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Abstract

We review theEg model of the M-theory 3-form, and its applications to anomaly cancellation, Gauss laws, quantization of
Page charge, and the 5-brane partition function. We discuss the potentially problematic behavior of the model under parity.
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Résumé

Anomalies, lois de Gauss, et charges de Page dans M-théotinus rappelons le modékEg de la 3-forme de M-théorie,
et ses applications pour I'annulation des anomalies, lois de Gauss, quantification de la charge de Page, ainsi que pour la fonctior
de partition de la 5-brane. Nous envisageons le comportement potentiellement problématique du modeéle soutaparité.
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1. Introduction

In 1978 Cremmer, Julia, and Scherk found the action for 11-dimensional supergravity [1]. Twenty-six years later the theory
has come to be regarded as a low energy limit of some hypothetical more fundamental ‘M-theory’. A satisfactory formulation
of M-theory is still unknown. One set of clues to finding such a formulation lies in the issues one encounters in formulating
11-dimensional supergravity in topologically nontrivial situations. While the action principle in [1] is simple, it contains a very
subtle Chern—Simons term. In this article we review some recent work aimed at clarifying the mathematical nature of that term
[2—6]. We will also describe briefly some related new results [7,8]. Another motivation for this recent work is the clarification
of anomaly cancellation issues in M-theory. This is discussed in section three below. A further motivation is the possibility that
there are new topological terms in the action. (Such terms were found for type IIA supergravity in [5] in exactly this way. For a
general discussion see Section 5.5 of [7].) As discussed in Section 5, the Chern—Simons term also leads to a noncommutative
structure in the theory leading to some important subtleties in flux quantization. Finally, the considerations touched on here are
of importance in understanding aspects of the M-theory 5-brane in topologically interesting situations. As we remark below,
they are not without applications to currently fashionable topics.
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While the Eg formalism is very useful for studying some of the topological complexities of 11-dimensional supergravity it
appears to have two important drawbacks. The first is that the action of parity is subtle (and possibly impossible) to formulate in
a satisfactory way. We describe some of the salient points in Section 7 below. A second important challenge is the incorporation
of elementary 5-branes in the formalism. In the spacetime external to the 5-brane one finds a négtiiivighnton linking
the 5-brane worldvolume. However, to describe 5-branes we wish to include their worldvolume. Unfortunately, the inclusion of
nonzero magnetic current in thgg formalism presents an unsolved difficulty.

2. Defining the Chern—Simons term

Let Y be an 11-dimensional, oriented, spin manifold. In topologically trivial situations M-theory has an abelian gauge field,
a globally defined 3-forn€ € £23(Y) with fieldstrengthG = dC e 24(¥).1 The exponentiated Euclidean action for the theory
is (schematically):

1 1 B}
exp|:—27r / 5 vol(g)R(g) + %G A %G + 1//¢1//}D(C), (1)
Y
&(C) = exp<27ti / (—15CG2 - Clg(g)) ®)
Y

whereg is the metric,yr is the gravitino and is the 11-dimensional Planck length. This form of the action cannot apply in
topologically interesting situations in which the cohomology clasks£ 0. If 3Y = @ the usual definition of a Chern—Simons
term involves an extension to a bounding 12-manifold

®(C)= exp(Zni / %(;3 - GIg(g)), @)

Z

As it stands, this definition appears to depend on the extension. The existence of M2-branes|&ipHeas — %X where

a € H4(Y; Z) [2]. (The bar denotes reduction modulo torsion arisl the characteristic class of the spin-bundle&’opThus the
factor of 1/6 looks problematic. In fact, sindég(g)] = (p2 — Az)/48, the definition (3) appears to be ambiguous by a 96th root
of unity. It was pointed out by Witten in [2] thag index theory shows the situation is actually not that bad. Isomorphism classes
of principal Eg bundles on manifoldd/ of dimension< 15 are in 1-1 correspondence with integral classesH*(M, 7).

Let P(a) denote anEg bundle with characteristic clagse H4(Y, Z). If we identify [G] = [tr F2 — 5 tr R?], whereF is the
fieldstrength of a connectioa on the bundleP (a), then there is a remarkable identity

1 1 1 12
éG3—Glg= [?@A)-F Zi(ﬁﬁRs)} @

wherei (ﬁ) denotes the standard index density. The first term is for the Dirac operator coupléul tioe adjoint representation

while the second is for the Dirac operator coupledrtoy — 4. We extract the 12-form piece of the right-hand side. (The
simple formula (4) summarizes all the nontrivial group-theoretic identities used in Green—Schwarz anomaly cancellation for the
Eg x Eg theory, as well as the identities used by Horava and Witten [9].) Since the index is even in 12-dimengions in

fact well-defined up to a sign. The sign ambiguity cannot be removed without introducing other fields. See Section 3 below.

2.1. Boundaries
The extension to the case with bound&a¥,= X is nontrivial. It is best described by making a choice of a ‘model’ for the

C-field. We will now explain what we mean by a ‘model’. The membrane coupling provides us withatige equivalence
classof a C-field. Thus, an isomorphism clag§] may be identified with a map

[C]: X — exp(Zﬂi / C) 5

p))

1n general we follow the notation of [6].
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from the space of closed 3-cyclesliql), such that, if¥ = d B then[C]: X — exp(2ri fB G). Mathematically, the membrane
coupling is (a torsor for) the Cheeger-Simons gréifY).2

While the mathematical formulation of the gauge equivalence clas€ dfeld is clear, there are different ways of expressing
C in terms of redundant variables. This issue does not arise in Yang—Mills theory, where there is a natural way: one uses the
space of connections Co@) on a principal bundleP. In the case of the-field, the language of categories turns out to
be useful. This language applies to all gauge theories. Abstractly the spacéadiis should be viewed as a groupoid, i.e.,
a category all of whose morphisms are invertible. The gauge potentials are the objects, while the gauge transformations are
the morphisms. The group of global gauge transformations is the automorphism group of the object. Different models for the
C-field correspond to equivalent categories. In this note we use a particular modekgtineodel for theC-field’. Another
model, based on the differential cohomology theory of Hopkins and Singer [10] is described in [6] and is developed further
in [11].

In the Eg model, a C-field’ on Y with characteristic clasg is a pair(A, ¢) in C(Y) := Conn(P(a)) x 23(Y). The gauge
invariant fieldstrength i&6 = tr F2 — 3 tr R2 + dc so that, morally speaking,

1
C=CS(A) — ECS(g) +ec, (6)

can be written in terms of Chern—Simons forms. The objects of the groupoid are pditi#§)inThe morphisms are defined by
a gauge grouig, described in Section 4 beloWNote the metric dependence @ the space of bosonic fields in M-theory is
fibered over the space of metrics, the fiber is the spacgfiélds.

In the Eg model we can write the Chern—Simons term of M-theory as

1 1 .
¢(C)=3Xp|:2”|{‘—17](¢/%)+éﬁ(ﬁRS)} +27”1|ocaI:| (7)

wheren, is the Atiyah—Patodi—Singer invariant and

liocal = /(0<%G2 - 18) - %cch + éc(dc)2>. (8)
Y

The importance of Eq. (7) is that the formula is intrinsically formulated in 11-dimensions and moreover the same formula
holds on a manifold with boundary. However, we must now pay a pgtceannot be viewed ast@(1) valued function but rather
must be considered as a section of a line burtiie- C(Y) x Met(Y). This line bundle has a connection. WhErns closed
the connection is only nontrivial in the metric directions, is flat, and-hagolonomy onMet(Y)/Diff T(Y). WhendY = X
is nonempty the connection has nontrivial components inctHeld directions. Heuristicallyd = 27 fy(%G2 — Ig)8C. An
important point is that the curvature gfis nonzero:

f:n/GSCSC. 9)
X

3. Anomaly cancellation and setting the quantum integrand

This section covers some new work done with D. Freed [7].

Quite generally the quantum integrand of a path integral is a section of a line bfjpdever the space of bosonic fields.
This bundle is equipped with a connecti® In theories with fermions and/or Chern—Simons terms this line bundle with
connection might well be nontrivial. If this is the case the path integral does not make sense—even formally—since one cannot
add vectors in different lines. This is the geometrical interpretation of anomalies. In order to define a sensible path integral
one must introduce a trivialization, i.e., a globally nonvanishing sedtiohl,; so that, if &S is the quantum integrand then
e3/1is a globally well-defined function, which can be integrated. Note that this require£thdte topologically trivial.
Moreover, the connectioW must be flat: This is the cancellation of local anomalies. Furthermore, the flat conn@atiurst
have no holonomy: This is the cancellation of global anomalies. In other words, in a well-defined tigary) must be

2 |tis a torsor because of a shift @& needed to cancel worldvolume anomalies on the membrane [2]. This may also be understood as being
due to background magnetic current inducedday

3 In this definition we have fixed a bundR(a) for eacha, at the cost of some naturality. Section 3.5 of [6] describes an equivalent category
where no such choice is made.
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geometrically trivial Note that in an anomaly free theory there might still be a nontrivial choice of trivializing settior7]
this choice is called a ‘setting of the quantum integrand’.

In the case ofV/-theory both theC-field and the gravitino theories are quantum-mechanically inconsistent. That is, both
@ (C) and the gravitino partition function are sections of nontrivial line bundles with non-flat connections. However, it is shown
in [7] that the tensor product is geometrically trivial. This is the Green—Schwarz anomaly cancellation. Moreover, it is shown in
[7] that there is a canonical trivialization, thus leading to a canonical setting of the quantum integrand.

There are already anomalies in the case whésnclosed. This is the sign ambiguity mentioned below Eq. (4). The gravitino
partition function quRS) is a section of the Pfaffian line bundle

L :=PRPgs) — Met(Y), (10)

L is acomplex line bundlsvith real structureL has a connection compatible with the real structure so the holonomies on
Met(Y)/Diff ¥ (¥) are+1. In fact, the gravitino has a global anomaly. In [7, Section 2], one finds a natural geometric isomor-
phismL = £ leading to global anomaly cancellation. That is,

Pi(Prs) - @ (11)

is a well-defined function 06(Y) x Met(Y)/G x Diff T (Y). This Green—-Schwarz mechanism was already indicated in [2] and
[7] establishes it rigorously.

When we consider anomaly cancellation on manifolds with boundary we need to distinguish temporal boundaries from
spatial boundaries because of the boundary conditions which we will impose. In the case of temporal boundary conditions, we
put global, or APS boundary conditions on the fermion fields. In this case, a similar but rather more subtle story applies to
establish the cancellation of Hamiltonian anomalies. This is described in detail in [7, Section 4.2].

We now consider spatial boundaries. With local (i.e., chiral) boundary conditions on fermions one can still define elliptic
operators and study geometric invariants. (D. Freed’s student M. Scholl is studying a general class of local boundary conditions
for Dirac operators on manifolds with boundary [12].) Using these results one can produce a geometric isomorphism between
the line bundle of the Chern—Simons term and that of the fermion partition function. In this way one can give a rigorous proof
of anomaly cancellation in the Horava—Witten model. The advantage of this proof is that it covers simultaneously both local
and global anomalies, and moreover it becomes crystal clear that the anomaly cancellation is cotopldtély has been
pointed out that this issue is nontrivial [13].) We are not being very precise here about the meaning of locality, but we note
that the anomaly cancels boundary component by boundary component. In particular, there is no topological obstruction to
putting M-theory on an 11-manifold with any number of boundary components. On each component we choose, arbitrarily,
a signe; = £ determining the chirality projection. Each component carries an indepetitgestiper-Yang—Mills multiplet
and we choose boundary conditions such tigg, = ¢; (tr FZ(AZ-) - %tr Rz(gi)). There are a number of subtle details one
encounters in checking this cancellation. Perhaps the most surprising is that, in some circumstai¢afiathkne bundle
admits, globally, a well-defined square root. Again, for the many details we refer to [7, Section 4.3].

The existence of these topological sectors of M-theory raises the interesting question of whether thatdiansof the
equations of motion on manifolds of this type. This curious question remains open.

4. The Gauss law

Our next goal is to write the Gauss law f6rfield gauge invariance. In thEg modelC = (A, ¢). Small gauge transfor-
mations act by — ¢ +dA, A e Q%Y. Itis usually said that gauge transformationsare ¢ + w, w € (22()’).4 However,
this does not properly account for global gauge transformatidns tonstant’. The correct choice is to repla@%(Y) by the

Cheeger-Simons groufﬁ}3(Y), and interpretv as the fieldstrength of the differential character. What we stress here is that the
Cheeger-Simons grou3(Y) is an extension:

0— H2(Y,U) — H3(Y) » 23(1) - 0. 12)

We interpretH2(Y, U (1)) as the group of global gauge transformations. In the categorical language, these are the automor-
phisms of the object: I& H2(Y, U (1)) theny, : (A, c) — (A, ¢). But the automorphism still has nontrivial physical effects.
Firstly, it has a nontrivial effect oopenmembrane amplitudes. A second nontrivial effect emerges in the formulation of the
Gauss law for the gauge grogp®

4 Qg(M) denotes the space pfforms onM with integral periods. Such forms are necessarily closed.
5 Actually, G = 21(adP) x H3(Y), where the first factor shiftd — A + o, see [6].
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The Gauss law is the statement that physical wavefunctions @f #field must be gauge invariant:
y () =¥y -C) Vyeg, Cel(X). (13)

Now the wavefunction is a section of the lidein which @ is valued. Thus, to formulate the Gauss law we must define a lift:

L 9 . L (14)
L,
C(X) —L=C(X)
To define the lift we combine the parallel transport using the connectiahwith a cocycle for the group action:
y-C
V~W(C):¢(C,y)*~exp</ A) a2 (15)
c
whereg(C, y) is a cocycle, that is
0(C. )91 - C.yp) = € T Ix G01924(C. yyy79) (16)

whereyy, y» € G areC-field gauge transformations with fieldstrength, w, € Q%(X). We will refer top(C, y) as the ‘lifting
phase’. Following a construction in [3] (described more fully in [6]), givér C(X) andy € G we construct a twisted'-field
CyonY =X x si: Cy(x,) =y -Cy(x,00=y - C. Then we defing(C, y) := @(Cy).

Since (12) is an extension the Gauss law consists of two statementgs. oy, @ € H2(X, U (1)), we obtain the electric
charge tadpole condition. Once this law is satisfied we can study the Gauss hav&tﬁng(X). This leads to the quantization
of ‘Page charge’.

The tadpole condition has been described in detail in [6]. Assknie compact. A global gauge transformatipg, « €
H2(X,R/Z), acts nontrivially on quantum wavefunctionsfe L ctheny, - ¥ =exp2ri(Q, a)]¥, whereQ e H8(X,7)
is the C-field electric charge. Thus, i # 0 then¥ = 0. From the definition of the group lift we get a formula for. It only
depends on the characteristic classo we may writeQ (a). It is easy to show tha = [%G2 — Ig]lpg thus recovering the
usual condition of [14]. Nevertheles8,(a) is anintegral refinemenof [ G2 — Ig] = 3a(a — %) + 30Ag, and henc&(a) = 0
carries further information related to torsion. Not much is known algt). It is a quadratic refinement of the cup product.
This and some other pertinent facts can be found in [6].

When Q = 0 we can have nonzero gauge invariant wavefunctisi€) € I"(L). There is still further information in the
statement of gauge invariance. In order to demonstrate the physical interpretation it is convenient to tdviahieentails
choosing a basepoint 6 = C, + ¢, and replacing the wavesecti@n(C) by a wavefunctiony (c). The result of a careful
analysis [8] is that the Gauss law may be written:

Y(c+o) =eu@P) Yoe23(X), 17)

where

. 1 1 X
e0(€) 1= @(Co, w)*e?™ Ix (30t eI (18)

5. Page charges

Eq. (17) can be interpreted physically by rewriting it in the form

exp<2ni / a)P>w = fol@)¥ Vo e 23(X), (19)
X
whereP is an operator-valued 7-form. In order to prove this one notes that on spin 10-manifolds the cocycle in (16) is in fact
Zp-valued (this is nontrivial sincgG] has half-integer periods). Then it follows thatC,, ) is linear on 9232 and hence of
the forme(C,, w) = exp27i [ wT,]. The 7-formT, € .Q7(X) is a trivializationd T, = 1G§ — Ig. Itis only defined modulo a
form with half-integer periods. We make a definite choice and defjiie) := ¢(Ce,, w)"‘ez”i JoTe forallw e .Q%(X). Thisis
aZo-valued cocycle satisfying (16). It is then elementary to show that (17) is equivalent to (19) provided

1 1 1
P=—I+(=Gec+ = T, 2
o +<2G c+60dc)+ (20)
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wherelT is the canonical momentum of The expression (20) is nothing other than the ‘Page charge’ of supergravity, formu-
lated in the canonical formalism. This 7-form flux should be considered as the electro-magnetic dual of theMarally
speaking,P = dCg WhereCg is the 6-form potential that couples to the 5-brane.

We are now in a position to study the quantization of Page charge. Here we encounter a suff@rise. 0f the quantum
Gauss law for larg€-field gauge transformations implig8] € H'(X; 7). This is the naive electro-magnetic dual to the naive
guantization of magnetic flu{G] I?“(X; Z). However, wheriG] # 0, things are quite different. Far € HgR(X) define
P(p) = fx ¢ A P. An easy computation shows that

[P(1). P(d2)] = 2'71— / $1Ad2AG. (21)

Eq. (21) is important. It means, first of all, that not &(¢) can be simultaneously diagonalized. Moreoy#] is not even
gauge invariant. I/ (») := exp2ri [ @ P] implements large gauge transformations then (as was noted in a special case in [15])

U@)P@)U(w) "t = P(@) —/w¢G- (22)

In general, the conserved gauge invariant ‘Page charges’ or electric fluxes should be regarded as characters of a certain grou,
which we will call themagnetic translation groupWhen[G] = O this group is simplyZ3(X, U (1)), and hence we recover the
lattice of fluxes,H’ (X, Z). In general, with G] # 0, the group is generated by the gauge invariant oper#itogs := 2717 (9)
whereg is such that;/ ¢»G € Z for all w € H3(X,Z). Note that the group is in general nonabelian:

W (p1) W (pp) = €7/ 91926 W (g1 + o) = e 271 ) 21926 W () W (). (23)

In summary, the naive lattice of (magnetic,electric) fluxeS(X, Z) ® H' (X, Z) is modified in two ways. The first factor is
constrained by the tadpole constraiita) = 0. The second factor is replaced by the character group of the magnetic translation
group.

A comparison with ordinary gauge theory might help in understanding better what is going on here. Cori$jdgeiuge
theory on spacetimes of the forX x R, where X is annr-dimensional Riemannian manifold. If we take the acti®e-
Sx«r —%ezF * F then the Hilbert space of the theory is gradede%(X, Z) & H"~1(X, 7). The first component is; of
the line %undle on whichi is a connection, while the second component is the quantized electric flux. This grading can be
understood elegantly as folloWsThe space of gauge equivalence classes of line bundles with connectibisdhe Cheeger—
Simons group2(X), and therefore the Hilbert space is—formally=2¢ H2(X)). Now, note thatt/2(X) is an abelian group.
Quite generally, ifA is an abelian group then a Heisenberg extensioh »fA acts onL2(A) whereA is the group of characters
of A. If X is oriented the Poincaré dual groupf&(X) is H"~1(X). The subgrougi}(X, U (1)) x H""2(X,U(1)) of A x A
acts on Hilbert space with trivial extension. The characters of this subgroup are S‘Hﬁpxy, 7) & H"1(X,Z). Now, let us
consider 3d massive abelian gauge theory with action

1
S = / —5gF*Ftn / kAdA (24)

Y xR YxR
whereX is a Riemann surface. The exponentiated Chern—Simons term must be considered as a section of a lidg brundle
HZ2(X). We now identify the Hilbert space as a spacd.8fsections"(H2(X); £;). The wavefunction is only nonzero on the
component witheq = 0 (this is the analog of the tadpole conditiofa) = 0 above). Moreover, becaugg carries a nontrivial
connection the translation symmetry is broken and replaced by a Heisenberg group extersto® o#./kZ). In the analogy
with Chern—-Simons theork corresponds tc%[G] and the (noncommuting) Wilson line operators correspond to the operators
W(9).

We expect that the above remarks will have some important implications for the classification of RR fluxes in type Il string
theory. It is commonly believed that the topological sectors are classified by twisted K-theory. (See [16,17] for recent reviews.)
Naively one might expect the classification of RR fluxes in the background of a nontdisifield to be given in terms
of the image of the Chern-character of twisted K-theory [18], analogous to the quantization condition proposed in [19,20].
A discussion of this proposal (and other relevant matters) can be found in [21]. Dimensional reduction of the above formulae
indicate that the situation is more complex and needs further investigation.

The phenomenon we have described is probably closely related to the Hanany—Witten effect [22] and to the noncommuting
brane charges of [23]. Similar noncommutative structures have appeared in compactifications of M-theory on tori [24] and in
formulations of M-theory using th€-field together with its electromagnetic dual [25].

6 Thanks to G. Segal for some illuminating remarks.
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6. Application: the 5-brane partition function

In the 3D Chern—Simons theory of Eq. (24) the dynamics of the topological (flat) modéssthat of an electron on
a torusH1(X; U(1)) in a constant magnetic field. In a long distance approximation of M-theéry 0’, where ¢ is the
11-dimensional Planck length one only keeps the harmonic modes 6ffigdd and an analogous story holds. If we introduce
a basisw? of the spacé—(3(X) of harmonic 3-forms orX then we may expand= )", c,»“, and the effective Hamiltonian
for these modes may be shown to be

Hett = hyp, (—i ai - nBaa’ca,) (—i o anb’c,,,> (25)
Ca acp
wherer?’ = [, o® * w® and the ‘magnetic field” i8> = [, Go®w”. We effectively have a Landau-level problem on the
torus H3(X, R)/H3(X, Z). The Page charge operator corresponds to the magnetic translation operator.

As an application, we can use the above formalism to derive Witten’s prescription for the 5-brane partition function [3]. In
the process of doing so we will underscore a point which is almost always misunderstood in the literature. Our approach will
be via the AdS/CFT correspondence. We consider D x $4, whereD is a compact 6-fold, s& is a conformal boundary at
infinity for an asymptotically AdS spacé:

1
ds? — (%32 [drz +e¥ds? + 2 ds§4], (26)

andG — Goo = kwga + G, whereG € 24(D). According to AdS/CFT fok >> 1 the partition function of M-theory ol is

the partition function of thé/ (k) (2, 0) theory onD. Now U (k) = Su%iwl) where theU (1) couples to the center of mass
degree of freedom of the 5-branes. This couples to the harmonic modest @ffinity (for simplicity we denote these a3
and, contrary to what is usually stated, does not completely decouple. In fact, the partition functiof2o0jitbeory may be
written as

Z[UKk) @0-theony]= " Pug(o) @7)
peAr/kAy

where H3(D,7Z) = A1 @ Az is a Lagrangian decomposition #13(D, Z) with its canonical symplectic structure. (For a
discussion of similar decompositions ihd S3 and A d S5 see [26-28].) In Eq. (27)8 is the contribution of theSU(k)/Z,

(0, 2) theory. As pointed out in [26]3 should be considered as a label for the 't Hooft sectors othé) /Z; (0, 2) theory.

(Note that forD = D’ x 1, the theory reduces t8U(k)/Z; gauge theory oD’ and we have a natural symplectic splitting
with A1 = H2(D',7), but this is precisely the group classifying 't Hooft sectors.) On the other hand, the magnetic translation
group is a Heisenberg group extendiHg (D, Z;) and the formula fowg given below makes it clear that

W(pDWp =¥g1¢, ¢1€ A1/kAq, (28)
W(p2)wp =K P2Pluy ¢y € Ap/ky, (29)
giving the standard representation of the Heisenberg group. Thus, the 't Hooft sector label is ADS/CFT dual to the Page charge.

Let us now come to the explicit formulae for the conformal blocks of the 5-brane theory. To derive the 5-brane partition func-
tion, in the¢ — 0 approximation, we solve for the eigenstates of Eq. (25). The ground stat8(ef is the lowest Landau level.

. . k .
We may take: € H3(D), and then an overcomplete basis of wavefunctions has thedp(m) = e~ 2 Jpexet[pv+ine Here
v e H3(D), and the Landau level is infinitely degenerate. However, we must project these wavefunctions onto gauge invariant
states, so we average over large gauge transformations:
v, = Z (ew (c))*llfv (c+w) (30)
weH3 (D)

wheree,, (c) was defined in Eq. (18). Written out explicitly this becomes

/c/\a)}exp{/v/\(l+i*)(c'+w)}. (31)

_ . wk .
U, = Z @(Ca, w) EXP —7/(c+w)*(c+w)—lnk
D D D

weH3 (D)

The span of these wavefunctions is finite-dimensional, as is most easily seen by performing a Poisson resummation with respect
to A2. One then obtains

Vo= Y WO¥w)* (32
peAr/kA
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wherewg (c) = e? ©g /2 With Q a quadratic (nonholomorphic) form inand@g ;> a holomorphic levek /2 theta function.
Holomorphy refers to the complex structure a3 (D) defined by Hodge: [3]. The argument of the theta function is shifted
by characteristics, which can be deduced fip(@,, »). In this way one derives explicit formulae for the conformal blocks.

We recognize in the sum and the first exponential in Eq. (31) the 5-brane partition function of Witten [3]. The susn over
is therefore interpreted as a sum over instantons for the chiral 2-form on the 5-brane. Of course, our derivation is only valid
for k > 1, but we expect that the formulae hold for all value ofn particular, fork = 1 (32) is a holomorphic square. Note
the inclusion of the lifting phase(C,, ). Without this phase, Poisson resummation will not produce theta functions of the
correct level, or with the correct characteristics. In particular, without the phase one finds a sum over theéh 2unctions.
Moreover, the lifting phase shows that the characteristics of the theta function depend on the metric. Indeed, one can show that
if we change the metric, holdin@, ¢) fixed then

9(Co 1, w)

0(Co2 ) = exp|:27'rlkfa)CS(g1,g2)i| (33)

D

whereCS(g1, g2) is the relative Chern—Simons form for the two metrics. There are also potential contributions to the char-
acteristics from quantum corrections to the Born—Oppenheimer approximation one uses when separating harmonic from
nonharmonic modes of thefield.

The issue of characteristics can be important in applications, such as 5-brane instantons. A theta function with characteristics
has an expansion schematically of the fafm~ q92/2 + ---. Thus, ifg is small (e.g., because some coupling is weak)@nd
is nonzero, there can be suppression of 5-brane instanton amplitudes. Such suppressions can have consequences. For examp
using these considerations it might be possible to derive an interesting lower bound on the values of the string coupling for
which the constructions of [29] are self-consistent.

7. The problem with parity

M-theory is parity invariant, and should in principle be formulated in a way which makes sense on unoriented, and possibly
nonorientable, manifolds. The formalism described above makes heavy use of an orientdti¢xtending theEg formalism
to a parity invariant formalism is subtle and potentially problem&fihere is no difficulty at all describing the action of parity
on isomorphism classes of tigfield. We take[C]” = —[C], that is, any parity transfor@ — C must satisfy

epori/CP: (epori/C>*. (34)

) X

Note thatG” = —G anda® = A — a. In the Eg model we understand in this equation as in Eq. (6). However, there is no
natural way to mapt € Conn(P (a)) to AP e Conn(P () —a)). By contrast, in the rival model [6,11] based on Hopkins—Singer
cocycles the action of parity is simple and natural. In the latter modzfiald is represented by a triple, i, G) € C(Y) :=
C4(Y, 7) x C3(Y, R) x 24(Y) and parity is simply the transformatidn, i, G) — (A(g) — a, —h, —G) (there is a functorial
choice of a representativeg) of the class\. € HA(Y, Z)). This presents a serious problem for thig model. It can be traced
to the fact that there is a natural group structure’@ii), but there is no natural group structurefdp Conn(P(a)).

One way to address the parity problem was discussed in [6]Y).die the orientation double cover &f and leto be
the Deck transformation so th&j; /(o) = Y. We then define a ‘parity invariar-field on Y’ to be aC-field onY; such that
o*[C]=[C]". If Y is orientable this definition amounts to defining a parity invar@sfield onY as a pair of ordinarg -fields
onY, namely,((4, ¢), (A’, ¢/)) such that

epori[C: (eporifC’)*. (35)

) X

The morphisms of the groupoid are simglyx G. The space of isomorphism classes is the same as before. However, at this
point we encounter a new problem: The automorphism group of an object in our new grouH&(YLsU(l)) x H2(Y,U(1))

and hence the groupoid isequivalentto the previous one, even whéhis orientable! A potential solution to this difficulty

is that one must require (35) hold for open membrane worldvolumeSuch a constraint reduces the automorphism group to

a single copy of12(Y, U(1)), as desired, but introduces yet another difficulty. For open membranes, the left- and right-hand

7 This section is based on discussions with D. Freed.
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sides of (35) are sections of line bundles (over the space of 2-cyclgs Trhese line bundles are isomorphic, but not naturally
s0. The set of isomorphisms is a torsor #éf (Y, U (1)), which accounts for the ‘second’ copy in the automorphism group of
an object in our parity-invariant groupoid. Fortunately, this extra factd &€y, U (1)) appears to have no physical effect, and
hence we effectively have an equivalent groupoid. Thus, in the author’s current opinion, the parity invdfieldtmodel is
physically viable. However, this issue clearly deserves further scrutiny.

Note that the above formulation of thiigg model has the elegant consequence that the underlying topological gauge group
is Eg x Eg whenY is orientable, while it is simply a single copy &§ whenY is nonorientable.
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