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Abstract

We present our recent studies on the dynamics of bounNagy2 Liouville theory. We use the representation theory of
N = 2 superconformal algebra and the method of modular bootstrap to derive three classes of boundary statés=c? the
Liouville theory. Class 1 and 2 branes are analogues of ZZ and FZZT branés=df, 1 Liouville theory while class 3 branes
come fromU (1) degrees of freedom. We compare our results with thos @, R)/ U (1) super-coset which is known to be
T-dual toN = 2 Liouville theory and describes the geometry of 2d black hole. We find good agreements with known results
in SL(2; R)/U (1) theory obtained by semi-classical analysis using DBI action. We also comment on the duaity &
Liouville theory.To cite this article: T. Eguchi, C. R. Physique 6 (2005).
0 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.
Résumé

‘Bootstrap’ modulaire pour lathéoriedeLiouville N =2 au bord. Nous présentons nos travaux récents sur la dynamique
de la théorie de Liouvillev = 2 au bord. Nous utilisons la théorie des représentation de 'algébre supercomfosn2eet les
méthodes de ‘bootstrap’ modulaire pour obtenir trois classes d'états au bord pour la théorie de LiouviRleLes classes 1
et 2 sont analogues aux branes obtenues par ZZ et FZZT pour les théories de Livusl® 1, et la classe 3 vient des
degrés de libert& (1). Nous comparons nos résultats avec ceux du super-espace q8bt&mnk)/U (1) T-dual & la théorie de
Liouville N = 2, et décrivant la géometrie de trous noirs a 2 dimensions. Nos résultats sont compatibles avec ceux obtenus par
une analyse semi-classique de I'action de DBI pour la thérig; R)/ U (1). Nous faisons des commentaires sur la dualité de
la théorie de LiouvilleN = 2. Pour citer cet article: T. Eguchi, C. R. Physique 6 (2005).
0 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction

Recently there has been a revival of interests in Liouville field theory, due mainly to the reinterpretation of the old results
of matrix model-Liouville theory as a typical example of gauge gravity correspondence [1-4]. Matrix theory is interpreted
as describing open string degrees of freedom living on D-branes while the Liouville field describes closed string degrees of
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freedom. An exact map between the extended D-brane of Liouville theory and macroscopic loop operator of matrix theory, for
instance, has been discovered. Analyses so far have been carried ouvusi@@ndN = 1 Liouville field theories.

In this article we would like to present our recent studies/ct 2 Liouville theory based on the modular bootstrap approach
[5,6]. We recall thatV = 2 Liouville theory consists of a complex bosgnt iY and conjugate Fermi fieldst, ¢ ~. Here¢
denotes the standard Liouville field coupled to the background ch@argedY is a compact boson which is not coupled to
background charge. In our conventigh= 2 Liouville system has a central charge

¢=3+30? @

and the conformal dimension of a vertex operaftt & given by%a(Q —a).
Interest inN = 2 Liouville theory come from various directions:

(i) Applications to string theory compactified on singular Calabi—Yau manifolds, NS5 branes etc. It is well known that in the
CHS background of the NS5 brane, transverse directions to the 5-brane are described by the LiouvilBf@dwzw
model [7-9]. We then have

R % Ry x UQ@wzw ~ R¥1 x Ry x U(D) x U(2)/U (1) (2)
———— N’
N=2 Liouville ~N=2 minimal
where the firstU (1) factor is identified as th& field. Thus the space-time of NS5 brane is described bymhe 2
Liouville field coupled toN = 2 minimal models. It is known that this geometry is T-dual to the ALE spaces and we will
later compute the elliptic genus of ALE spaces by making use of the above description.

(i) Itis known thatN = 2 Liouville theory is T-dual td3.(2; R)/U (1) super-coset theory [10,11] which describes the cigar
geometry of 2-dimensional black hole

SL(2; R)/U (1) theory=T-dual of N = 2 Liouville. (©)]

Thus we can discuss 2d black holes by uswg-= 2 Liouville theory. We will see below that unitary representations of
9.(2; R)/ U (1) Kazama—Suzuki model are in fact identical to thos&/cE 2 Liouville theory [12,6] and this gives a most
straightforward proof of T-duality between these theories.

(iii) Bosonic sector ofV = 2 Liouville theory consists of fieldg andY and thus is identical to that of Liouville theory coupled
to ¢ = 1 matter. Thus one expects a close relationshipy ef 2 Liouville to bosonic models like sine-Liouville fields [13].

It is known that there are two different approaches to quantum Liouville theory:

(1) conformal bootstrap,
(2) modular bootstrap.

Conformal bootstrap [14—16] is a detailed and complex analysis of the Liouville system based on conformal invariance and
bootstrap in the presence of world-sheet boundaries. It gives a detailed information on the dynamics of Liouville field and in
particular led to the discovery of boundary states and D-branes in Liouville theory. On the other hand, the modular bootstrap
which is based on the representation theory and modular properties of character formulas usually plays a secondary role in
checking the consistency of the results of conformal bootstra.#n2 Liouville theory, however, it is difficult to carry out the
conformal bootstrap approach due to technical complexity and we instead propose to use modular bootstrap in order to bypass
the technical difficulties.

Below we first discuss the representations\of= 2 Liouville theory and then construct boundary states and their wave
functions using of the modular properties of the character formulas. It turns out that there exist three different types of boundary
states inN = 2 Liouville: class 1 branes which are the analogues of ZZ branas=n0 theory [14], class 2 branes which are
the analogues of FZZT branes [15,16] and additional class 3 branes which come frofiljhdegrees of freedom df = 2
theory.

We then use the relationship 8f = 2 Liouville andSL(2; R)/U (1) theory and compare class 1, 2, 3 branes with the known
DO, D1, D2 branes in the 2d black hole geometry [17]. We find good agreements between the two except for a subtle discrepancy
in the case of D1 brane.

In N =0 and 1 Liouville theories there exists the so-called duality symmetry of the theory where we exchange the parame-
ter b with 1/b whereb is related to the background char@eas Q = b + 1/b. In the case ofV = 2 theory an obvious duality
symmetry is missing. Instead there exist two different types of Liouville potential terms

1 _ 14
F term: /d29e§¢ +/d29eQ¢, 4)
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D term: /d40 e (@+®) (5)

where® denotes a chiral superfield with its lowest compongrt iY. These are both marginal operators preserwng 2
superconformal symmetry and appear to play a dual role in the theory [18]. We will consider the issue of duélity2n
theory and point out that at a particular value@t 1 describing the singular K3 surface af type, this duality corresponds
to the hyperKahler rotation of the K3 surface.

2. N =0theory

Now let us first briefly recall the results @f = O Liouville theory and introduce the idea of modular bootstrapVia- 0
theory the central charge and the conformal dimension of a vertex operator is given by (we use the comentipn

c=1+60% h[e*?]=a(Q-w. (6)

Whena = Q/2 + i p, the vertex operator?&? describes a primary field of continuous representation with momeptwith
dimension: = p2 + Q2/4.
In N =0 theory there are basically two different representations:

(i) Identity representation

1-— 1
Kheo(D) = —1 .q 4(b+) O=b+—. (7)
n(t) b

(ii) Continuous representations
2

P
Xp( )_ (T) (8)

Identity representation has a singular vector at level 1 while continuous representation is a non-degenerate representation.
S-transform of these characters are given by

Xh= 0( > 4«/—/dpsmh(2nbp)smh< )x,,(r), ©)

Xp< ) Zﬁ/deOS(Zﬂpp)xp(r) (10)

Now we introduce the boundary statesZ) and|FZZT; p) and identify the characters as expectation values of the evolution
operator

_1 H C
Xh:o<7> = (221" |22), (11)
xP<_71> —(FZZT; pld™™ 1" |22). (12)

Here|ZZ) and|FZZT; p) denote ZZ and FZZT branes respectively @@ is the closed string Hamiltonian. These boundary
states are expanded in terms of Ishibashi states as

IZZ>=/dP/‘1/o(p’)|p/)>, IFZZT;p)=/dp’l1/p(p’)|p’)> 13)

where|p’))’s are Ishibashi states with momentyrhandh = p’2 + 0?/4, and

(ple™ H 1p"y = 5(p — p))xp (D). (14)

Here ¥y (p’) and ¥, (p’) are the disk one-point functions of ZZ and FZZT branes with a vertex operatqiQei@p+ ip')¢
insertion.
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In terms of these wave functions (11), (12) are rewritten as

o o
-1 -1
Xh:O(T) = f dp %) xp @), xp <7> = f dp’ Wo(p" )Wy (p")x (1) (15)
0 0
By comparing with (9), (10) one finds
Wo(p)W¥ (p)§ = 4+/2 sinh2rbp) sinh(?), W, (p))*Wo(p') = 2v/2 cog2rpp’). (16)
Thus we can determine the wave functions
2rippip/t
Wo(p) = —2/4.
o(p) T+ i2pb)T(L+i2p/b)
Aip'/b il
o0y = 29457 1 gy (1— 22 cos2npp). an
2ip’ b

Here we have inserted some phase factgrss(related to the cosmological constantas i = ﬂuy(bz) wherey (x) =
rx)r(ld—x)).

This is the derivation of disk amplitudes using the modular bootstrap method: it is much simpler when compared with the
computations in conformal bootstrap. Actually by the modular bootstrap method phase factors of the wave functions can not
be determined, however, they cancel in the computation of cylinder amplitudes. Thus using modular bootstrap method we can
analyze the Cardy condition and determine consistent boundary states.

The lessons we have learnt from the above discussions are as follows:

(i) The identity representation does not appear in the closed string channel and closed strings states are spanned by the

continuous representatiofys)). Conformal dimensions of continuous representations are bounded from below
2, 0207
hp)=p°+ 2 (18)

and thus the closed string sector has a gap in the spectrum. This corresponds to the decoupling of gravity in the linear
ditaton background.

(i) On the other hand, the identity representation does occur in the open string channel.

(iii) One can check the consistency of the results of modular bootstrap with the conformal bootstrap analysis. For instance, one
can check the reflection property of the disk amplitude

Yo(—p) = R(p)¥o(p) 19)
whereR (p) denotes the reflection amplitude
~—2ip/p (1 +2ip/b)T (1 + 2ipb)

R(p)=— . 20
(P)=—1 T(1— 2ip/b)T (1= 2iph) (20)
3. N =2theory
Now we turn to theV = 2 theory. In the following we use the parametrization
2K
e=5=1+0% Q2= K.NeZy, (21)
3 N z
and the conformal dimension of a vertex operator is given by
2 2
o1 P° Q7 _2
h[e*?] = >+ g fora_2+|p (22)

(we use the conventiom’ = 2). It is known that in¥ = 2 superconformal theory there exist three types of unitary representa-
tions, i.e., identity, continuous and discrete representations. We denote their character forraolgs a9, cheont(t; z) and
chgis(t; z), respectively. The angular variabjés coupled to thé/ (1) charge.

A continuous representation is a non-degenerate representation while the identity and discrete representation possesses
fermionic singular vector. The identity representation has also a bosonic singular vector. In the context of siring compactification
we call them as graviton (identity), massive (continuous) and massless matter (discrete) representations.
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For the application to string compactification it is necessary to project the theory onto states with iitdggacharges.
In order to ensure charge integrality condition we take the sum over spectral flows of irreducible characters and introduce the
extended characters

xx(T;2) = Z q5”2e2i”51"ch*(r; z+nt), reZy, *=id, contdis. (23)
ner+NZ
Note that we actually consider mad spectral flow to assure good modular properties of extended characters. The parameter
runs over the range, @, ..., N — 1.
Extended characters are parametrized as
(1) Identity representations:

K 1
Xid(m; ) m=2Kr, reZy, h——r2+|r|—§, Q=%+Sign(r)-1, r#0,

N
h=0=0, r=0.
(2) Continuous representations:
2 2
p m<+ K m
,m; >0, =2Kr, Zy, h=—+——, =—. 24
Xcont(p,m;T) p m rrely 2+4NK ) N (24)
(3) Discrete representations:
Kr 1/2 N
Xdis(s,r;t) m=s+2Kr, re’ly, h:w, Q:ﬁ, 0<r< —,
N N 2
Kr2+(r+1/2)s 1 m —N
0<s<N+2K-1, h=——— """ _ =), =—-1 —<r<-1
FSNA N (r+2> 0=y 2 7

h and Q give the dimension and/ (1) charge of the representations. Note that the quantum numlierelated to the’ (1)
chargeQ asQ = m/N (mod integer). The explicit form of these characters are given in [5]. In the following we consider the
NS sector of the theory. Characters in other sectors are obtained by half spectral flows. S-transformations of NS characters are
given by
Identity representations:

o] . N i p’

1 1 o m ,smh(yer )smh(2n§) .,

Xid (m; ——> = e = 2kN /dP — Xcont(p',m’; T)
T V2NK 2 |coshn(% +i4)12

m'eZank

N+K-1
K) m(s'+2Kr")
+ T2 2 S (7) 2N ais(s”, 1 ). (25)

r 'eZn s'=K+1

Continuous representations:

Xcont(P m; ——> \/ Z 727“2”’( /dP cos2npp’) xcont(p’, m'; 7). (26)

m 'eZonk

Discrete representatlons:

727T(A‘7K7%)la

1 1 (H—ZKr)m mm
Xdis(s,r;——> Y et /d ’—xcont(p’,m’; 7)

P m
T ‘/ZNKmez 2coshr( 2—)

. N+K-1 , / ’

] _oxi (s+2Kr)(s'+2Kr' ) —(s—K)(s'—K) ’
+— e 2NK iss’,r's T

N Z Z Xdis( )

r’eZN s'=K+1
M
+7 Z e {xdis(s" = K, r'; 1) — xdis(s' =N + K, r'; 1)} (27)
r EZN

Note that contributions from the ‘boundaries’ of the range,af <s < K + N, appear in the RHS of (27).
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The above transformation law has a peculiar structure,

(continuous rep.éé} (continuous rep,) (28)
(identity or discrete rep% (continuous rep .} (discrete rep.) (29)

Only a part of discrete representations appear in the RHS (29). Such a pattern of modular transformations was first observed in
the representation theory of = 4 of superconformal algebra [19].

(i) We note that there appear no identity representations in the RHS of above formulas (25)—(27).
(ii) Only the discrete representations in the raife s < N + K appear in the RHS.
(iii) 1t is still possible to show that S-transformation squared eqﬂhl§2 = C where(C is the charge conjugation opera-
tion [20]. This happens because the shift of the momentum contour becomes necessary in the 2nd S-transform and from
the fact that identity and discrete representations can be obtained from continuous representations at some complex values
of the momentum.

Based on the above transformation law we propose that ivtke2 theory closed string Ishibashi states are spanned by
(continuous reps)- (discrete reps witkk <s < K + N). (30)

As we shall see below, this spectrum agrees with those diitt& R)/U (1) coset theory.

We can construct class 1, 2, 3 boundary states corresponding to identity, continuous and discrete representations using the
modular transformation law. In the case of class 1 and 2 branes, boundary wave functions can be easily read off from the
modular S matrices. Class 1 boundary state (for the mase) is constructed as

00 N+K-1
g = [ a4 Y vl Y Y Gl (31)
0 m'€Zonk r'eZy s'=K+1
where
1om P pl e
G, m) = = - (= Y TG +ig G~ 5k +ig) (32)
id{p = 0 NK Sy .2p’
riQp )F(l+|?)

1/2 ’_
Cig(s',r) = <%) ‘/Sinw (33)

and|p, m)) and|r, s)) are Ishibashi states of continuous and discrete representations

einrH(”)

(p.m| 1p',m") =8(p — ") m xcondp, m; ©), (34)

i ()
Us, r1€TTH |7 Ty = 8y.r 85 5 Xdlis($, 75 T). (35)

We find that the amplitudeB; id| expizt H )| B; id) reproduces the RHS of (25). Class 2 states are constructed in a similar
manner. By computing various cylinder amplitudes one can check the Cardy consistency conditions.

On the other hand, in the case of class 3 branes the situation becomes somewhat delicate due to the presence of bounc
ary terms in modular transformation (27). In order to cancel the effect of these terms one has to consider a pair of discrete
representation$(ry, s1), (r2, s2)] with (sq1 + 2r1K) — (s2 + 2rK) = N x odd integer, and a combination of characters
xdis(r1, 515 T) + xdis(r2, s2; T). In this case Cardy condition are not necessarily obeyed depending on the parakheters
of the theory.

4. SL(2; R)/U(1) theory

It is well-known thatSL(2; R);/U (1) supercoset theory is T-dual to theé= 2 Liouville. Central charges of these theories
can be written as

R 2 2 2K
=1+-=1 =1+ —. 36
é=14 =1+ 0 + (36)
Thus the levek is related to the parameteks N by
N
k=—. (37)

K
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Table 1

Comparison of boundary states

Type of branes N =2 Liouville Type of branes  SL.(2; R)/U(1)

A class 1 identity rep. B DO brane localized at tip of cigar

B class 2continuous rep. A D1 brane extended along radial direction
A class 3 discrete rep. B D2 brane wraps the whole cigar

A class 2 continuous rep. B D2 brane wraps a part of cigar

By studying the representations 8f(2; R)/U (1) Kazama—Suzuki model, one finds that they are in fact in an one-to-one
correspondence with those 8f= 2 Liouville and their character formulas are identical [6]. (Relation of character formulas of
bosonicSL(2; R)/U (1) theory to those ofV = 2 Liouville is given in [20].) Correspondence of parameters is given by

identity rep.: j=0, (38)
. 1 . p
continuous rep.: j=-+i—, 39
prj=5+ 0 (39)
S
discrete rep.: = — 40
p J=55 (40)

where; denotes the spin @L(2; R) representation.
Path integral evaluation of toroidal partition functionShf(2; R)/ U (1) theory [21] shows that the theory contains continuous
representations as well as discrete representations in the (improved) unitary range [22,6,23]
Lokt
2 2
This agrees with the rang€ < s < K + N of N =2 Liouville under the correspondenge=s/2K .
S.(2; R)/U (1) theory describes the cigar geometry of 2d black hole and its boundary states are constructed by using Born—
Infeld action and the results 8(2; R) theory [17]. One can compare the results\of= 2 theory with those 08L(2; R)/U (1)
[24,25] (see Table 1).
There exists an overall good agreement between the two. Wave functions of class 1 branes agree witBlttRysR)gi (1)
theory and also with the results of conformal bootstrap [26,27]. We also have a match of class 3 and D2 branes with the
identification

a=n<s—1_}) (42)

(41)

k 2

whereo is related to the gauge field strength on D2 brane [17]. Consistency of overlap of two D2 branesatitBquires

1
o —a/zznn% (43)

wheren is an integer related to the DO brane charges. This condition immediately follows from the above identification (42).
However, in the case of class 2 branes there is a delicate discrepancy with the D1 b2 &)/ U (1) theory. Their
wave functions have a form

weass 3/ m'y ~ f(p'.m') cos2npp’). “
e2ripp’ + (_1)m’e—27'ri17[7/
Q/E}n(p/, m/) ~ f(p/’ m/) 2 . (45)

Thus D1 brane has an extra phase faCteI)’”' as compared with the class 2 brane. Authors of [25] call (45) as the dlass 2
brane. The extra phase factor is related to different reflection amplitudes for A and B type states. Type B class 2 brane in fact
does not have a good semi-classical limit unlike clddgs@nes. Itis suggested that type A class 2 branes instead are well-defined
and correspond to partially wrapped D2 braneSli2; R)/U (1) theory [25].

5. Singular Calabi—Yau manifolds

WhenN = 2 Liouville theory is coupled tav = 2 minimal models,

|class 1 boundary state of Liouvill® |boundary states of minimal model (46)
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describe vanishing cycles of singular Calabi—Yau manifolds: one recovers the correct intersection numbers by computing open
string Witten index. See [5] for details.

One can also compute the elliptic genus of singular Calabi—Yau manifolds Nsia@ Liouville theory [6]. Elliptic genus
is defined by

Z(T;Z):Tr(_l)FR+FLeZJTiJquLo—E/Béio—ﬁ/S (47)

and is invariant under smooth deformation of the parameters of the theory.Fj€ér ) denotes the fermion number of the
right(left)-moving sector. In the case of compact manifolds elliptic genus is known to have a good modular property and is a
(quasi) Jacobi-form. It turns out that this is no longer the case in non-compact manifolds.

For instance, in the case of conifold one obtains the elliptic genus

164(t; 22)
Zconifold(T,2) = 5 ———. 48
conifold(T, 2) ) (48)
In the case of ALE space with4 singularity it is given by
ZALE(A (T, 2) = —Chév=4’R(€ =0;7;2). (49)

Herechév=4(€ = 0) denotes the massless= 4 character of isospig: 0. Elliptic genera of general,,_1 type singularity are

described in terms of the Appell function [6]

eiyrmzkr+271im€v

Ke(T,v, p) = Z W (50)
meZ

Appell function is closely related to the character of discrete representatia¥is=02 theory [28] and describe holomorphic
sections of higher rank vector bundles on Riemann surfaces [29].

6. Q =1and duality
When the background charge takes a special valee1, dimension of the target spaée= 1+ Q2 becomes 2 and/ = 2

Liouville theory describes string compactification on ALE space withsingularity. Thus ap =1 N =2 SUSY is enhanced
to N =4 . Generators oN = 2 superconformal algebra (SCA) @t= 1 are given by

T= —%[(BY)Z + 092+ 0%+ (way™ —ay Ty )], (51)
-1 1 -1 1

Gt =—yT@(idy +0¢) — —oy T G =—vy (1dY — 3 — oy~ 52
ﬁw(l+¢)ﬁw, ﬁwo ¢)+ﬁw, (52)

Juay =¥y —idY =idH —idY (53)

where we have bosonized the Fermi field§y — = i9 H. SU(2) currents ofN = 4 SCA are given by

I8 =¢"" g =", U= lz(aH —aY). (54)
At 0 =1 Liouville potential terms (4), (5) become

Sy = / d2ze o iY-H g / o2z (—idY —idH)(3Y +idH)e®,  S_= / d2ze @ HYHH (55)
We find thatS., S3 form a triplet under a nev8U (2) algebraSU(2)’ generated by

Iy =, U5 =TT, B0y = :—2L(i8H +idY). (56)
U (2) commutes witlBU (2) of N =4 SCA and we have aflJ(2) x SU(2)’ structure
Taer

G+= G+,+

T/gu(z) (57)
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G+’_=+%e‘iy(8¢—8H)+%8e_iY, (58)
G_’+:—% Y (3¢ + 0H) — %ae—”. (59)

Action of SU(2)’ transformsG* into GF and thus induces the change of complex structure. Thus it corresponds to the
hyper-Kahler rotations of K3 surface. Sing an S3 are transformed into each other un@k(2)’, the N = 2 duality amounts
to a hyper-Kahler rotation g? = 1. More details will be discussed in [30].

Since this article was presented at Strings2004, a preprint appeared [31] where new results of conformal bodtstrap of
theory are reported.
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