scalar curvature is maintained throughout the deformation according to Eq. (2
same is true for the Ricci curvature tensor in three dimensions although this is not generally valid in higher-dimension
with n > 3. Furthermore, it has been shown by Hamilton that any initial metric in three dimensions with everywhere p
definite Ricci curvature tensor evolves under the Ricci flow so that the manifold becomes rounder and rounder as it s
the metric is rescaled so that the volume remains constant, the corresponding solutions of the normalized Ricci flow
for infinitely long time and they all converge towards the constant curvature metric onS3/Γ , whereΓ is a finite subgroup
of SO(4) acting freely onS3 [17]. This space-form theorem geometrizes 3-manifolds of positive Ricci curvature via the
flow and paves the way towards the proof of Thurston’s geometrization conjecture which asserts that every compon
sphere and torus decomposition of any closed oriented 3-manifold admits a geometric structure. It includes as specia
Poincaré conjecture stating that a closed 3-manifold with trivial fundamental group must be homeomorphic to the 3
more generally, a closed 3-manifold with finite fundamental group must admit a metric of constant positive curvature
instance, [16]).

Further progress relies on the study of Ricci flows on more general 3-manifolds. The situation is more complicated w
Ricci scalar curvature is positive but the components of the Ricci curvature tensor are not all positive definite everywh
Ricci flow does not preserve negative Ricci curvature in dimensionsn � 3. If at a generic point there are directions of positive
well as negative Ricci curvature, the flow will tend to contract or expand the metric locally. In general, such uneven ge
deformations soon run into singularities, which often can not be avoided even by the normalized Ricci flow. A typical exa
curvature singularity forming in the normalized Ricci flow is provided by the dumb-bell geometry that consists of two sp
regions joined together by a suitably long throat. Even if the three-dimensional volume is preserved, the throat will
tendency to pinch as it is topologically described by an interval timesS2 and the positive curvature ofS2 overtakes the small bu
negative curvature in the third direction. Another example is provided by positive scalar curvature metrics on a conne
of S3/Γ andS1 × S2 which develop singularities as their deformations can not possibly converge to a round metric.
other hand, there are non-singular solutions of the normalized Ricci flow which exist for all time, as in the case of a s
space form. The topological classification of closed manifolds which admit non-singular solutions of the normalized Ri
is now well understood in three dimensions [18]. The more difficult part is the study of singularities and the applica
geometric surgeries before they occur so that the solutions can be continued separately on different components until
they converge to constant curvature metrics.

The analysis of singularities is quite intricate and it will not be discussed in detail (see, however, [19]). We only no
that one way in which singularities may arise along the Ricci flow is that a 2-sphere in the three dimensional manif
collapse to a point in finite time. Then, one should perform surgery analogous to the decomposition of a general 3-man
connected sum of prime factors by cutting the space alongS2 and gluing 3-balls on the individual components. After a fin
number of such surgeries it turns out that the Ricci flow on a closed manifoldM leads to the topological decomposition

M = K1#· · ·#Kn#(S3/Γ1)#· · ·#(S3/Γm)#
(
S1 × S2)

1#· · ·#(
S1 × S2)

r
. (39)

The factorsS3/Γi andS1 ×S2 can be disregarded as they become extinct in finite time under the unnormalized Ricci flo
remaining factorsKi exist for sufficiently long time and each one can be decomposed further as union of a complete hyp
manifold of finite volume and a graph manifold along a collection of incompressible embedded tori. Further decompo
graph manifolds into Seifert fibered components is quite standard in topology; they split by disjoint embedded tori into
each of which is a circle bundle over a surface. The recent advances towards the proof of the geometrization conjectu
dimensions are due to Perelman [20].

This result is analogous to the uniformization of closed surfaces in two dimensions. However, unlike two dimensi
solutions of the normalized Ricci flow on 3-manifolds do not always exist for infinitely long time. This fact is attribu
the existence of essential 2-spheres, i.e., embedded 2-spheres that do not always bound a 3-ball in three dimensions
tend to collapse in finite time. Put differently, a general 3-manifold is not geometric for any Riemannian metric on it ca
degenerate regions. Thurston’s geometrization conjecture only applies to each irreducible component of the sphere
decomposition of a 3-manifold and in that sense the Ricci flows have to be supplemented by surgery prior to the f
of singularities. Thus, the renormalization group properties of theO(3) sigma model are responsible for the appearanc
singularities in three dimensions caused by the collapse of essentialS2-cycles. In two dimensions, a similar decomposition
a higher genus Riemann surface into connected sum of tori is done by cutting alongS1-cycles which are incompressible und
the Ricci flow, and as a result the corresponding solutions can never run into singularities. Finally, similar considerat
also apply to higher dimensionsn > 3, but the behavior of Ricci flows and the formation patterns of singularities are
complicated.
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Summarizing, the Ricci flows in low dimensions have very rich algebraic and geometric properties which should be e
further. It still remains to understand the deeper role of the infinite-dimensional Lie algebraG(d/dt) used in the formulation o
two-dimensional geometric deformations as integrable system. This algebra also dictates the behavior of Ricci flow
dimensions through the geometric deformations of two-dimensional embedded submanifolds. Various entropy formula
Ricci flow and their relation to Zamolodchikov’sC-theorem [21], should also be examined in this context. Finally, the prob
of tachyon condensation in closed string theory and its relation to the geometrization program of Riemannian manifold
Ricci flow in the weak gravitational regime should be investigated in more general terms.

We also note for completeness that the two-dimensional Ricci flow equation (24) arises in other areas of physic
superfast diffusion processes take place. First, it appears in studies of the central limit approximation to Carleman’s
the Boltzmann equation [22]. Second, it describes the cross-field convective diffusion of plasma including mirror effe
Third, it governs the expansion of a thermalized electron cloud described by isothermal Maxwell distribution [24], wh
solution (36) is also found. Finally, it appears as limiting case of the porous medium equation (see, for instance,
references therein). The cigar soliton (12) coincides with the so-called Barenblatt solution in the theory of porous me
whereas the sausage deformation of the round sphere [13,10] coincides with the axi-symmetric solution found in [2
written in conformally flat frame.
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