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Abstract

We review theE8 model of the M-theory 3-form, and its applications to anomaly cancellation, Gauss laws, quantiza
Page charge, and the 5-brane partition function. We discuss the potentially problematic behavior of the model underTo
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Résumé

Anomalies, lois de Gauss, et charges de Page dans M-théorie.Nous rappelons le modèleE8 de la 3-forme de M-théorie
et ses applications pour l’annulation des anomalies, lois de Gauss, quantification de la charge de Page, ainsi que pour
de partition de la 5-brane. Nous envisageons le comportement potentiellement problématique du modèle sous la paPour
citer cet article : G.W. Moore, C. R. Physique 6 (2005).
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1. Introduction

In 1978 Cremmer, Julia, and Scherk found the action for 11-dimensional supergravity [1]. Twenty-six years later th
has come to be regarded as a low energy limit of some hypothetical more fundamental ‘M-theory’. A satisfactory form
of M-theory is still unknown. One set of clues to finding such a formulation lies in the issues one encounters in form
11-dimensional supergravity in topologically nontrivial situations. While the action principle in [1] is simple, it contains
subtle Chern–Simons term. In this article we review some recent work aimed at clarifying the mathematical nature of
[2–6]. We will also describe briefly some related new results [7,8]. Another motivation for this recent work is the clarifi
of anomaly cancellation issues in M-theory. This is discussed in section three below. A further motivation is the possib
there are new topological terms in the action. (Such terms were found for type IIA supergravity in [5] in exactly this wa
general discussion see Section 5.5 of [7].) As discussed in Section 5, the Chern–Simons term also leads to a nonco
structure in the theory leading to some important subtleties in flux quantization. Finally, the considerations touched on
of importance in understanding aspects of the M-theory 5-brane in topologically interesting situations. As we remar
they are not without applications to currently fashionable topics.

E-mail address:gmoore@physics.rutgers.edu (G.W. Moore).
1631-0705/$ – see front matter 2005 Published by Elsevier SAS on behalf of Académie des sciences.
doi:10.1016/j.crhy.2004.12.005
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While theE8 formalism is very useful for studying some of the topological complexities of 11-dimensional supergra
appears to have two important drawbacks. The first is that the action of parity is subtle (and possibly impossible) to form
a satisfactory way. We describe some of the salient points in Section 7 below. A second important challenge is the inco
of elementary 5-branes in the formalism. In the spacetime external to the 5-brane one finds a nontrivialE8 instanton linking
the 5-brane worldvolume. However, to describe 5-branes we wish to include their worldvolume. Unfortunately, the incl
nonzero magnetic current in theE8 formalism presents an unsolved difficulty.

2. Defining the Chern–Simons term

Let Y be an 11-dimensional, oriented, spin manifold. In topologically trivial situations M-theory has an abelian gaug
a globally defined 3-formC ∈ Ω3(Y ) with fieldstrengthG = dC ∈ Ω4(Y ).1 The exponentiated Euclidean action for the the
is (schematically):

exp

[
−2π

∫
Y

1

�9
vol(g)R(g) + 1

2�3
G ∧ ∗G + ψ̄/Dψ

]
Φ(C), (1)

Φ(C) = exp

(
2π i

∫
Y

1

6
CG2 − CI8(g)

)
(2)

whereg is the metric,ψ is the gravitino and� is the 11-dimensional Planck length. This form of the action cannot app
topologically interesting situations in which the cohomology class[G] �= 0. If ∂Y = ∅ the usual definition of a Chern–Simon
term involves an extension to a bounding 12-manifoldZ:

Φ(C)
?=exp

(
2π i

∫
Z

1

6
G3 − GI8(g)

)
. (3)

As it stands, this definition appears to depend on the extension. The existence of M2-branes implies[G] = ā − 1
2 λ̄ where

ā ∈ �H4(Y ;Z) [2]. (The bar denotes reduction modulo torsion andλ is the characteristic class of the spin-bundle onY .) Thus the
factor of 1/6 looks problematic. In fact, since[I8(g)] = (p2 − λ2)/48, the definition (3) appears to be ambiguous by a 96th
of unity. It was pointed out by Witten in [2] thatE8 index theory shows the situation is actually not that bad. Isomorphism cl
of principal E8 bundles on manifoldsM of dimension� 15 are in 1–1 correspondence with integral classesa ∈ H4(M,Z).
Let P(a) denote anE8 bundle with characteristic classa ∈ H4(Y,Z). If we identify [G] = [trF2 − 1

2 trR2], whereF is the
fieldstrength of a connectionA on the bundleP(a), then there is a remarkable identity

1

6
G3 − GI8 =

[
1

2
i(/DA) + 1

4
i(/DRS)

](12)
(4)

wherei(/D) denotes the standard index density. The first term is for the Dirac operator coupled toA in the adjoint representatio
while the second is for the Dirac operator coupled toT ∗Y − 4. We extract the 12-form piece of the right-hand side. (T
simple formula (4) summarizes all the nontrivial group-theoretic identities used in Green–Schwarz anomaly cancellatio
E8 × E8 theory, as well as the identities used by Horava and Witten [9].) Since the index is even in 12-dimensionsΦ(C) is in
fact well-defined up to a sign. The sign ambiguity cannot be removed without introducing other fields. See Section 3 b

2.1. Boundaries

The extension to the case with boundary,∂Y = X is nontrivial. It is best described by making a choice of a ‘model’ for
C-field. We will now explain what we mean by a ‘model’. The membrane coupling provides us with thegauge equivalence
classof aC-field. Thus, an isomorphism class[C] may be identified with a map

[C] :Σ → exp

(
2π i

∫
Σ

C

)
(5)

1 In general we follow the notation of [6].
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∫
B G). Mathematically, the membran

coupling is (a torsor for) the Cheeger–Simons groupȞ4(Y ).2

While the mathematical formulation of the gauge equivalence class of aC-field is clear, there are different ways of express
C in terms of redundant variables. This issue does not arise in Yang–Mills theory, where there is a natural way: one
space of connections Conn(P ) on a principal bundleP . In the case of theC-field, the language of categories turns out
be useful. This language applies to all gauge theories. Abstractly the space ofC-fields should be viewed as a groupoid, i.
a category all of whose morphisms are invertible. The gauge potentials are the objects, while the gauge transform
the morphisms. The group of global gauge transformations is the automorphism group of the object. Different mode
C-field correspond to equivalent categories. In this note we use a particular model, the ‘E8 model for theC-field’. Another
model, based on the differential cohomology theory of Hopkins and Singer [10] is described in [6] and is developed
in [11].

In theE8 model, a‘C-field’ on Y with characteristic classa is a pair(A, c) in C(Y ) := Conn(P (a)) × Ω3(Y ). The gauge
invariant fieldstrength isG = trF2 − 1

2 trR2 + dc so that, morally speaking,

C = CS(A) − 1

2
CS(g) + c, (6)

can be written in terms of Chern–Simons forms. The objects of the groupoid are points inC(Y ). The morphisms are defined b
a gauge groupG, described in Section 4 below.3 Note the metric dependence inC: the space of bosonic fields in M-theory
fibered over the space of metrics, the fiber is the space ofC-fields.

In theE8 model we can write the Chern–Simons term of M-theory as

Φ(C) = exp

[
2π i

{
1

4
η(/DA) + 1

8
η(/DRS)

}
+ 2π iIlocal

]
(7)

whereη is the Atiyah–Patodi–Singer invariant and

Ilocal =
∫
Y

(
c

(
1

2
G2 − I8

)
− 1

2
cdcG + 1

6
c(dc)2

)
. (8)

The importance of Eq. (7) is that the formula is intrinsically formulated in 11-dimensions and moreover the same
holds on a manifold with boundary. However, we must now pay a price.Φ cannot be viewed as aU(1) valued function but rathe
must be considered as a section of a line bundleL → C(Y ) × Met(Y ). This line bundle has a connection. WhenY is closed
the connection is only nontrivial in the metric directions, is flat, and has±1 holonomy onMet(Y )/Diff +(Y ). When∂Y = X

is nonempty the connection has nontrivial components in theC-field directions. HeuristicallyA = 2π
∫
Y (1

2G2 − I8)δC. An
important point is that the curvature ofL is nonzero:

F = π

∫
X

GδCδC. (9)

3. Anomaly cancellation and setting the quantum integrand

This section covers some new work done with D. Freed [7].
Quite generally the quantum integrand of a path integral is a section of a line bundleLqi over the space of bosonic field

This bundle is equipped with a connection∇. In theories with fermions and/or Chern–Simons terms this line bundle
connection might well be nontrivial. If this is the case the path integral does not make sense—even formally—since on
add vectors in different lines. This is the geometrical interpretation of anomalies. In order to define a sensible path
one must introduce a trivialization, i.e., a globally nonvanishing section1 of Lqi so that, if e−S is the quantum integrand the

e−S/1 is a globally well-defined function, which can be integrated. Note that this requires thatLqi be topologically trivial.
Moreover, the connection∇ must be flat: This is the cancellation of local anomalies. Furthermore, the flat connection∇ must
have no holonomy: This is the cancellation of global anomalies. In other words, in a well-defined theory(Lqi ,∇) must be

2 It is a torsor because of a shift inC needed to cancel worldvolume anomalies on the membrane [2]. This may also be understood a
due to background magnetic current induced byw4.

3 In this definition we have fixed a bundleP(a) for eacha, at the cost of some naturality. Section 3.5 of [6] describes an equivalent cat
where no such choice is made.



254 G.W. Moore / C. R. Physique 6 (2005) 251–259

, both
shown
hown in

itino

s on
omor-

] and

ies from
itions, we
plies to

elliptic
onditions
between
s proof
th local

we note
uction to
bitrarily,

ne

-

at the

utomor-
ts.
f the
geometrically trivial. Note that in an anomaly free theory there might still be a nontrivial choice of trivializing section1. In [7]
this choice is called a ‘setting of the quantum integrand’.

In the case ofM-theory both theC-field and the gravitino theories are quantum-mechanically inconsistent. That is
Φ(C) and the gravitino partition function are sections of nontrivial line bundles with non-flat connections. However, it is
in [7] that the tensor product is geometrically trivial. This is the Green–Schwarz anomaly cancellation. Moreover, it is s
[7] that there is a canonical trivialization, thus leading to a canonical setting of the quantum integrand.

There are already anomalies in the case whenY is closed. This is the sign ambiguity mentioned below Eq. (4). The grav
partition function pf(/DRS) is a section of the Pfaffian line bundle

L := PF(/DRS) → Met(Y ), (10)

L is a complex line bundlewith real structure.L has a connection compatible with the real structure so the holonomie
Met(Y )/Diff +(Y ) are±1. In fact, the gravitino has a global anomaly. In [7, Section 2], one finds a natural geometric is
phismL ∼=L leading to global anomaly cancellation. That is,

Pf(/DRS) · Φ (11)

is a well-defined function onC(Y ) × Met(Y )/G × Diff +(Y ). This Green–Schwarz mechanism was already indicated in [2
[7] establishes it rigorously.

When we consider anomaly cancellation on manifolds with boundary we need to distinguish temporal boundar
spatial boundaries because of the boundary conditions which we will impose. In the case of temporal boundary cond
put global, or APS boundary conditions on the fermion fields. In this case, a similar but rather more subtle story ap
establish the cancellation of Hamiltonian anomalies. This is described in detail in [7, Section 4.2].

We now consider spatial boundaries. With local (i.e., chiral) boundary conditions on fermions one can still define
operators and study geometric invariants. (D. Freed’s student M. Scholl is studying a general class of local boundary c
for Dirac operators on manifolds with boundary [12].) Using these results one can produce a geometric isomorphism
the line bundle of the Chern–Simons term and that of the fermion partition function. In this way one can give a rigorou
of anomaly cancellation in the Horava–Witten model. The advantage of this proof is that it covers simultaneously bo
and global anomalies, and moreover it becomes crystal clear that the anomaly cancellation is completelylocal. (It has been
pointed out that this issue is nontrivial [13].) We are not being very precise here about the meaning of locality, but
that the anomaly cancels boundary component by boundary component. In particular, there is no topological obstr
putting M-theory on an 11-manifold with any number of boundary components. On each component we choose, ar
a signεi = ± determining the chirality projection. Each component carries an independentE8 super-Yang–Mills multiplet
and we choose boundary conditions such thatG|Xi

= εi(trF
2(Ai) − 1

2 trR2(gi)). There are a number of subtle details o
encounters in checking this cancellation. Perhaps the most surprising is that, in some circumstances, thePfaffian line bundle
admits, globally, a well-defined square root. Again, for the many details we refer to [7, Section 4.3].

The existence of these topological sectors of M-theory raises the interesting question of whether there aresolutionsof the
equations of motion on manifolds of this type. This curious question remains open.

4. The Gauss law

Our next goal is to write the Gauss law forC-field gauge invariance. In theE8 modelC = (A, c). Small gauge transfor
mations act byc → c + dΛ, Λ ∈ Ω2(Y ). It is usually said that gauge transformations arec → c + ω, ω ∈ Ω3

Z
(Y ).4 However,

this does not properly account for global gauge transformations ‘Λ ∼ constant’. The correct choice is to replaceΩ3
Z
(Y ) by the

Cheeger–Simons group̌H3(Y ), and interpretω as the fieldstrength of the differential character. What we stress here is th
Cheeger–Simons group̌H3(Y ) is an extension:

0→ H2(
Y,U(1)

) → Ȟ3(Y ) → Ω3
Z
(Y ) → 0. (12)

We interpretH2(Y,U(1)) as the group of global gauge transformations. In the categorical language, these are the a
phisms of the object: Ifα ∈ H2(Y,U(1)) thenγα : (A, c) → (A, c). But the automorphism still has nontrivial physical effec
Firstly, it has a nontrivial effect onopenmembrane amplitudes. A second nontrivial effect emerges in the formulation o
Gauss law for the gauge groupG.5

4 Ω
p
Z

(M) denotes the space ofp forms onM with integral periods. Such forms are necessarily closed.
5 Actually,G = Ω1(adP) � Ȟ3(Y ), where the first factor shiftsA → A + α, see [6].
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The Gauss law is the statement that physical wavefunctions of theC-field must be gauge invariant:

γ · Ψ (C) = Ψ (γ · C) ∀γ ∈ G, C ∈ C(X). (13)

Now the wavefunction is a section of the lineL in whichΦ is valued. Thus, to formulate the Gauss law we must define a l

L G L

C(X)
G C(X)

(14)

To define the lift we combine the parallel transport using the connection onL with a cocycle for the group action:

γ · Ψ (C) = ϕ(C,γ )∗ · exp

( γ ·C∫
C

A
)

· Ψ (15)

whereϕ(C,γ ) is a cocycle, that is

ϕ(C,γ1)ϕ(γ1 · C,γ2) = e−iπ
∫
X Gω1ω2ϕ(C,γ1γ2) (16)

whereγ1, γ2 ∈ G areC-field gauge transformations with fieldstrengthω1,ω2 ∈ Ω3
Z
(X). We will refer toϕ(C,γ ) as the ‘lifting

phase’. Following a construction in [3] (described more fully in [6]), givenC ∈ C(X) andγ ∈ G we construct a twistedC-field
Cγ onY = X × S1: Cγ (x,1) = γ · Cγ (x,0) = γ · C. Then we defineϕ(C,γ ) := Φ(Cγ ).

Since (12) is an extension the Gauss law consists of two statements. Forγ = γα , α ∈ H2(X,U(1)), we obtain the electric
charge tadpole condition. Once this law is satisfied we can study the Gauss law forγ ∈ Ω3

Z
(X). This leads to the quantizatio

of ‘Page charge’.
The tadpole condition has been described in detail in [6]. AssumeX is compact. A global gauge transformationγα , α ∈

H2(X,R/Z), acts nontrivially on quantum wavefunctions. IfΨ ∈LA,c thenγα · Ψ = exp[2π i〈Q,α〉]Ψ , whereQ ∈ H8(X,Z)

is theC-field electric charge. Thus, ifQ �= 0 thenΨ = 0. From the definition of the group lift we get a formula forQ. It only
depends on the characteristic classa, so we may writeQ(a). It is easy to show that̄Q = [1

2G2 − I8]DR thus recovering the

usual condition of [14]. Nevertheless,Q(a) is anintegral refinementof [1
2G2 − I8] = 1

2 ā(ā − λ̄) + 30Â8, and henceQ(a) = 0
carries further information related to torsion. Not much is known aboutQ(a). It is a quadratic refinement of the cup produ
This and some other pertinent facts can be found in [6].

WhenQ = 0 we can have nonzero gauge invariant wavefunctionsΨ (C) ∈ Γ (L). There is still further information in the
statement of gauge invariance. In order to demonstrate the physical interpretation it is convenient to trivializeL. This entails
choosing a basepoint soC = C• + c, and replacing the wavesectionΨ (C) by a wavefunctionψ(c). The result of a carefu
analysis [8] is that the Gauss law may be written:

ψ(c + ω) = eω(c)ψ(c) ∀ω ∈ Ω3
Z
(X), (17)

where

eω(c) := ϕ(C•,ω)∗e2π i
∫
X(

1
2G•+ 1

6dc)cω
. (18)

5. Page charges

Eq. (17) can be interpreted physically by rewriting it in the form

exp

(
2π i

∫
X

ωP

)
ψ = f•(ω)ψ ∀ω ∈ Ω3

Z
(X), (19)

whereP is an operator-valued 7-form. In order to prove this one notes that on spin 10-manifolds the cocycle in (16) is
Z2-valued (this is nontrivial since[G] has half-integer periods). Then it follows thatϕ(C•,ω) is linear on Ω3

2Z
and hence of

the formϕ(C•,ω) = exp[2π i
∫

ωT•]. The 7-formT• ∈ Ω7(X) is a trivializationdT• = 1
2G2• − I8. It is only defined modulo a

form with half-integer periods. We make a definite choice and definef•(ω) := ϕ(C•,ω)∗e2π i
∫

ωT• for all ω ∈ Ω3
Z
(X). This is

a Z2-valued cocycle satisfying (16). It is then elementary to show that (17) is equivalent to (19) provided

P = 1
Π +

(
1
G•c + 1

cdc

)
+ T• (20)
2π 2 6
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whereΠ is the canonical momentum ofc. The expression (20) is nothing other than the ‘Page charge’ of supergravity, fo
lated in the canonical formalism. This 7-form flux should be considered as the electro-magnetic dual of the fluxG. Morally
speaking,P = dC6 whereC6 is the 6-form potential that couples to the 5-brane.

We are now in a position to study the quantization of Page charge. Here we encounter a surprise. If[G] = 0, the quantum
Gauss law for largeC-field gauge transformations implies[P ] ∈ H̄7(X;Z). This is the naive electro-magnetic dual to the na
quantization of magnetic flux:[G] ∈ H̄4(X;Z). However, when[G] �= 0, things are quite different. Forφ ∈ H3

DR
(X) define

P(φ) := ∫
X φ ∧ P . An easy computation shows that[

P(φ1),P (φ2)
] = i

2π

∫
φ1 ∧ φ2 ∧ G. (21)

Eq. (21) is important. It means, first of all, that not allP(φ) can be simultaneously diagonalized. Moreover,[P ] is not even
gauge invariant. IfU(ω) := exp[2π i

∫
ωP ] implements large gauge transformations then (as was noted in a special case

U(ω)P (φ)U(ω)−1 = P(φ) −
∫

ωφG. (22)

In general, the conserved gauge invariant ‘Page charges’ or electric fluxes should be regarded as characters of a ce
which we will call themagnetic translation group.When[G] = 0 this group is simplyH3(X,U(1)), and hence we recover th
lattice of fluxes,H7(X,Z). In general, with[G] �= 0, the group is generated by the gauge invariant operatorsW(φ) := e2π iP(φ)

whereφ is such that:
∫

φωG ∈ Z for all ω ∈ H3(X,Z). Note that the group is in general nonabelian:

W(φ1)W(φ2) = e−iπ
∫

φ1φ2GW(φ1 + φ2) = e−2π i
∫

φ1φ2GW(φ2)W(φ1). (23)

In summary, the naive lattice of (magnetic,electric) fluxesH4(X,Z) ⊕ H7(X,Z) is modified in two ways. The first factor i
constrained by the tadpole constraintQ(a) = 0. The second factor is replaced by the character group of the magnetic tran
group.

A comparison with ordinary gauge theory might help in understanding better what is going on here. ConsiderU(1) gauge
theory on spacetimes of the formX × R, whereX is an n-dimensional Riemannian manifold. If we take the actionS =∫
X×R

− 1
2e2 F ∗ F then the Hilbert space of the theory is graded byH2(X,Z) ⊕ Hn−1(X,Z). The first component isc1 of

the line bundle on whichA is a connection, while the second component is the quantized electric flux. This grading
understood elegantly as follows.6 The space of gauge equivalence classes of line bundles with connection onX is the Cheeger–
Simons groupȞ2(X), and therefore the Hilbert space is—formally—L2(Ȟ2(X)). Now, note thatȞ2(X) is an abelian group
Quite generally, ifA is an abelian group then a Heisenberg extension ofA× Â acts onL2(A) whereÂ is the group of character
of A. If X is oriented the Poincaré dual group toȞ2(X) is Ȟ n−1(X). The subgroupH1(X,U(1))×Hn−2(X,U(1)) of A× Â

acts on Hilbert space with trivial extension. The characters of this subgroup are simplyH2(X,Z) ⊕ Hn−1(X,Z). Now, let us
consider 3d massive abelian gauge theory with action

S =
∫

Σ×R

− 1

2e2
F ∗ F + 2π

∫
Σ×R

kAdA (24)

whereΣ is a Riemann surface. The exponentiated Chern–Simons term must be considered as a section of a line bunLk →
Ȟ2(Σ). We now identify the Hilbert space as a space ofL2 sectionsΓ (Ȟ2(Σ);Lk). The wavefunction is only nonzero on th
component withc1 = 0 (this is the analog of the tadpole conditionQ(a) = 0 above). Moreover, becauseLk carries a nontrivial
connection the translation symmetry is broken and replaced by a Heisenberg group extension ofH1(Σ,Z/kZ). In the analogy
with Chern–Simons theoryk corresponds to12[G] and the (noncommuting) Wilson line operators correspond to the oper
W(φ).

We expect that the above remarks will have some important implications for the classification of RR fluxes in type
theory. It is commonly believed that the topological sectors are classified by twisted K-theory. (See [16,17] for recent r
Naively one might expect the classification of RR fluxes in the background of a nontorsionH field to be given in terms
of the image of the Chern-character of twisted K-theory [18], analogous to the quantization condition proposed in
A discussion of this proposal (and other relevant matters) can be found in [21]. Dimensional reduction of the above f
indicate that the situation is more complex and needs further investigation.

The phenomenon we have described is probably closely related to the Hanany–Witten effect [22] and to the nonco
brane charges of [23]. Similar noncommutative structures have appeared in compactifications of M-theory on tori [24
formulations of M-theory using theC-field together with its electromagnetic dual [25].

6 Thanks to G. Segal for some illuminating remarks.
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6. Application: the 5-brane partition function

In the 3D Chern–Simons theory of Eq. (24) the dynamics of the topological (flat) modes ofA is that of an electron on
a torusH1(Σ;U(1)) in a constant magnetic field. In a long distance approximation of M-theory, ‘� → 0’, where� is the
11-dimensional Planck length one only keeps the harmonic modes of theC-field and an analogous story holds. If we introdu
a basisωa of the spaceH3(X) of harmonic 3-forms onX then we may expandc = ∑

a caωa , and the effective Hamiltonia
for these modes may be shown to be

Heff = hab

(
−i

∂

∂ca
− πBaa′

ca′
)(

−i
∂

∂cb
− πBbb′

cb′
)

(25)

wherehab = ∫
X ωa ∗ ωb and the ‘magnetic field’ isBab = ∫

X Gωaωb . We effectively have a Landau-level problem on t

torusH3(X,R)/H̄3(X,Z). The Page charge operator corresponds to the magnetic translation operator.
As an application, we can use the above formalism to derive Witten’s prescription for the 5-brane partition function

the process of doing so we will underscore a point which is almost always misunderstood in the literature. Our appro
be via the AdS/CFT correspondence. We considerX = D × S4, whereD is a compact 6-fold, soX is a conformal boundary a
infinity for an asymptotically AdS spaceY :

ds2 → (
k2/3�2)[

dr2 + e2r ds2
D + 1

4
ds2

S4

]
, (26)

andG → G∞ = kωS4 + G̃, whereG̃ ∈ Ω4(D). According to AdS/CFT fork � 1 the partition function of M-theory onY is

the partition function of theU(k) (2,0) theory onD. Now U(k) = SU(k)×U(1)
Zk

where theU(1) couples to the center of mas
degree of freedom of the 5-branes. This couples to the harmonic modes ofc at infinity (for simplicity we denote these asc)
and, contrary to what is usually stated, does not completely decouple. In fact, the partition function of the(2,0) theory may be
written as

Z
[
U(k) (2,0)-theory

] =
∑

β∈Λ1/kΛ1

ζβΨβ(c) (27)

whereH3(D,Z) = Λ1 ⊕ Λ2 is a Lagrangian decomposition ofH3(D,Z) with its canonical symplectic structure. (For
discussion of similar decompositions inAdS3 andAdS5 see [26–28].) In Eq. (27)ζβ is the contribution of theSU(k)/Zk

(0,2) theory. As pointed out in [26],β should be considered as a label for the ’t Hooft sectors of theSU(k)/Zk (0,2) theory.
(Note that forD = D′ × S1, the theory reduces toSU(k)/Zk gauge theory onD′ and we have a natural symplectic splittin
with Λ1 = H2(D′,Z), but this is precisely the group classifying ’t Hooft sectors.) On the other hand, the magnetic tran
group is a Heisenberg group extendingH3(D,Zk) and the formula forΨβ given below makes it clear that

W(φ1)Ψβ = Ψβ+φ1, φ1 ∈ Λ1/kΛ1, (28)

W(φ2)Ψβ = e2π ik〈φ2,β〉Ψβ, φ2 ∈ Λ2/kΛ2, (29)

giving the standard representation of the Heisenberg group. Thus, the ’t Hooft sector label is AdS/CFT dual to the Pag
Let us now come to the explicit formulae for the conformal blocks of the 5-brane theory. To derive the 5-brane partitio

tion, in the� → 0 approximation, we solve for the eigenstates of Eq. (25). The ground state onH3(X) is the lowest Landau leve

We may takec ∈H3(D), and then an overcomplete basis of wavefunctions has the formΨv(c) = e− πk
2

∫
D c∗c+∫

D v(1+i∗)c. Here
v ∈ H3(D), and the Landau level is infinitely degenerate. However, we must project these wavefunctions onto gauge
states, so we average over large gauge transformations:

Ψ v =
∑

ω∈H3
Z
(D)

(
eω(c)

)∗
Ψv(c + ω) (30)

whereeω(c) was defined in Eq. (18). Written out explicitly this becomes

Ψ v =
∑

ω∈H3
Z
(D)

ϕ(Č•,ω)exp

{
−πk

2

∫
D

(c + ω) ∗ (c + ω) − iπk

∫
D

c ∧ ω

}
exp

{∫
D

v ∧ (1+ i∗)(c + ω)

}
. (31)

The span of these wavefunctions is finite-dimensional, as is most easily seen by performing a Poisson resummation w
to Λ2. One then obtains

Ψ v =
∑

Ψβ(c)Ψβ(v)∗ (32)

β∈Λ1/kΛ1
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whereΨβ(c) = eQΘβ,k/2 with Q a quadratic (nonholomorphic) form inc andΘβ,k/2 a holomorphic levelk/2 theta function.

Holomorphy refers to the complex structure onH3(D) defined by Hodge∗ [3]. The argument of the theta function is shift
by characteristics, which can be deduced fromϕ(C•,ω). In this way one derives explicit formulae for the conformal blocks

We recognize in the sum and the first exponential in Eq. (31) the 5-brane partition function of Witten [3]. The sumω
is therefore interpreted as a sum over instantons for the chiral 2-form on the 5-brane. Of course, our derivation is o
for k � 1, but we expect that the formulae hold for all values ofk. In particular, fork = 1 (32) is a holomorphic square. No
the inclusion of the lifting phaseϕ(Č•,ω). Without this phase, Poisson resummation will not produce theta functions o
correct level, or with the correct characteristics. In particular, without the phase one finds a sum over level 2k theta functions.
Moreover, the lifting phase shows that the characteristics of the theta function depend on the metric. Indeed, one can
if we change the metric, holding(A, c) fixed then

ϕ(C•,1,ω)

ϕ(C•,2,ω)
= exp

[
2π ik

∫
D

ωCS(g1, g2)

]
(33)

whereCS(g1, g2) is the relative Chern–Simons form for the two metrics. There are also potential contributions to th
acteristics from quantum corrections to the Born–Oppenheimer approximation one uses when separating harmo
nonharmonic modes of thec-field.

The issue of characteristics can be important in applications, such as 5-brane instantons. A theta function with char

has an expansion schematically of the formΘ ∼ qθ2/2 + · · ·. Thus, ifq is small (e.g., because some coupling is weak) anθ

is nonzero, there can be suppression of 5-brane instanton amplitudes. Such suppressions can have consequences.
using these considerations it might be possible to derive an interesting lower bound on the values of the string cou
which the constructions of [29] are self-consistent.

7. The problem with parity

M-theory is parity invariant, and should in principle be formulated in a way which makes sense on unoriented, and
nonorientable, manifolds. The formalism described above makes heavy use of an orientation onY . Extending theE8 formalism
to a parity invariant formalism is subtle and potentially problematic.7 There is no difficulty at all describing the action of par
on isomorphism classes of theC-field. We take[C]P = −[C], that is, any parity transformC → CP must satisfy

exp2π i
∫
Σ

CP =
(

exp2π i
∫
Σ

C

)∗
. (34)

Note thatGP = −G andaP = λ − a. In theE8 model we understandC in this equation as in Eq. (6). However, there is
natural way to mapA ∈ Conn(P (a)) to AP ∈ Conn(P (λ− a)). By contrast, in the rival model [6,11] based on Hopkins–Sin
cocycles the action of parity is simple and natural. In the latter model aC-field is represented by a triple(a,h,G) ∈ Č(Y ) :=
C4(Y,Z) × C3(Y,R) × Ω4(Y ) and parity is simply the transformation(a,h,G) → (λ(g) − a,−h,−G) (there is a functoria
choice of a representativeλ(g) of the classλ ∈ H4(Y,Z)). This presents a serious problem for theE8 model. It can be trace
to the fact that there is a natural group structure onČ(Y ), but there is no natural group structure on

∐
a Conn(P (a)).

One way to address the parity problem was discussed in [6]. LetYd be the orientation double cover ofY and letσ be
the Deck transformation so thatYd/〈σ 〉 = Y . We then define a ‘parity invariantC-field onY ’ to be aC-field onYd such that
σ∗[C] = [C]P . If Y is orientable this definition amounts to defining a parity invariantC-field onY as a pair of ordinaryC-fields
onY , namely,((A, c), (A′, c′)) such that

exp2π i
∫
Σ

C =
(

exp2π i
∫
Σ

C′
)∗

. (35)

The morphisms of the groupoid are simplyG × G. The space of isomorphism classes is the same as before. However,
point we encounter a new problem: The automorphism group of an object in our new groupoid isH2(Y,U(1)) × H2(Y,U(1))

and hence the groupoid isinequivalentto the previous one, even whenY is orientable! A potential solution to this difficult
is that one must require (35) hold for open membrane worldvolumesΣ . Such a constraint reduces the automorphism grou
a single copy ofH2(Y,U(1)), as desired, but introduces yet another difficulty. For open membranes, the left- and righ

7 This section is based on discussions with D. Freed.
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sides of (35) are sections of line bundles (over the space of 2-cycles inY ). These line bundles are isomorphic, but not natur
so. The set of isomorphisms is a torsor forH2(Y,U(1)), which accounts for the ‘second’ copy in the automorphism grou
an object in our parity-invariant groupoid. Fortunately, this extra factor ofH2(Y,U(1)) appears to have no physical effect, a
hence we effectively have an equivalent groupoid. Thus, in the author’s current opinion, the parity invariantC-field model is
physically viable. However, this issue clearly deserves further scrutiny.

Note that the above formulation of theE8 model has the elegant consequence that the underlying topological gauge
is E8 × E8 whenY is orientable, while it is simply a single copy ofE8 whenY is nonorientable.
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