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Abstract

In the conventional picture of a black hole we cannot see the states which account for its entropy, and Hawking rad
unable to carry out the information of the state of the hole. We outline some computations in string theory which sug
bound states expand to a size determined by their degeneracy. Thus the state information of a black hole would be d
throughout the interior of the horizon, and Hawking radiation can ‘read’ this information. No individual microstate
horizon, rather the horizon arises upon coarse graining as a boundary of the region where the microstates differ.To cite this
article: S.D. Mathur, C. R. Physique 6 (2005).
 2005 Published by Elsevier SAS on behalf of Académie des sciences.

Résumé

Qui a-t-il dans un trou noir ? Dans la représentation conventionnelle d’un trou noir il est impossible de voir les éta
compose son entropie, et la radiatio d’Hawking est incapable de transporter en dehors du trou noir de l’information sur
trou noir. Nous décrivons des calculs en théorie des cordes qui suggèrent les états liés grandissent juqu’à une taille d
par leur dégénérescence. Ainsi l’information à propos d’un trou noir serait distribuée à l’intérieur de l’horizon, et la ra
d’Hawking peut « lire » cette information. Aucun état individuel n’a pas d’horizon ; mais l’horizon apparaît après moyenn
comme la région où les états microscopiques diffèrent.Pour citer cet article : S.D. Mathur, C. R. Physique 6 (2005).
 2005 Published by Elsevier SAS on behalf of Académie des sciences.
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1. Introduction

Quantum mechanics in the presence of black holes generates some sharp paradoxes. Gedanken experiments indi
must associate an entropy

SBek = A

4G
(1)

with the hole to save the second law of thermodynamics [1]. Statistical mechanics then indicates that the hole must hSBek

microstates. However, the geometry of the hole appears to be determined by its mass, charges and angular momenta
holes have no hair’. Where should we look for the differences between the microstates?
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Fig. 1. (a) The conventional picture of a black hole; (b) the proposed picture—state information is distributed throughout the ‘fuzz

Closely related is the ‘information puzzle’. Particle–antiparticle pairs are continuously created and annihilated in the
but in the presence of the tidal forces at the horizon one member of this pair can fall in (lowering the mass of the hole) w
other escapes to infinity as Hawking radiation. But this radiation carries no information about the matter that initially m
hole, so when the hole evaporates away into radiation we find ‘information loss’, a violation of the basic unitarity of q
mechanics [2].

The above two problems are closely connected. If we burn a piece of coal and get radiation we do not lose info
because the radiation emerges from a region where it can see the state of the coal. By contrast, Hawking radiation
emerge from the horizon while the matter making the hole appears to sit at the singularityr = 0. The distance between horizo
and singularity is macroscopic, and we need to understand how information can be transported across this large dista

In this article we discuss some computations in string theory which suggest that the picture of the black hole interi
be radically different from the conventional picture given in Fig. 1(a). In the proposed picture (Fig. 1(b)) the state infor
is distributed throughout the interior of the horizon; different configurations of this ‘fuzzball’ give different states of the
No individual state has a horizon; rather the horizon is a boundary of the region where the states differ significantly fr
other. There is no special point to play the role of a central singularity.

We first look at the simplest system that has entropy—the 2-charge extremal D1–D5 system. The microscopic e
the D1–D5 bound state is 2π

√
2
√

n1n5. We find that the geometries dual to these states behave like Fig. 1(b), and the
the bounding surface where the geometries start to differ satisfiesA/(4G) ∼ √

n1n5. We then move to the 3-charge extrem
D1–D5–P system where we have constructed geometries dual to a small subset of the microstates; these geometries
with Fig. 1(b) rather than Fig. 1(a).

Why are we getting a change in our picture of the black hole in a region where semiclassical physics appeared to
and suggested ‘empty space’ as the local description? It is normally assumed that quantum gravity effects must be
to within a length scale like the Planck lengthlp or string lengthls . But in making a large black hole we are dealing with
large numberN of quanta, and what we seem to find is that quantum effects extend to a distance∼ Nαlp , where the powe
α is such that the size of the resulting object satisfies a Bekenstein type relationA/(4G) ∼ S (eS is the degeneracy of th
quantum state). The key notion seems to be ‘fractionation’: when we bind together a large numberN of quanta in string theory
then the excitations of the resulting state come in fractional units 1/N ; thus they are very light for large black holes. A ve
rough estimate shows that because of this fractionation the ‘size’ of a 3-charge bound state is of the same order as
horizon radius, and this makes it possible for the entire interior of the horizon to be filled with ‘quantum fuzz’ of frac
brane excitations.

We end with some comments on non-NPS holes, and the implications of this picture for other problems in physics.

2. The 2-charge system

Consider type IIB string theory, compactified toM5,1 × S1 × T 4. The radius ofS1 is R and the volume ofT 4 is (2π)4V .
We use coordinatest = x0, x1, . . . , x4 to describeM4,1, y = x5 for S1 andx6 · · ·x9 ≡ z1 · · · z4 for T 4. Wrapn1 D1 branes on
S1 andn5 D5 branes onS1 × T 4. Make a bound state of these branes, and place it atr = 0 in the noncompact spaceM4,1. The
geometry usually written down for this configuration (which we shall call the ‘naive geometry’) is

ds2
naive= 1√

(1+ Q1/r2)(1+ Q5/r2)

[−dt2 + dy2] +
√(

1+ Q1

r2

)(
1+ Q5

r2

)
dxi dxi +

√
1+ Q1/r2

1+ Q5/r2
dza dza. (2)

This geometry is flat space at larger , locally AdS3 × S3 × T 4 in the ‘throat’ and ends in a singularity (due to an accumula
point of identificationsy ∼ y + 2πR) at r = 0. The horizon coincides with the singularity, and has zero area. We sketc
geometry schematically in Fig. 2(a).
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Fig. 2. (a) The naive geometry of extremal D1–D5; (b) the actual geometries; the dashed line gives a ‘horizon’ whose area gives the

As mentioned above, it is known that the 2-charge D1–D5 bound state has degeneracy e2π
√

2
√

n1n5, and we might wonde
what we have to do to see the differences between these states in the gravity description. Classically we can get m
gravity solutions by breaking the D1–D5 bound state into two or more pieces which we can then separate. But we are
in describing thebound states of the D1, D5 branes, since it is these bound states which have the stated degeneracy a
give the analogue of ‘one black hole’ rather then ‘many holes’.

While it is not easy to see in the D1–D5 language which geometries describe bound states, we can solve the pr
performing a set of dualities

D1 D5(IIB) → S → NS1 NS5(IIB)→ T5 → P NS5(IIA)→ T6 → P NS5(IIB)

→ S → P D5(IIB)→ T6789→ P D1(IIB)→ S → P NS1(IIB). (3)

This gives the fundamental string (NS1) wrappedn5 times onS1, carryingn1 units of momentum (P) alongS1. A bound state
of these charges needs to have all strands of the NS1 string joined up into one ‘multiwound’ string, and all the momen
be carried as traveling waves on this string.

We now come to a crucial step: the fundamental string has no longitudinal vibration modes, so all the momentum
carried by transverse oscillations. Thus the string must bend away from its central axis atr = 0, and this transverse bendin
will increase with the amount of momentum the string carries. It is convenient to go to a covering space where we
the n5 windings of the string and get just a single strand, identified after a distance�y = 2πRn5. The vibration profile is
given by a transverse displacementF(v), wherev = t − y. For the moment consider the vibrations whereF lies in the four
noncompact directions.1 In the physical space we find that then5 strands of the string spread themselves over a certain re
of the transverseR4. The metric of a single strand carrying momentum is known, and the metric of multiple stands
obtained by superposing the harmonic functions appearing in the metric of each strand. In the classical limit the nu
strands goes to infinity, so we take them to form a continuous ‘ribbon’. Finally, we reverse the dualities (3) to go fr
P–NS1 geometry to the D1–D5 geometry. We find [3]

ds2 =
√

H

1+ K

[−(dt − Ai dxi)2 + (dy + Bi dxi)2
] +

√
1+ K

H
dxi dxi + √

H(1+ K)dza dza, (4)

H−1 = 1+ Q

L

L∫
0

dv

|x − F(v)|2 , K = Q

L

L∫
0

dv(Ḟ (v))2

|x − F(v)|2 , Ai = −Q

L

L∫
0

dvḞi(v)

|x − F(v)|2 . (5)

HereL = 2πn5R is the total length of the NS1 string, and dB = −∗4 dA (∗4 is the duality operation in the 4-d transverse sp
x1 · · ·x4 using the flat metric dxi dxi ). The dualities only involve the compact directions, and thus the transverse spread
NS1–P state implies a corresponding transverse spread of the D1–D5 bound state. The naive geometry (2) has bee
into a family of different geometries labeled by the functionF(v). One may be concerned about a singularity at the points w
x = F(v), but it was shown in [4] that the singularity here is just a coordinate one, similar to that at the center of a Kaluz
monopole. Each individual geometry (determined by a choice ofF(v)) has no singularity and no horizon; it is flat space
infinity, it is approximately locallyAd S3 × S3 × T 4 in the ‘throat’, then there is a smooth ‘cap’, with the shape of the
depending onF(v). We sketch this schematically in Fig. 2(b).

1 In [4] the computations were extended to cover the case of vibrations in theT 4 directions as well.
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Classically we have a continuous family of geometries, but semiclassical quantization of this moduli space should
finite set of BPS states. The simplest way to count states is to look at the weak coupling description of states of the N
carrying momentum. The total length of the string isLT = 2πRn5, and the momentum is

P = n1

R
= 2πn1n5

LT
. (6)

The left movers are thus excited to a levelN = n1n5, and we get a large degeneracy from the number of ways the mome
can be partitioned among harmonics. Noting that there are 8 transverse directions of oscillation, and 8 corresponding
we haveceff = 8+ 4= 12, and we get

#states ∼ e2π
√

ceffN/6 = e2π
√

2
√

n1n5. (7)

2.1. The ‘horizon’

Let us draw a surface in the throat where the typical geometries start to deviate from each other by order unity (F
We find that the areaA of this surface satisfies [5]

A

4G
∼ √

n1n5 ∼ S (8)

so we get a Bekenstein type relation for the size of the generic state.
It retrospect it is appealing that individual geometries do not have horizons, since if they did, we would have to asso

entropy with that horizon, and this makes no sense since we are discussing a given microstate. The bounding surfa
have drawn as a ‘horizon’ does a kind of ‘coarse-graining’; it keeps the part of the geometry where all microstates a
cuts off the region where the microstates differ. Thus the area entropy (8) arises upon coarse-graining, which is in line
we get entropy in all other physical systems.

It is worth noting that the bounding surface which we have drawn acts like a ‘horizon’ in the sense that if a quantu
past this surface in the typical geometry then due to the complexity of the ‘cap’ created by a genericF(v) it stays trapped for a
time �t ∼ (radius ofS3) × √

S (S ∼ √
n1n5 is the entropy) [5]. In the classical limit of large charges this time diverges w

measured in units of the radius of theS3 so the quantum does not return on the classical time scale.
Note that the dilaton in the D1–D5 geometries is given by e2Φ = H(1+K) and so is bounded above and below everywh

Thus Planck lengthlp and string lengthls are of the same order. By contrast, the radius of the ‘fuzzball’ created by the spre
of the D1–D5 geometry is

rD1–D5 ∼
(

g2α′4
V R

)1/3
(n1n5)1/6 � lp, ls . (9)

This illustrates the basic idea we are seeking—bound states spread over a radius much bigger than the naively expe
lp, ls in the problem, and the size of the bound state reflects its entropy through a Bekenstein type relation like (8).

3. The D1–D5 CFT

To have a better idea of the geometries that we have constructed, we identify the corresponding states in the dual
low energy dynamics of a large number of D1, D5 branes is conjectured to be given by a(1+ 1)-dimensional CFT which arise
as a sigma model with target space(T 4)N/SN —the symmetric product ofN = n1n5 copies ofT 4. Each copy ofT 4 gives a
c = 6 CFT with 4 free bosonsXi , 4 free fermions left moving fermions and 4 free right moving fermions. The orbifolding g
rise to twist sectors, created by twist operatorsσn which link togethern copies of thec = 6 CFT (living on circles of length
2πR) to give ac = 6 CFT living on a circle of length 2πnR. We call each such set of linked copies a ‘component string’.

Our CFT on the D1–D5 branes is in the Ramond sector, since the periodicity of fermions on the branes is induc
the periodicity of supergravity fermions in the bulk and the fermions in the bulk are periodic around the compact circ
each component string we have 4 left and 4 right fermion zero modes, which give 8 bosonic and 8 fermionic ground s
the component string. The number of ways to partitionn1n5 copies of the CFT into component strings, together with this z
mode degeneracy, reproduces the count (7) of states in the D1–D5 language.

By looking at the Poincare polynomials one can establish a direct link between the NS1–P and D1–D5 states. C

state of the NS1 string carrying left oscillatorsα
i1−n1

· · ·αik−nk
. In the D1–D5 CFT this maps to a Ramond ground state w

component strings of lengthsn1, . . . , nk . The polarizationsi1, . . . , in give the fermion zero modes on the component strin
Using this map we can find the D1–D5 geometry that we want to associate (in the classical limit) with a Ramond grou
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of the D1–D5 CFT. From the twist ordersnm and polarizationsim we find the oscillator excitations of the NS1 string in t
NS1–P dual. These oscillators give, in the classical limit, a profile functionF(v). But for a givenF(v) we know the NS1–P
geometry, and by duality the D1–D5 geometry (5).

3.1. Comparing the CFT and gravity pictures

Consider the following special subset of states. TakeF(v) of the form

F(v) = a
[
sin(kv)x̂1 + cos(kv)x̂2

]
(10)

so that the NS1 string makes a uniform helix ofk turns when opened up to the covering space. The corresponding CFT
turns out be to be∣∣�−−(k,0)

〉 = [
(σ−−

k
)N/k |0〉]

NS→R
. (11)

Here the superscripts(−−) on σk indicate the fermion zero modes,|0〉 is the NS vacuum of the CFT andNS → R indicates
that after constructing the state in the NS sector we spectral flow to the R sector.

In the CFT the twist operatorsσk create effective string components with length 2πRk. The excitation levels of suc
components come in units of

�E = 1

Rk
+ 1

Rk
= 2

Rk
. (12)

(We have one left and one right mover so that the change in momentum is zero.)
Turning to the gravity description of the same states, we find that the depth of the throat depends onk—geometries dua

to states with largerk have deeper throats. The energy levels for excitations in the throat can be computed by solv
corresponding supergravity wave equation for small perturbations, and the result (12) is exactly reproduced [6] by th
duals. The same comparison can also be recast in terms of the time taken for left and right movers to travel around the c
string of the CFT; in the gravity description this maps to the time taken for a quantum to travel down the throat and
[3]. In the latter description the backreaction of the quantum on the geometry was also checked and found to be sm
generic state, so we can indeed distinguish between different microstates in the gravity description by performing s
experiments.

4. The 3-charge system

If we take the D1–D5 system above and addnp units of momentum alongS1 then we get the D1–D5–P system. T
microscopic entropy isSmicro = 2π

√
n1n5np . The naive geometry this time is flat space at infinity and a locallyAd S3×S3×T 4

‘throat’, but this time there is a horizon atr = 0, and if we continue the geometry past this horizon we find the singul
expected of an extremal Reissner–Nordstrom hole. The Bekenstein entropy computed from the area of the horizon a
the microscopic entropy exactly [8].

However, one may wonder if the 3-charge microstate ‘swells up’ in a manner similar to (9), in which case the naive g
inside the horizon would be inaccurate and we might get ‘caps’ to the throat region as in Fig. 2(b). In the 3-charge
diameter of the throat stabilizes to a constant as we go down towardsr = 0, so if we draw a boundary where the ‘caps’ begin
differ (Fig. 2(b)) then we will get the same areaA from this boundary as we get from the horizon of the naive geometry. S
the 3-charge case all we need to check is that the geometries get ‘capped’; if they do, the boundary area of the ‘fuzz
satisfy the desired Bekenstein type relation anyway.

It was argued in [16] that the 3-charge state does indeed swell up to a size of order the horizon radius, and this
(which we discuss in more detail below) spurred us to start with the simpler 2-charge system and look carefully at the ge
corresponding to microstates. We cannot as yet construct all the 3-charge geometries, but we have constructed some
axisymmetric ones and identified the corresponding microstates, and these geometries turn out to look like Fig. 2(b) ra
Fig. 2(a). In the CFT description we get a D1–D5–P microstate by adding left moving excitations to a D1–D5 ground s
an example, for the states(∏

[J−
−2n

· · ·J−
−4/k

J−
−2/k

]
)∣∣�−−(k,0)

〉
(13)

(the product runs over theN/k connected components of the CFT created by the twists) we find the geometry [10]
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ds2 = − 1

h
(dt2 − dy2) + Qp

hf
(dt − dy)2 + hf

(
dr2

r2 + (γ̃1 + γ̃2)2η
+ dθ2

)
+ h

(
r2 + γ̃1(γ̃1 + γ̃2)η − Q1Q5(γ̃ 2

1 − γ̃ 2
2 )η cos2 θ

h2f 2

)
cos2 θ dψ2

+ h

(
r2 + γ̃2 (γ̃1 + γ̃2)η + Q1Q5(γ̃ 2

1 − γ̃ 2
2 )η sin2 θ

h2f 2

)
sin2 θ dφ2 + Qp(γ̃1 + γ̃2)2 η2

hf
(cos2 θ dψ + sin2 θ dφ)2

− 2
√

Q1Q5

hf
(γ̃1 cos2 θ dψ + γ̃2 sin2 θ dφ)(dt − dy)

− 2
√

Q1Q5(γ̃1 + γ̃2)η

hf
(cos2 θ dψ + sin2 θ dφ)dy +

√
H1

H5
dza dza (14)

where

η = Q1Q5

Q1Q5 + Q1Qp + Q5Qp
,

f = r2 + (γ̃1 + γ̃2)η(γ̃1 sin2 θ + γ̃2 cos2 θ),

H1 = 1+ Q1

f
, H5 = 1+ Q5

f
, h = √

H1H5, (15)

γ̃1 = −
√

Q1Q5

R
n, γ̃2 =

√
Q1Q5

R

(
n + 1

k

)
, Qp = Q1Q5

R2
n

(
n + 1

k

)
. (16)

It was shown in [9,10] that this geometry has no horizon or closed timelike curves, and the only possible singular
orbifold singularities which can be understood as arising as a limiting case of a family of smooth manifolds. (Similar
defects arise in the 2-charge D1–D5 family of geometries [11,12].)

5. Fractionation

We have argued for a change in the conventional picture of the black hole not just within Planck distance of the sin
but in the entire interior of the classical sized horizon. How can quantum gravity effects act across such large distan
key notion appears to be ‘fractionation’, which we now discuss.

Consider a string wrapped on a circle of lengthL. The lowest excitation of this string (with no net momentum char
is given by one left mover and one right mover, with total energy�E = 2π/L + 2π/L = 4π/L. Now consider the boun
state ofN such strings, which is just one ‘multiwound string’ of lengthLT = NL. The excitations now come in units o
�E = 2π/LT , with the constraint that the total momentum be of the formP = 2πm/L. The lowest excitation is now�E =
2π/LT + 2π/LT = 4π/(NL). We see that if we make a bound state of a large numberN of strings then excitations are ve
light, due to a ‘fractionation’ by a factorN [7].

This is of course a very simple effect, not peculiar to string theory. It becomes important though when we note that
in string theory map momentum modes into branes, and thus we get very light branes of fractional tension. Such b
stretch far, and can give effects at macroscopic length scales, as we now argue.

Let us recall the ‘correspondence principle’ proposed by Horowitz and Polchinski [13]. Start with an excited string
coupling, and increaseg till it just makes a black hole. At this critical valuegc it is found that the entropy of the string sta
matches the Bekenstein entropy of the hole, suggesting a continuous transition between string states and black holes

However, a closer look reveals that while the entropy may appear continuous, the dynamical degrees of freedom
radically at the string/black hole transition. To see this note that we can apply the correspondence principle also to
where the string has winding and momentum charges, so we might as well adapt it to the case we have been discusM9,1
compactified onS1 × T 4 and the NS1 string wrapped with windingn1 and momentumnp alongS1.

One may think that the lowest excitation for this string is given by a fractional P–	P pair (momentum modes running up a
down the string) with threshold

�E = 4π

n1L
. (17)

However, recall that in the low energy model of the 3-charge hole we start with D1 and D5 branes, and the excitat
given by fractional P–	P pairs with threshold�E = 4π/(n n L) [14,15]. The charges D1–D5–P permute under dualities,
1 5
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we started with D1–P then the excitations should come as fractional D5–	D5 pairs, or by an S duality, if we start with NS1–
then the excitations should come as fractional NS5–NS5 pairs, with threshold

�E = 2

n1nw

V L

2πg2α′3 . (18)

Is the correct threshold (17) or (18)? For very smallg (18) is very large, and it is entropically unfavorable to excite the he
NS5 brane pairs. But for somewhat largerg the ‘double fractionation’ in (18) will win over the ‘single fractionation’ in (17).
turns out that the crossover to (18) happens wheng ∼ gc , the value at the correspondence point! [16]. Thus we see that
studying black holes we will encounter fractional brane excitations, something that we might not have intuitively con
when considering quantum effects.2

Let us apply this lesson to estimate the ‘size’ of the D1–D5–P extremal bound state. Let us bring a test quantum to a
d from the bound state. Do we expect that fractional brane–antibrane pairs will reach out to distanced and absorb the quantum
We have taken an extremal bound state, so the only energy we have to make pairs is from the quantum itself, which
∼ 1/d . This is very small for macroscopicd , but we expect fractionation to help us. We do not really know how to pic
branes stretching out to absorb the quantum, so what we do instead is to put the bound state on a transverse circl
d and ask if brane–antibrane pairs can wrap around this circle using the energy 1/d . With this extra circlẽS1 compactified
(in addition toS1 × T 4) we have the compactification needed to make a black hole in 3+ 1 noncompact dimensions, and w
know that this time there are four kinds of charges involved: D1–D5–P as before and in addition KK monopoles whi
S̃1 as the nontrivially fibred circle [17]. If we start with the charges D1–D5–KK then the excitations are P–	P pairs with energy
threshold 4π/(n1n5nKL). Dualities permute the four charges, so if we have D1–D5–P charges (as we do in our proble
the excitations are given by fractional KK–KK pairs with threshold

�E = 2

n1n5nk

RV d2

g2(2π)2α′4 . (19)

Let us also require that converting the available energy 1/d into these pairs increases the entropy by at least�S = 1. Thus there
is e times more phase space if we make these pairs as compared to the case where we do not. With all this we ha
that stretch far enough to overlap with the test quantum (which makes a transition from test quantum to brane–antibr
possible), and also phase space volumes which make the transitionlikely. A short computation shows that the criticald where
�S = 1 is

d ∼
(

g2α′4
V R

)1/3
(n1n5np)1/6 ∼ RS (20)

whereRS is the horizon radius of the D1–D5–P hole! Note that the entropy is a power ofN = n1n5np , and so the horizon
radius is a power ofN too, but fractionation involves powers of this sameN , and generates correspondingly long objects wh
can invalidate naive expectations about the range of quantum effects [16].

6. Non-BPS holes

It was shown in [18] that if we take black holes in 4+ 1 dimensions with any value of massM and chargesn1, n5, np then
the Bekenstein entropy of the hole isexactly reproduced if we take a collection of branes and antibranes that reproduce th
mass and charges and optimises the following direct extension of the extremal expression for the entropy

S = 2π
(√

n1 + √
n̄1

)(√
n5 + √

n̄5
)(√

np +
√

n̄p

)
. (21)

But if we can understand neutral holes in terms of branes and antibranes this way, then our above crude estimates fo
of the brane bound state extend to neutral holes as well, and we conclude that the inside of a Schwarzschild hole is
fractional brane–antibrane pairs.

A natural question to ask is: what do we see if we fall into a black hole? We have looked at states of the black h
not at dynamics, so we cannot directly address this question with what we know. But note that there are two very
time scales associated to the hole: the crossing time for light across the diameter of the hole, and the much longer
evaporation time. A collapsing shell may well seem to have made a conventional hole when it passes through its ho
shrinks towardsr = 0, but this is a very special initial condition with low entropy, and interaction over a longer time may

2 The fact that in the black hole phase we have the excitations (18) rather than (17) also resolves some contradictions encountered
of greybody factors; investigation of these contradictions led to the arguments quoted above [16].



250 S.D. Mathur / C. R. Physique 6 (2005) 243–250

ry are
rbid such

situation
rrelations

ological
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needed to
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it to ‘swell up’ into the generic state which is a horizon sized ‘fuzzball’. Inside the fuzzball all the modes of string theo
excited, not just the graviton, so classical spacetime ceases to hold and we cannot say that classical light cones will fo
a ‘swelling up’.

If we have such large distance quantum effects in black holes, then perhaps we can have similar effects in any
where we have a large number of quanta close together, as in the early Universe. If we get macroscopic distance co
from such effects then we might be able to bypass the horizon problem without requiring inflation. Also the cosm
constantΛ receives contributions from the zero modes of all quantum fields, but if high energy modes are domin
large sized fractional brane–antibranes pairs then we might need to revisit our understanding of the regularizations
understandΛ.

Acknowledgements

Much of the work described here is in collaboration with S. Giusto, O. Lunin, A. Saxena and Y. Srivastava. I have b
from numerous discussions with other people working on black holes. This work was supported in part by DOE gr
FG02-91ER-40690.

References

[1] J.D. Bekenstein, Phys. Rev. D 7 (1973) 2333.
[2] S.W. Hawking, Commun. Math. Phys. 43 (1975) 199.
[3] O. Lunin, S.D. Mathur, Nucl. Phys. B 623 (2002) 342, hep-th/0109154.
[4] O. Lunin, J. Maldacena, L. Maoz, hep-th/0212210.
[5] O. Lunin, S.D. Mathur, Phys. Rev. Lett. 88 (2002) 211303, hep-th/0202072.
[6] O. Lunin, S.D. Mathur, Nucl. Phys. B 642 (2002) 91, hep-th/0206107.
[7] S.R. Das, S.D. Mathur, Phys. Lett. B 375 (1996) 103, hep-th/9601152.
[8] A. Strominger, C. Vafa, Phys. Lett. B 379 (1996) 99, hep-th/9601029.
[9] S. Giusto, S.D. Mathur, A. Saxena, hep-th/0405017.

[10] S. Giusto, S.D. Mathur, A. Saxena, hep-th/0406103.
[11] V. Balasubramanian, J. de Boer, E. Keski-Vakkuri, S.F. Ross, Phys. Rev. D 64 (2001) 064011, hep-th/0011217.
[12] J.M. Maldacena, L. Maoz, hep-th/0012025.
[13] G.T. Horowitz, J. Polchinski, Phys. Rev. D 55 (1997) 6189, hep-th/9612146;

G.T. Horowitz, J. Polchinski, Phys. Rev. D 57 (1998) 2557, hep-th/9707170.
[14] J.M. Maldacena, L. Susskind, Nucl. Phys. B 475 (1996) 679, hep-th/9604042.
[15] J.M. Maldacena, A. Strominger, Phys. Rev. D 55 (1997) 861, hep-th/9609026.
[16] S.D. Mathur, Nucl. Phys. B 529 (1998) 295, hep-th/9706151.
[17] C.V. Johnson, R.R. Khuri, R.C. Myers, Phys. Lett. B 378 (1996) 78, hep-th/9603061.
[18] G.T. Horowitz, J.M. Maldacena, A. Strominger, Phys. Lett. B 383 (1996) 151, hep-th/9603109.


