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Abstract

We present our recent studies on the dynamics of boundaryN = 2 Liouville theory. We use the representation theory
N = 2 superconformal algebra and the method of modular bootstrap to derive three classes of boundary states of tN = 2
Liouville theory. Class 1 and 2 branes are analogues of ZZ and FZZT branes ofN = 0,1 Liouville theory while class 3 brane
come fromU(1) degrees of freedom. We compare our results with those ofSL(2;R)/U(1) super-coset which is known to b
T-dual toN = 2 Liouville theory and describes the geometry of 2d black hole. We find good agreements with known
in SL(2;R)/U(1) theory obtained by semi-classical analysis using DBI action. We also comment on the duality ofN = 2
Liouville theory.To cite this article: T. Eguchi, C. R. Physique 6 (2005).
 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

‘Bootstrap’ modulaire pour la théorie de Liouville N = 2 au bord. Nous présentons nos travaux récents sur la dynam
de la théorie de LiouvilleN = 2 au bord. Nous utilisons la théorie des représentation de l’algèbre superconformeN = 2 et les
méthodes de ‘bootstrap’ modulaire pour obtenir trois classes d’états au bord pour la théorie de LiouvilleN = 2. Les classes 1
et 2 sont analogues aux branes obtenues par ZZ et FZZT pour les théories de LiouvilleN = 0,1, et la classe 3 vient de
degrés de libertéU(1). Nous comparons nos résultats avec ceux du super-espace quotientSL(2;R)/U(1) T-dual à la théorie de
Liouville N = 2, et décrivant la géomètrie de trous noirs à 2 dimensions. Nos résultats sont compatibles avec ceux ob
une analyse semi-classique de l’action de DBI pour la théorieSL(2;R)/U(1). Nous faisons des commentaires sur la dualité
la théorie de LiouvilleN = 2. Pour citer cet article : T. Eguchi, C. R. Physique 6 (2005).
 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction

Recently there has been a revival of interests in Liouville field theory, due mainly to the reinterpretation of the old
of matrix model-Liouville theory as a typical example of gauge gravity correspondence [1–4]. Matrix theory is inte
as describing open string degrees of freedom living on D-branes while the Liouville field describes closed string de
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freedom. An exact map between the extended D-brane of Liouville theory and macroscopic loop operator of matrix th
instance, has been discovered. Analyses so far have been carried out usingN = 0 andN = 1 Liouville field theories.

In this article we would like to present our recent studies ofN = 2 Liouville theory based on the modular bootstrap appro
[5,6]. We recall thatN = 2 Liouville theory consists of a complex bosonφ + iY and conjugate Fermi fieldsψ+,ψ−. Hereφ

denotes the standard Liouville field coupled to the background chargeQ andY is a compact boson which is not coupled
background charge. In our conventionN = 2 Liouville system has a central charge

c = 3+ 3Q2 (1)

and the conformal dimension of a vertex operator eαφ is given by1
2α(Q − α).

Interest inN = 2 Liouville theory come from various directions:

(i) Applications to string theory compactified on singular Calabi–Yau manifolds, NS5 branes etc. It is well known tha
CHS background of the NS5 brane, transverse directions to the 5-brane are described by the Liouville field×SU(2) WZW
model [7–9]. We then have

R5,1 × Rφ × SU(2)WZW ≈ R5,1 × Rφ × U(1)︸ ︷︷ ︸
N=2 Liouville

×SU(2)/U(1)︸ ︷︷ ︸
N=2 minimal

(2)

where the firstU(1) factor is identified as theY field. Thus the space–time of NS5 brane is described by theN = 2
Liouville field coupled toN = 2 minimal models. It is known that this geometry is T-dual to the ALE spaces and we
later compute the elliptic genus of ALE spaces by making use of the above description.

(ii) It is known thatN = 2 Liouville theory is T-dual toSL(2;R)/U(1) super-coset theory [10,11] which describes the c
geometry of 2-dimensional black hole

SL(2;R)/U(1) theory= T-dual ofN = 2 Liouville. (3)

Thus we can discuss 2d black holes by usingN = 2 Liouville theory. We will see below that unitary representations
SL(2;R)/U(1) Kazama–Suzuki model are in fact identical to those ofN = 2 Liouville theory [12,6] and this gives a mo
straightforward proof of T-duality between these theories.

(iii) Bosonic sector ofN = 2 Liouville theory consists of fieldsφ andY and thus is identical to that of Liouville theory couple
to c = 1 matter. Thus one expects a close relationship ofN = 2 Liouville to bosonic models like sine-Liouville fields [13

It is known that there are two different approaches to quantum Liouville theory:

(1) conformal bootstrap,
(2) modular bootstrap.

Conformal bootstrap [14–16] is a detailed and complex analysis of the Liouville system based on conformal invaria
bootstrap in the presence of world-sheet boundaries. It gives a detailed information on the dynamics of Liouville fiel
particular led to the discovery of boundary states and D-branes in Liouville theory. On the other hand, the modular b
which is based on the representation theory and modular properties of character formulas usually plays a seconda
checking the consistency of the results of conformal bootstrap. InN = 2 Liouville theory, however, it is difficult to carry out th
conformal bootstrap approach due to technical complexity and we instead propose to use modular bootstrap in order
the technical difficulties.

Below we first discuss the representations ofN = 2 Liouville theory and then construct boundary states and their w
functions using of the modular properties of the character formulas. It turns out that there exist three different types of b
states inN = 2 Liouville: class 1 branes which are the analogues of ZZ branes inN = 0 theory [14], class 2 branes which a
the analogues of FZZT branes [15,16] and additional class 3 branes which come from theU(1) degrees of freedom ofN = 2
theory.

We then use the relationship ofN = 2 Liouville andSL(2;R)/U(1) theory and compare class 1, 2, 3 branes with the kn
D0, D1, D2 branes in the 2d black hole geometry [17]. We find good agreements between the two except for a subtle dis
in the case of D1 brane.

In N = 0 and 1 Liouville theories there exists the so-called duality symmetry of the theory where we exchange the
ter b with 1/b whereb is related to the background chargeQ asQ = b + 1/b. In the case ofN = 2 theory an obvious duality
symmetry is missing. Instead there exist two different types of Liouville potential terms

F term:
∫

d2θ e
1
Q

Φ +
∫

d2θ̄ e
1
Q

Φ̄
, (4)
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d4θ e
Q
2 (Φ+Φ̄) (5)

whereΦ denotes a chiral superfield with its lowest componentφ + iY . These are both marginal operators preservingN = 2
superconformal symmetry and appear to play a dual role in the theory [18]. We will consider the issue of duality inN = 2
theory and point out that at a particular value ofQ = 1 describing the singular K3 surface ofA1 type, this duality correspond
to the hyperKähler rotation of the K3 surface.

2. N = 0 theory

Now let us first briefly recall the results ofN = 0 Liouville theory and introduce the idea of modular bootstrap. InN = 0
theory the central charge and the conformal dimension of a vertex operator is given by (we use the conventionα′ = 1)

c = 1+ 6Q2, h
[
e2αφ

] = α(Q − α). (6)

Whenα = Q/2 + ip, the vertex operator e2αφ describes a primary field of continuous representation with momentump with
dimensionh = p2 + Q2/4.

In N = 0 theory there are basically two different representations:

(i) Identity representation

χh=0(τ ) = 1− q

η(τ)
· q− 1

4 (b+ 1
b
)2

, Q = b + 1

b
. (7)

(ii) Continuous representations

χp(τ) = qp2

η(τ)
. (8)

Identity representation has a singular vector at level 1 while continuous representation is a non-degenerate repre
S-transform of these characters are given by

χh=0

(−1

τ

)
= 4

√
2

∞∫
0

dp sinh(2πbp)sinh

(
2πp

b

)
χp(τ), (9)

χp

(−1

τ

)
= 2

√
2

∞∫
0

dp cos(2πpp′)χp(τ). (10)

Now we introduce the boundary states|ZZ〉 and|FZZT ;p〉 and identify the characters as expectation values of the evolu
operator

χh=0

(−1

τ

)
= 〈ZZ|eiπτH(c) |ZZ〉, (11)

χp

(−1

τ

)
= 〈FZZT ;p|eiπτH(c) |ZZ〉. (12)

Here|ZZ〉 and|FZZT ;p〉 denote ZZ and FZZT branes respectively andH(c) is the closed string Hamiltonian. These bound
states are expanded in terms of Ishibashi states as

|ZZ〉 =
∞∫

0

dp′Ψ0(p′)|p′〉〉, |FZZT ;p〉 =
∞∫

0

dp′Ψp(p′)|p′〉〉 (13)

where|p′〉〉’s are Ishibashi states with momentump′ andh = p′2 + Q2/4, and

〈〈p|eiπτH(c) |p′〉〉 = δ(p − p′)χp(τ). (14)

HereΨ0(p′) andΨp(p′) are the disk one-point functions of ZZ and FZZT branes with a vertex operator exp(Q/2+ ip′)φ
insertion.
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In terms of these wave functions (11), (12) are rewritten as

χh=0

(−1

τ

)
=

∞∫
0

dp
∣∣Ψ0(p)

∣∣2χp(τ), χp

(−1

τ

)
=

∞∫
0

dp′ Ψ0(p′)Ψ ∗
p (p′)χ ′

p(τ). (15)

By comparing with (9), (10) one finds

Ψ0(p)Ψ (p)∗0 = 4
√

2 sinh(2πbp)sinh

(
2πp

b

)
, Ψp(p′)∗Ψ0(p′) = 2

√
2 cos(2πpp′). (16)

Thus we can determine the wave functions

Ψ0(p) = −25/4 · 2π ipµ̂ip/b

�(1+ i2pb)�(1+ i2p/b)
,

Ψp(p′) = 21/4 µ̂ip′/b

2π ip′ �(1− 2ibp′)�
(

1− 2ip′
b

)
cos(2πpp′). (17)

Here we have inserted some phase factors (µ̂ is related to the cosmological constantµ as µ̂ = πµγ (b2) whereγ (x) =
�(x)�(1− x)).

This is the derivation of disk amplitudes using the modular bootstrap method: it is much simpler when compared
computations in conformal bootstrap. Actually by the modular bootstrap method phase factors of the wave functions
be determined, however, they cancel in the computation of cylinder amplitudes. Thus using modular bootstrap metho
analyze the Cardy condition and determine consistent boundary states.

The lessons we have learnt from the above discussions are as follows:

(i) The identity representation does not appear in the closed string channel and closed strings states are spann
continuous representations|p〉〉. Conformal dimensions of continuous representations are bounded from below

h(p) = p2 + Q2

4
� Q2

4
(18)

and thus the closed string sector has a gap in the spectrum. This corresponds to the decoupling of gravity in
ditaton background.

(ii) On the other hand, the identity representation does occur in the open string channel.
(iii) One can check the consistency of the results of modular bootstrap with the conformal bootstrap analysis. For insta

can check the reflection property of the disk amplitude

Ψ0(−p) = R(p)Ψ0(p) (19)

whereR(p) denotes the reflection amplitude

R(p) = −µ̂−2ip/b �(1+ 2ip/b)�(1+ 2ipb)

�(1− 2ip/b)�(1− 2ipb)
. (20)

3. N = 2 theory

Now we turn to theN = 2 theory. In the following we use the parametrization

ĉ = c

3
= 1+ Q2, Q2 = 2K

N
, K,N ∈ Z�1, (21)

and the conformal dimension of a vertex operator is given by

h
[
eαΦ

] = p2

2
+ Q2

8
for α = Q

2
+ ip (22)

(we use the conventionα′ = 2). It is known that inN = 2 superconformal theory there exist three types of unitary repres
tions, i.e., identity, continuous and discrete representations. We denote their character formulas aschid(τ ; z), chcont(τ ; z) and
chdis(τ ; z), respectively. The angular variablez is coupled to theU(1) charge.

A continuous representation is a non-degenerate representation while the identity and discrete representation p
fermionic singular vector. The identity representation has also a bosonic singular vector. In the context of siring compac
we call them as graviton (identity), massive (continuous) and massless matter (discrete) representations.
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For the application to string compactification it is necessary to project the theory onto states with integralU(1)R charges.
In order to ensure charge integrality condition we take the sum over spectral flows of irreducible characters and intro
extended characters

χ∗(τ ; z) =
∑

n∈r+NZ

q
ĉ
2n2

e2iπĉznch∗(τ ; z + nτ), r ∈ ZN, ∗ = id,cont,dis. (23)

Note that we actually consider modN spectral flow to assure good modular properties of extended characters. The parar
runs over the range 0,1, . . . ,N − 1.

Extended characters are parametrized as

(1) Identity representations:

χid(m; τ ) m = 2Kr, r ∈ ZN, h = K

N
r2 + |r| − 1

2
, Q = m

N
+ sign(r) · 1, r 	= 0,

h = Q = 0, r = 0.

(2) Continuous representations:

χcont(p,m; τ ) p � 0, m = 2Kr, r ∈ ZN, h = p2

2
+ m2 + K2

4NK
, Q = m

N
. (24)

(3) Discrete representations:

χdis(s, r; τ ) m = s + 2Kr, r ∈ ZN, h = Kr2 + (r + 1/2)s

N
, Q = m

N
, 0� r � N

2
,

0� s � N + 2K − 1, h = Kr2 + (r + 1/2)s

N
−

(
r + 1

2

)
, Q = m

N
− 1,

−N

2
� r � −1.

h andQ give the dimension andU(1) charge of the representations. Note that the quantum numberm is related to theU(1)

chargeQ asQ = m/N (mod integer). The explicit form of these characters are given in [5]. In the following we consid
NS sector of the theory. Characters in other sectors are obtained by half spectral flows. S-transformations of NS char
given by

Identity representations:

χid

(
m;− 1

τ

)
= 1√

2NK

∑
m′∈Z2NK

e−2π i mm′
2KN

∞∫
0

dp′ sinh(πQp′)sinh(2π
p′
Q

)

|coshπ(
p′
Q

+ i m′
2K

)|2
χcont(p

′,m′; τ )

+ 2

N

∑
r ′∈ZN

N+K−1∑
s′=K+1

sin

(
π(s′ − K)

N

)
e−2π i m(s′+2Kr′)

2KN χdis(s
′, r ′; τ ). (25)

Continuous representations:

χcont

(
p,m;− 1

τ

)
=

√
2

NK

∑
m′∈Z2NK

e−2π i mm′
2NK

∞∫
0

dp′ cos(2πpp′)χcont(p
′,m′; τ ). (26)

Discrete representations:

χdis

(
s, r;− 1

τ

)
= 1√

2NK

∑
m′∈Z2NK

e−2π i (s+2Kr)m′
2NK e

iπm′
2K

∞∫
−∞

dp′ e−2π( s−K
N

− 1
2 )

p′
Q

2coshπ(
p′
Q

+ im′
2K

)
χcont(p

′,m′; τ )

+ i

N

∑
r ′∈ZN

N+K−1∑
s′=K+1

e−2π i (s+2Kr)(s′+2Kr′)−(s−K)(s′−K)
2NK χdis(s

′, r ′; τ )

+ i

2N

∑
r ′∈ZN

e−2π i (s+2Kr)(s′+2Kr′)
2KN

{
χdis(s

′ = K,r ′; τ ) − χdis(s
′ = N + K,r ′; τ )

}
. (27)

Note that contributions from the ‘boundaries’ of the range ofs, K � s � K + N , appear in the RHS of (27).
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The above transformation law has a peculiar structure,

(continuous rep.)
S
⇒ (continuous rep.), (28)

(identity or discrete rep.)
S
⇒ (continuous rep.)+ (discrete rep.). (29)

Only a part of discrete representations appear in the RHS (29). Such a pattern of modular transformations was first ob
the representation theory ofN = 4 of superconformal algebra [19].

(i) We note that there appear no identity representations in the RHS of above formulas (25)–(27).
(ii) Only the discrete representations in the rangeK � s � N + K appear in the RHS.

(iii) It is still possible to show that S-transformation squared equalsC, S2 = C whereC is the charge conjugation oper
tion [20]. This happens because the shift of the momentum contour becomes necessary in the 2nd S-transform
the fact that identity and discrete representations can be obtained from continuous representations at some comp
of the momentum.

Based on the above transformation law we propose that in theN = 2 theory closed string Ishibashi states are spanned b

(continuous reps)+ (discrete reps withK � s � K + N). (30)

As we shall see below, this spectrum agrees with those of theSL(2;R)/U(1) coset theory.
We can construct class 1, 2, 3 boundary states corresponding to identity, continuous and discrete representation

modular transformation law. In the case of class 1 and 2 branes, boundary wave functions can be easily read off
modular S matrices. Class 1 boundary state (for the casem = 0) is constructed as

|B; id〉 =
∞∫

0

dp′ ∑
m′∈Z2NK

Ψid(p′,m′)|p′,m′〉〉 +
∑

r ′∈ZN

N+K−1∑
s′=K+1

Cid(s′, r ′)|s′, r ′〉〉 (31)

where

Ψid(p′,m′) = 1

Q
·
(

2

NK

)1/4
·
�(1

2 + m′
2K

+ i p
′

Q
)�(1

2 − m′
2K

+ i p
′

Q
)

�(iQp′)�(1+ i 2p′
Q

)
, (32)

Cid(s′, r ′) =
(

2

N

)1/2
√

sin
π(s′ − K)

N
(33)

and|p,m〉〉 and|r, s〉〉 are Ishibashi states of continuous and discrete representations

〈〈p,m|eiπτH(c) |p′,m′〉〉 = δ(p − p′)δm,m′χcont(p,m; τ ), (34)

〈〈s, r|eiπτH(c) |s′, r ′〉〉 = δr,r ′δs,s′χdis(s, r; τ ). (35)

We find that the amplitude〈B; id|exp(iπτH(c))|B; id〉 reproduces the RHS of (25). Class 2 states are constructed in a s
manner. By computing various cylinder amplitudes one can check the Cardy consistency conditions.

On the other hand, in the case of class 3 branes the situation becomes somewhat delicate due to the presence
ary terms in modular transformation (27). In order to cancel the effect of these terms one has to consider a pair o
representations[(r1, s1), (r2, s2)] with (s1 + 2r1K) − (s2 + 2r2K) = N × odd integer, and a combination of charact
χdis(r1, s1; τ ) + χdis(r2, s2; τ ). In this case Cardy condition are not necessarily obeyed depending on the parameteK,N

of the theory.

4. SL(2;R)/U(1) theory

It is well-known thatSL(2;R)k/U(1) supercoset theory is T-dual to theN = 2 Liouville. Central charges of these theori
can be written as

ĉ = 1+ 2

k
= 1+ Q2 = 1+ 2K

N
. (36)

Thus the levelk is related to the parametersK,N by

k = N
. (37)
K
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Table 1
Comparison of boundary states

Type of branes N = 2 Liouville Type of branes SL(2;R)/U(1)

A class 1 identity rep. B D0 brane localized at tip of cigar
B class 2′ continuous rep. A D1 brane extended along radial direction
A class 3 discrete rep. B D2 brane wraps the whole cigar
A class 2 continuous rep. B D2 brane wraps a part of cigar

By studying the representations ofSL(2;R)/U(1) Kazama–Suzuki model, one finds that they are in fact in an one-to
correspondence with those ofN = 2 Liouville and their character formulas are identical [6]. (Relation of character formul
bosonicSL(2;R)/U(1) theory to those ofN = 2 Liouville is given in [20].) Correspondence of parameters is given by

identity rep.: j = 0, (38)

continuous rep.: j = 1

2
+ i

p

Q
, (39)

discrete rep.: j = s

2K
(40)

wherej denotes the spin ofSL(2;R) representation.
Path integral evaluation of toroidal partition function ofSL(2;R)/U(1) theory [21] shows that the theory contains continuo

representations as well as discrete representations in the (improved) unitary range [22,6,23]

1

2
� j � k + 1

2
. (41)

This agrees with the rangeK � s � K + N of N = 2 Liouville under the correspondencej = s/2K .
SL(2;R)/U(1) theory describes the cigar geometry of 2d black hole and its boundary states are constructed by usin

Infeld action and the results ofSL(2;R) theory [17]. One can compare the results ofN = 2 theory with those ofSL(2;R)/U(1)

[24,25] (see Table 1).
There exists an overall good agreement between the two. Wave functions of class 1 branes agree with those ofSL(2;R)/U(1)

theory and also with the results of conformal bootstrap [26,27]. We also have a match of class 3 and D2 branes
identification

σ = π

(
s − 1

k
− 1

2

)
(42)

whereσ is related to the gauge field strength on D2 brane [17]. Consistency of overlap of two D2 branes withσ,σ ′ requires

σ − σ ′ = 2πn
1

k
(43)

wheren is an integer related to the D0 brane charges. This condition immediately follows from the above identification
However, in the case of class 2 branes there is a delicate discrepancy with the D1 brane ofSL(2;R)/U(1) theory. Their

wave functions have a form

Ψ class 2
p,m (p′,m′) ≈ f (p′,m′)cos(2πpp′), (44)

Ψ D1
p,m(p′,m′) ≈ f (p′,m′)e2π ipp′ + (−1)m

′
e−2π ipp′

2
. (45)

Thus D1 brane has an extra phase factor(−1)m
′

as compared with the class 2 brane. Authors of [25] call (45) as the cla′
brane. The extra phase factor is related to different reflection amplitudes for A and B type states. Type B class 2 bra
does not have a good semi-classical limit unlike class 2′ branes. It is suggested that type A class 2 branes instead are well-d
and correspond to partially wrapped D2 branes inSL(2;R)/U(1) theory [25].

5. Singular Calabi–Yau manifolds

WhenN = 2 Liouville theory is coupled toN = 2 minimal models,

|class 1 boundary state of Liouville〉 ⊗ |boundary states of minimal model〉 (46)
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describe vanishing cycles of singular Calabi–Yau manifolds: one recovers the correct intersection numbers by compu
string Witten index. See [5] for details.

One can also compute the elliptic genus of singular Calabi–Yau manifolds usingN = 2 Liouville theory [6]. Elliptic genus
is defined by

Z(τ ; z) = Tr(−1)FR+FLe2π iJ0zqL0−ĉ/8q̄L̄0−ĉ/8 (47)

and is invariant under smooth deformation of the parameters of the theory. HereFR(FL) denotes the fermion number of th
right(left)-moving sector. In the case of compact manifolds elliptic genus is known to have a good modular property
(quasi) Jacobi-form. It turns out that this is no longer the case in non-compact manifolds.

For instance, in the case of conifold one obtains the elliptic genus

Zconifold(τ, z) = 1

2

θ1(τ ;2z)

θ1(τ ; z) . (48)

In the case of ALE space withA1 singularity it is given by

ZALE(A1)(τ, z) = −chN=4,R̃
0 (� = 0; τ ; z). (49)

HerechN=4
0 (� = 0) denotes the masslessN = 4 character of isospin= 0. Elliptic genera of generalAn−1 type singularity are

described in terms of the Appell function [6]

K�(τ, ν,µ) =
∑
m∈Z

eiπm2�τ+2π im�ν

1− e2π i(ν+µ+mτ)
. (50)

Appell function is closely related to the character of discrete representations ofN = 2 theory [28] and describe holomorph
sections of higher rank vector bundles on Riemann surfaces [29].

6. Q = 1 and duality

When the background charge takes a special valueQ = 1, dimension of the target spaceĉ = 1+ Q2 becomes 2 andN = 2
Liouville theory describes string compactification on ALE space withA1 singularity. Thus atQ = 1 N = 2 SUSY is enhanced
to N = 4 . Generators ofN = 2 superconformal algebra (SCA) atQ = 1 are given by

T = −1

2

[
(∂Y )2 + (∂φ)2 + ∂2φ + (ψ+∂ψ− − ∂ψ+ψ−)

]
, (51)

G+ = −1√
2
ψ+(i∂Y + ∂φ) − 1√

2
∂ψ+, G− = −1√

2
ψ−(i∂Y − ∂φ) + 1√

2
∂ψ−, (52)

JU(1) = ψ+ψ− − i∂Y = i∂H − i∂Y (53)

where we have bosonized the Fermi fieldsψ+ψ− = i∂H . SU(2) currents ofN = 4 SCA are given by

J+
SU(2)

= eiH−iY , J−
SU(2)

= e−iH+iY , J3
SU(2) = i

2
(∂H − ∂Y ). (54)

At Q = 1 Liouville potential terms (4), (5) become

S+ =
∫

d2ze−φ−iY−iH , S3 =
∫

d2z (−i∂Y − i∂H)(i∂̄Y + i∂̄H)e−φ, S− =
∫

d2ze−φ+iY+iH . (55)

We find thatS±, S3 form a triplet under a newSU(2) algebraSU(2)′ generated by

J+
SU(2)′ = eiH+iY , J−

SU(2)′ = e−iH−iY , J3
SU(2)′ = 1

2
(i∂H + i∂Y ). (56)

SU(2)′ commutes withSU(2) of N = 4 SCA and we have anSU(2) × SU(2)′ structure

G+= G+,+
J−

SU(2)′

J−
SU(2)

G+,−

−,+ −,− −
J+

SU(2)′
J+

SU(2)

(57)
G G = G
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G+,− = + 1√
2

e−iY (∂φ − ∂H) + 1√
2
∂e−iY , (58)

G−,+ = − 1√
2

e−iY (∂φ + ∂H) − 1√
2
∂e−iY . (59)

Action of SU(2)′ transformsG± into G∓ and thus induces the change of complex structure. Thus it corresponds
hyper-Kähler rotations of K3 surface. SinceS± anS3 are transformed into each other underSU(2)′, theN = 2 duality amounts
to a hyper-Kähler rotation atQ = 1. More details will be discussed in [30].

Since this article was presented at Strings2004, a preprint appeared [31] where new results of conformal bootstrapN = 2
theory are reported.
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