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Abstract

In the conventional picture of a black hole we cannot see the states which account for its entropy, and Hawking radiation is
unable to carry out the information of the state of the hole. We outline some computations in string theory which suggest that
bound states expand to a size determined by their degeneracy. Thus the state information of a black hole would be distributed
throughout the interior of the horizon, and Hawking radiation can ‘read’ this information. No individual microstate has a
horizon, rather the horizon arises upon coarse graining as a boundary of the region where the microstafies diliéféinis
article: S.D. Mathur, C. R. Physique 6 (2005).
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Résumé

Qui a-t-il dansun trou noir ? Dans la représentation conventionnelle d’un trou noir il est impossible de voir les états qui
compose son entropie, et la radiatio d’Hawking est incapable de transporter en dehors du trou noir de I'information sur I'état du
trou noir. Nous décrivons des calculs en théorie des cordes qui suggerent les états liés grandissent jugu’a une taille déterminée
par leur dégénérescence. Ainsi I'information a propos d’un trou noir serait distribuée a I'intérieur de I'horizon, et la radiation
d’Hawking peut «lire » cette information. Aucun état individuel n’a pas d’horizon ; mais I'horizon apparait aprés moyennisation
comme la région ou les états microscopiques diffef@mr citer cet article: S.D. Mathur, C. R. Physique 6 (2005).

0 2005 Published by Elsevier SAS on behalf of Académie des sciences.
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1. Introduction

Quantum mechanics in the presence of black holes generates some sharp paradoxes. Gedanken experiments indicate that v
must associate an entropy

A
SBek= — 1
Bek 4G (1)

with the hole to save the second law of thermodynamics [1]. Statistical mechanics then indicates that the hole mtBskhave e
microstates. However, the geometry of the hole appears to be determined by its mass, charges and angular momenta; i.e., ‘blacl
holes have no hair'. Where should we look for the differences between the microstates?
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Fig. 1. (a) The conventional picture of a black hole; (b) the proposed picture—state information is distributed throughout the ‘fuzzball’.

Closely related is the ‘information puzzle’. Particle—antiparticle pairs are continuously created and annihilated in the vacuum,
but in the presence of the tidal forces at the horizon one member of this pair can fall in (lowering the mass of the hole) while the
other escapes to infinity as Hawking radiation. But this radiation carries no information about the matter that initially made the
hole, so when the hole evaporates away into radiation we find ‘information loss’, a violation of the basic unitarity of quantum
mechanics [2].

The above two problems are closely connected. If we burn a piece of coal and get radiation we do not lose information
because the radiation emerges from a region where it can see the state of the coal. By contrast, Hawking radiation appears tc
emerge from the horizon while the matter making the hole appears to sit at the singutaityThe distance between horizon
and singularity is macroscopic, and we need to understand how information can be transported across this large distance.

In this article we discuss some computations in string theory which suggest that the picture of the black hole interior might
be radically different from the conventional picture given in Fig. 1(a). In the proposed picture (Fig. 1(b)) the state information
is distributed throughout the interior of the horizon; different configurations of this ‘fuzzball’ give different states of the hole.

No individual state has a horizon; rather the horizon is a boundary of the region where the states differ significantly from each
other. There is no special point to play the role of a central singularity.

We first look at the simplest system that has entropy—the 2-charge extremal D1-D5 system. The microscopic entropy of
the D1-D5 bound state ier/Z/;Tns. We find that the geometries dual to these states behave like Fig. 1(b), and the area of
the bounding surface where the geometries start to differ satisfiess) ~ ,/n1ns. We then move to the 3-charge extremal
D1-D5-P system where we have constructed geometries dual to a small subset of the microstates; these geometries also agre
with Fig. 1(b) rather than Fig. 1(a).

Why are we getting a change in our picture of the black hole in a region where semiclassical physics appeared to be valid,
and suggested ‘empty space’ as the local description? It is normally assumed that quantum gravity effects must be confined
to within a length scale like the Planck lengthor string length/;. But in making a large black hole we are dealing with a
large numbenV of quanta, and what we seem to find is that quantum effects extend to a dista¥i€é,, where the power
o is such that the size of the resulting object satisfies a Bekenstein type relgtids) ~ S (e° is the degeneracy of the
gquantum state). The key notion seems to be ‘fractionation’: when we bind together a large Moftgranta in string theory
then the excitations of the resulting state come in fractional unid; thus they are very light for large black holes. A very
rough estimate shows that because of this fractionation the ‘size’ of a 3-charge bound state is of the same order as the naive
horizon radius, and this makes it possible for the entire interior of the horizon to be filled with ‘quantum fuzz’ of fractional
brane excitations.

We end with some comments on non-NPS holes, and the implications of this picture for other problems in physics.

2. The 2-charge system

Consider type 1B string theory, compactified s 1 x S x T4. The radius ofs® is R and the volume of % is (27)4V .
We use coordinates=x0, x1, ..., x* to describeMy, 1, y = x® for ST andx®. .. x® = z; - - z4 for T*. Wrapny D1 branes on

st andns D5 branes o5l x T4, Make a bound state of these branes, and place ital in the noncompact spadé, 1. The
geometry usually written down for this configuration (which we shall call the ‘naive geometry’) is

1 01 05 14 Qy/r?
ds2. = —di? 4 dy? +\/<l+—)<l+—>dxidxi+‘/—dgda. 2
e e oudar ol ¢ Y r2 r2 1+ gg2 0 @

This geometry is flat space at largglocally A dS3 x $3 x T4 in the ‘throat’ and ends in a singularity (due to an accumulation
point of identificationsy ~ y + 2z R) atr = 0. The horizon coincides with the singularity, and has zero area. We sketch this
geometry schematically in Fig. 2(a).
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Fig. 2. (a) The naive geometry of extremal D1-D5; (b) the actual geometries; the dashed line gives a ‘horizon’ whose area gives the entropy.

As mentioned above, it is known that the 2-charge D1-D5 bound state has degeﬁéW, and we might wonder
what we have to do to see the differences between these states in the gravity description. Classically we can get many super-
gravity solutions by breaking the D1-D5 bound state into two or more pieces which we can then separate. But we are interested
in describing thébound states of the D1, D5 branes, since it is these bound states which have the stated degeneracy and which
give the analogue of ‘one black hole’ rather then ‘many holes’.

While it is not easy to see in the D1-D5 language which geometries describe bound states, we can solve the problem by
performing a set of dualities

D1 D5(IIB) — S — NS1 NS5(IB)— T — P NS5(IIA)— Tg — P NS5(IIB)
— S — P D5(IIB) — Tg7g9— P D1(IIB) — S — P NS1(IIB). ®3)

This gives the fundamental string (NS1) wrappedimes ons?, carryingnq units of momentum (P) alon§!. A bound state
of these charges needs to have all strands of the NS1 string joined up into one ‘multiwound’ string, and all the momentum must
be carried as traveling waves on this string.

We now come to a crucial step: the fundamental string has no longitudinal vibration modes, so all the momentum must be
carried by transverse oscillations. Thus the string must bend away from its central axisGatand this transverse bending
will increase with the amount of momentum the string carries. It is convenient to go to a covering space where we open up
the ng windings of the string and get just a single strand, identified after a distamce 27 Rns. The vibration profile is
given by a transverse displaceméiiv), wherev = — y. For the moment consider the vibrations wheérées in the four
noncompact directionsIn the physical space we find that the strands of the string spread themselves over a certain region
of the transvers&4. The metric of a single strand carrying momentum is known, and the metric of multiple stands can be
obtained by superposing the harmonic functions appearing in the metric of each strand. In the classical limit the number of
strands goes to infinity, so we take them to form a continuous ‘ribbon’. Finally, we reverse the dualities (3) to go from this
P-NS1 geometry to the D1-D5 geometry. We find [3]

ds2= ]_—{—LK[ (d[—Ai dxi)2—|—(dy—|—Bi dxi)2]+ HTKC[X[ d-xi+\/ H(1+ K)dZadZa, (4)
L L 2 .
Y / Y / do(F)? Q dvF; (v) )
I J F(v)|2’ L) ~Fw)12" ' X — F(v)[2’

HereL = 2wngR is the total length of the NS1 string, an@ & —x4dA (x4 is the duality operation in the 4-d transverse space

x1 - - - x4 using the flat metric g dx;). The dualities only involve the compact directions, and thus the transverse spread of the
NS1-P state implies a corresponding transverse spread of the D1-D5 bound state. The naive geometry (2) has been resolve
into a family of different geometries labeled by the functi@). One may be concerned about a singularity at the points where

x = F(v), but it was shown in [4] that the singularity here is just a coordinate one, similar to that at the center of a Kaluza—Klein
monopole. Each individual geometry (determined by a choicE(o§) has no singularity and no horizon; it is flat space at
infinity, it is approximately locallyAd S3 x S3 x T4 in the ‘throat’, then there is a smooth ‘cap’, with the shape of the cap
depending orfF(v). We sketch this schematically in Fig. 2(b).

1n [4] the computations were extended to cover the case of vibrations inthirections as well.
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Classically we have a continuous family of geometries, but semiclassical quantization of this moduli space should give us a
finite set of BPS states. The simplest way to count states is to look at the weak coupling description of states of the NS1 string
carrying momentum. The total length of the strind.is = 27 Rng, and the momentum is

2r
p="1_2M"s (6)
R Lt
The left movers are thus excited to a levek n1ns5, and we get a large degeneracy from the number of ways the momentum
can be partitioned among harmonics. Noting that there are 8 transverse directions of oscillation, and 8 corresponding fermions,
we havecesf =8+ 4= 12, and we get

Hstates ~ eXTVCeliN/6 _ 21V/2 /s -

2.1. The ‘horizon’

Let us draw a surface in the throat where the typical geometries start to deviate from each other by order unity (Fig. 2(b)).
We find that the ared of this surface satisfies [5]

A
G~ Vs~ S ®

so we get a Bekenstein type relation for the size of the generic state.

It retrospect it is appealing that individual geometries do not have horizons, since if they did, we would have to associate an
entropy with that horizon, and this makes no sense since we are discussing a given microstate. The bounding surface that we
have drawn as a ‘horizon’ does a kind of ‘coarse-graining’; it keeps the part of the geometry where all microstates agree and
cuts off the region where the microstates differ. Thus the area entropy (8) arises upon coarse-graining, which is in line with how
we get entropy in all other physical systems.

It is worth noting that the bounding surface which we have drawn acts like a ‘horizon’ in the sense that if a quantum goes
past this surface in the typical geometry then due to the complexity of the ‘cap’ created by a §€ngiictays trapped for a
time Ar ~ (radius ofS3) x /S (S ~ J/11ns is the entropy) [5]. In the classical limit of large charges this time diverges when
measured in units of the radius of t§8 so the guantum does not return on the classical time scale.

Note that the dilaton in the D1-D5 geometries is given ¥ e H(1+ K) and so is bounded above and below everywhere.
Thus Planck length, and string lengtli; are of the same order. By contrast, the radius of the ‘fuzzball’ created by the spreading
of the D1-D5 geometry is

20{’4
VR

1/3
rD1-D5 ~ ( ) (n1n5)Y® > 1. 1. 9)
This illustrates the basic idea we are seeking—bound states spread over a radius much bigger than the naively expected scale
Ip,ls in the problem, and the size of the bound state reflects its entropy through a Bekenstein type relation like (8).

3. TheD1-D5CFT

To have a better idea of the geometries that we have constructed, we identify the corresponding states in the dual CFT. The
low energy dynamics of a large number of D1, D5 branes is conjectured to be giveid byla-dimensional CFT which arises
as a sigma model with target spa(dé4)N/SN—the symmetric product oV = nqng copies ofr'4. Each copy ofr4 gives a
¢ =6 CFT with 4 free bosonX;, 4 free fermions left moving fermions and 4 free right moving fermions. The orbifolding gives
rise to twist sectors, created by twist operat@yswhich link togethem copies of thee = 6 CFT (living on circles of length
27 R) to give ac = 6 CFT living on a circle of length2n R. We call each such set of linked copies a ‘component string’.

Our CFT on the D1-D5 branes is in the Ramond sector, since the periodicity of fermions on the branes is induced from
the periodicity of supergravity fermions in the bulk and the fermions in the bulk are periodic around the compact circles. On
each component string we have 4 left and 4 right fermion zero modes, which give 8 bosonic and 8 fermionic ground states for
the component string. The number of ways to partiti@ns copies of the CFT into component strings, together with this zero
mode degeneracy, reproduces the count (7) of states in the D1-D5 language.

By looking at the Poincare polynomials one can establish a direct link between the NS1-P and D1-D5 states. Consider a

state of the NS1 string carrying left oscillatmzé‘“n1 . ~ai_k,1k. In the D1-D5 CFT this maps to a Ramond ground state with

component strings of lengths,, ..., n;. The polarizationss, ..., i, give the fermion zero modes on the component strings.
Using this map we can find the D1-D5 geometry that we want to associate (in the classical limit) with a Ramond ground state



SD. Mathur / C. R. Physique 6 (2005) 243-250 247

of the D1-D5 CFT. From the twist ordens, and polarizations,, we find the oscillator excitations of the NS1 string in the
NS1-P dual. These oscillators give, in the classical limit, a profile fundti@n. But for a givenF(v) we know the NS1-P
geometry, and by duality the D1-D5 geometry (5).

3.1. Comparing the CFT and gravity pictures

Consider the following special subset of states. Takg of the form
F(v) = a[sin(kv)£1 + cogkv)iy] (10)

so that the NS1 string makes a uniform helixkofurns when opened up to the covering space. The corresponding CFT state
turns out be to be

W™k, 0) = [0, DM 0]y s - (11)

Here the superscripis-—) on o}, indicate the fermion zero modé$) is the NS vacuum of the CFT andS — R indicates
that after constructing the state in the NS sector we spectral flow to the R sector.

In the CFT the twist operators; create effective string components with length k. The excitation levels of such
components come in units of

1 N 1 2
" Rk Rk Rk’

(We have one left and one right mover so that the change in momentum is zero.)

Turning to the gravity description of the same states, we find that the depth of the throat depérdgemmetries dual
to states with largek have deeper throats. The energy levels for excitations in the throat can be computed by solving the
corresponding supergravity wave equation for small perturbations, and the result (12) is exactly reproduced [6] by the gravity
duals. The same comparison can also be recast in terms of the time taken for left and right movers to travel around the component
string of the CFT; in the gravity description this maps to the time taken for a quantum to travel down the throat and back up
[3]. In the latter description the backreaction of the quantum on the geometry was also checked and found to be small for the
generic state, so we can indeed distinguish between different microstates in the gravity description by performing scattering
experiments.

AE (12)

4, The 3-charge system

If we take the D1-D5 system above and agg units of momentum alongj1 then we get the D1-D5-P system. The
microscopic entropy iSmicro = 27 /A1757,. The naive geometry this time is flat space at infinity and a losdlys x §3x T4
‘throat’, but this time there is a horizon at= 0, and if we continue the geometry past this horizon we find the singularity
expected of an extremal Reissner—Nordstrom hole. The Bekenstein entropy computed from the area of the horizon agrees with
the microscopic entropy exactly [8].

However, one may wonder if the 3-charge microstate ‘swells up’ in a manner similar to (9), in which case the naive geometry
inside the horizon would be inaccurate and we might get ‘caps’ to the throat region as in Fig. 2(b). In the 3-charge case the
diameter of the throat stabilizes to a constant as we go down towatd} so if we draw a boundary where the ‘caps’ begin to
differ (Fig. 2(b)) then we will get the same ardarom this boundary as we get from the horizon of the naive geometry. So for
the 3-charge case all we need to check is that the geometries get ‘capped’; if they do, the boundary area of the ‘fuzzball’ will
satisfy the desired Bekenstein type relation anyway.

It was argued in [16] that the 3-charge state does indeed swell up to a size of order the horizon radius, and this estimate
(which we discuss in more detail below) spurred us to start with the simpler 2-charge system and look carefully at the geometries
corresponding to microstates. We cannot as yet construct all the 3-charge geometries, but we have constructed some families o
axisymmetric ones and identified the corresponding microstates, and these geometries turn out to look like Fig. 2(b) rather than
Fig. 2(a). In the CFT description we get a D1-D5-P microstate by adding left moving excitations to a D1-D5 ground state. As
an example, for the states

(T a0+ 2y o)) ¥~ k. 0)) (13)

(the product runs over th¥ / k connected components of the CFT created by the twists) we find the geometry [10]
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a2 = L2 - dy?) + Dp 4 - dy)? —I—hf(L + dez)
h hf r2+ 71+ 72)%n
~2 _ 52 529
+h(r2+)71(771+)72)77— Q1Q5(y1h2f)/22)7700 )COSZQdI//‘Z
~2 _ 52 'n29 ~ ~ N2 .2
N h(,z PP Q1Q5<V1h2fyzz>”5' >sm29d¢2+—Q”(”;72) L (co 0y + sirP 0 d)?
- 27\%%(?100529 dy + 72 Sin? 6 dg) (dr — dy)
_ 205 VI (02 4y, 4 sir?o dgydy + | 2L dzy deg (14
hf Hg
where
n= 0105
0105+ 010+ 050,
f=r2+ 1+ 70 sif 0 + 72 c080),
H1=1+%, H5=1+%, h=./H1Hs, (15)
y v . J010s 1 1
y1=— QI;LQS n, Y= Q}:QS (n—l— %> Q,, = Qllegsn(n—i- E) (16)

It was shown in [9,10] that this geometry has no horizon or closed timelike curves, and the only possible singularities are
orbifold singularities which can be understood as arising as a limiting case of a family of smooth manifolds. (Similar conical
defects arise in the 2-charge D1-D5 family of geometries [11,12].)

5. Fractionation

We have argued for a change in the conventional picture of the black hole not just within Planck distance of the singularity
but in the entire interior of the classical sized horizon. How can quantum gravity effects act across such large distances? The
key notion appears to be ‘fractionation’, which we now discuss.

Consider a string wrapped on a circle of lendthThe lowest excitation of this string (with no net momentum charge)
is given by one left mover and one right mover, with total enefgy = 2 /L + 27 /L = 4w /L. Now consider the bound
state of N such strings, which is just one ‘multiwound string’ of length- = NL. The excitations now come in units of
AE = 27 /L7, with the constraint that the total momentum be of the fdtre 27m /L. The lowest excitation is NnOWW E =
2n/Lt + 2 /Lt =4n/(NL). We see that if we make a bound state of a large numbef strings then excitations are very
light, due to a ‘fractionation’ by a facta¥ [7].

This is of course a very simple effect, not peculiar to string theory. It becomes important though when we note that dualities
in string theory map momentum modes into branes, and thus we get very light branes of fractional tension. Such branes can
stretch far, and can give effects at macroscopic length scales, as we now argue.

Let us recall the ‘correspondence principle’ proposed by Horowitz and Polchinski [13]. Start with an excited string at weak
coupling, and increasg till it just makes a black hole. At this critical valug: it is found that the entropy of the string state
matches the Bekenstein entropy of the hole, suggesting a continuous transition between string states and black holes.

However, a closer look reveals that while the entropy may appear continuous, the dynamical degrees of freedom change
radically at the string/black hole transition. To see this note that we can apply the correspondence principle also to the case
where the string has winding and momentum charges, so we might as well adapt it to the case we have been di$gyssing:
compactified ors1 x 7% and the NS1 string wrapped with winding and momentun ;, anngSl.

One may think that the lowest excitation for this string is given by a fractionRlg&ir (momentum modes running up and
down the string) with threshold

4
T omL’
However, recall that in the low energy model of the 3-charge hole we start with D1 and D5 branes, and the excitation were
given by fractional PR pairs with threshold\ E = 4rr/(n1nsL) [14,15]. The charges D1-D5-P permute under dualities, so if

AE (17)
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we started with D1-P then the excitations should come as fractiondD®pairs, or by an S duality, if we start with NS1-P
then the excitations should come as fractional N§S5 pairs, with threshold
AE = 2 VL (18)
niny 271g2a’3

Is the correct threshold (17) or (18)? For very snga(lL8) is very large, and it is entropically unfavorable to excite the heavy
NS5 brane pairs. But for somewhat largethe ‘double fractionation’ in (18) will win over the ‘single fractionation’ in (17). It
turns out that the crossover to (18) happens wheng., the value at the correspondence point! [16]. Thus we see that when
studying black holes we will encounter fractional brane excitations, something that we might not have intuitively considered
when considering quantum effeds.

Let us apply this lesson to estimate the ‘size’ of the D1-D5-P extremal bound state. Let us bring a test quantum to a distance
d from the bound state. Do we expect that fractional brane—antibrane pairs will reach out to dissawcabsorb the quantum?
We have taken an extremal bound state, so the only energy we have to make pairs is from the quantum itself, which is at least
~ 1/d. This is very small for macroscopi¢, but we expect fractionation to help us. We do not really know how to picture
branes stretching out to absorb the quantum, so what we do instead is to put the bound state on a transverse circle of lengtt
d and ask if brane—antibrane pairs can wrap around this circle using the energWith this extra circleSt compactified
(in addition tos1 x 74) we have the compactification needed to make a black holetii ioncompact dimensions, and we
know that this time there are four kinds of charges involved: D1-D5—P as before and in addition KK monopoles which have
51 as the nontrivially fibred circle [17]. If we start with the charges D1-D5—KK then the excitations Rrpd¥s with energy
threshold 4 /(n1ngn g L). Dualities permute the four charges, so if we have D1-D5—-P charges (as we do in our problem) then
the excitations are given by fractional KKK pairs with threshold

2 RVd?

AE = .
ninsng g2(2mw)%e 4

(19)

Let us also require that converting the available energyitto these pairs increases the entropy by at lasst 1. Thus there

is e times more phase space if we make these pairs as compared to the case where we do not. With all this we have branes
that stretch far enough to overlap with the test quantum (which makes a transition from test quantum to brane—antibrane pairs
possible), and also phase space volumes which make the transikigp. A short computation shows that the criticalvhere

AS=1is

2 74\ 1/3
d~ (gVO; > (nln5np)l/6~RS (20)
where Ry is the horizon radius of the D1-D5-P hole! Note that the entropy is a pow&r-=efninsn,, and so the horizon
radius is a power oN too, but fractionation involves powers of this saMeand generates correspondingly long objects which
can invalidate naive expectations about the range of quantum effects [16].

6. Non-BPS holes

It was shown in [18] that if we take black holes int4l dimensions with any value of maas and charges, ns, n, then
the Bekenstein entropy of the holegsactly reproduced if we take a collection of branes and antibranes that reproduce the total
mass and charges and optimises the following direct extension of the extremal expression for the entropy

S = 2m (n1 + /i1 ) (Va5 + /75 ) (Vip + /i) (21)

But if we can understand neutral holes in terms of branes and antibranes this way, then our above crude estimates for the ‘size’
of the brane bound state extend to neutral holes as well, and we conclude that the inside of a Schwarzschild hole is filled with
fractional brane—antibrane pairs.

A natural question to ask is: what do we see if we fall into a black hole? We have looked at states of the black hole, and
not at dynamics, so we cannot directly address this question with what we know. But note that there are two very different
time scales associated to the hole: the crossing time for light across the diameter of the hole, and the much longer Hawking
evaporation time. A collapsing shell may well seem to have made a conventional hole when it passes through its horizon and
shrinks towards = 0, but this is a very special initial condition with low entropy, and interaction over a longer time may cause

2 The fact that in the black hole phase we have the excitations (18) rather than (17) also resolves some contradictions encountered in the study
of greybody factors; investigation of these contradictions led to the arguments quoted above [16].
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it to ‘swell up’ into the generic state which is a horizon sized ‘fuzzball’. Inside the fuzzball all the modes of string theory are
excited, not just the graviton, so classical spacetime ceases to hold and we cannot say that classical light cones will forbid such
a ‘swelling up’.

If we have such large distance quantum effects in black holes, then perhaps we can have similar effects in any situation
where we have a large number of quanta close together, as in the early Universe. If we get macroscopic distance correlations
from such effects then we might be able to bypass the horizon problem without requiring inflation. Also the cosmological
constantA receives contributions from the zero modes of all quantum fields, but if high energy modes are dominated by
large sized fractional brane—antibranes pairs then we might need to revisit our understanding of the regularizations needed to
understandi.
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