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Abstract

We summarize recent progress in the understanding of minimal string theory, focusing on the worldsheet descr
physical operators and D-branes. We review how a geometric interpretation of minimal string theory emerges natur
the study of the D-branes. This simple geometric picture ties together many otherwise unrelated features of minim
theory, and it leads directly to a worldsheet derivation of the dual matrix model.To cite this article: N. Seiberg, D. Shih, C. R.
Physique 6 (2005).
 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Théorie des cordes minimales. Nous résummons les progrès récents dans la compréhension de la théorie minim
cordes, en se concentrant sur la description des opérateurs physiques et des D-branes. Nous passons en revue com
terprétation géomètrique de la théorie minimale des cordes émerge naturellement de l’étude des D-branes. Cette rep
géométrique simple associe plusieurs propriétés autrement indépendantes de la théorie minimale des cordes, et cond
ment à une dérivation à partir de la théorie de surface d’univers du modèle de matrice dual.Pour citer cet article : N. Seiberg,
D. Shih, C. R. Physique 6 (2005).
 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction

Minimal string theories are an important class of tractable, exactly solvable toy models. Despite their simplicity, t
interesting laboratories for the study of string theory, because they contain many of the desirable features of critic
theory, including D-branes, holography and open/closed duality. These general phenomena are realized concretely i
string theory through the well-known duality with largeN random matrix models. (For reviews and older references, see
[1,2].) This duality is special and particularly interesting because both dual theories—the perturbative minimal string
matrix model—are solvable.
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Recent progress in the study of Liouville theory [3–9] has spurred a renewed interest in the minimal string (see, e
19]), leading to new insights, some of which we will review here. We will summarize and highlight some new results wh
described in much more detail in [15,18]. We will use worldsheet techniques to derive the dual matrix model. Along th
simple geometrical picture will emerge, which will serve to unify many features of the minimal string.

For simplicity, we will focus on bosonic minimal string theories, which are labelled by two relatively prime integersp < q.
The worldsheet sigma model consists of two parts:(p, q) minimal CFT and Liouville theory.1 In the next two sections, w
will describe these two worldsheet CFTs in detail, and we will show how they are combined to form minimal string
Section 2 focuses on the closed minimal string and describes the spectrum of physical operators, while Section 3 dis
D-branes of minimal string theory. The main purpose of these two sections is to collect a diverse list of facts about
string theory. These facts are then tied together in Section 4, using an auxiliary Riemann surfaceMp,q that emerges from th
D-branes. In Section 5 we show how the same Riemann surface leads to a worldsheet derivation of the matrix mode
various conclusions are collected in Section 6.

2. Minimal string theory on the worldsheet

2.1. (p, q) minimal CFT

The first ingredient in the worldsheet recipe for minimal string theory is(p, q) minimal CFT (for a review, see, e.g., [20]
The minimal models are labelled by their central charge

c = 1− 6(p − q)2

pq
< 1. (1)

Unlike most CFTs, the minimal models have only a finite number of primary operators. We will denote these operatorsOr,s

with r = 1, . . . , p − 1, s = 1, . . . , q − 1, andOp−r,q−s =Or,s . Their conformal dimensions are given by

�(Or,s ) = (rq − sp)2 − (p − q)2

4pq
. (2)

The formula for the dimensions implies that every primary corresponds to a degenerate representation of the Virasor
That is, they all have null states among their Virasoro descendants. One can systematically exploit this fact to co
constrain the multiplication table of these operators. This results in a set offusion rules, which take the form

[Or1,s1] × [Or2,s2] =
p∑

r3=1

q∑
s3=1

N(r1,s1)(r2,s2)(r3,s3)[Or3,s3] (3)

where the fusion numbersN(r1,s1)(r2,s2)(r3,s3) are either zero or one. The notation[O] in (3) is meant to indicate the primar
operatorO and all its Virasoro descendants. In other words, the fusion rules tell us how to multiply two Virasoro represen
but they do not tell us the details of the actual operator product coefficients.

2.2. Liouville theory

The other ingredient in the worldsheet construction of minimal string theory is Liouville theory. We can think of th
theory of a scalar field in two dimensions with action

S = 1

4π

∫
d2z

(
(∂φ)2 − 4πµe2bφ

)
. (4)

The parameterb > 0 is called the Liouville coupling constant, whileµ is called the cosmological constant. We will assu
µ �= 0 throughout, and we will work in units whereµ = 1 for simplicity.

For conformal invariance, one also needs to include a ‘background charge’

Q = b + 1

b
(5)

1 One can also consider type 0 minimal string theory, whose worldsheet description consists of superminimal CFT coupled toN = 1 super-
Liouville theory. Although much more complicated on the worldsheet, these models turn out to be surprisingly similar to their bosonic
In particular, they have an analogous geometrical interpretation that leads to a derivation of the matrix model. A detailed analysi
models is given in [15].
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which results in an asymptotically linear dilaton background atφ → −∞. The presence of nonzeroQ has several effects. Firs
it shifts the central charge from the free field valuec = 1 to

c = 1+ 6Q2 � 25. (6)

Second, it changes the dimensions of primary operatorsVα = e2αφ from � = −α2 to

�(Vα) = −
(

Q

2
− α

)2
+ Q2

4
. (7)

Representation theory of the Virasoro algebra with central charge (6) tells us that the primary operators with

2αr,s = 1

b
(1− r) + b(1− s), r, s ∈ Z+, (8)

correspond to degenerate representations of Virasoro. As in the minimal models, these operators have special fusion r
lead to a complete solution of Liouville theory [3–5].

2.3. Minimal string theory

Now we can combine the two ingredients, together with the standard ghosts, to form minimal string theory. We will
the minimal CFT as the ‘matter sector’. Requiring the total central charge of matter plus Liouville to bec = 26 sets

b2 = p

q
. (9)

As we will see below, the fact thatb2 is rational leads to many simplifications in minimal string theory.
Physical operators in minimal string theory are built out of the operators of the Liouville, matter, and ghost sec

usual, BRST invariance requires physical operators to have dimension zero. However, in contrast with critical string t
minimal string theory there are BRST invariant physical operators at all ghost numbers [21]. This is a direct consequen
existence of degenerate operators in Liouville theory and the matter sector. The most important operators for our pur
those at ghost number zero and one. Let us now describe them in detail, starting with the operators at ghost number z

Clearly, by ghost number conservation, the ghost number zero operators form a ring under multiplication by the O
This ring is called theground ring, and its elements take the form

Ôr,s =Lr,s ·Or,se2αr,sφ, 1� r � p − 1, 1� s � q − 1, (10)

with αr,s given by (8) andLr,s a certain polynomial in ghosts and Virasoro generators. Note that the range ofr ands means
that there are exactlytwiceas many ground ring elements as primaries in the minimal model.

The multiplication of the ring elements is constrained by the fusion rules in the matter and Liouville CFTs. This all
to completely determine the ring relations, up to a few coefficients which are justified later. In terms of the ring genera

X ≡ 1

2
Ô2,1, Y ≡ 1

2
Ô1,2 (11)

(note thatÔ1,1 = 1) we find that

Ôr,s = Us−1(X)Ur−1(Y ) (12)

where theUs−1(X) are Chebyshev polynomials of the second kind,

Us−1(X = cosθ) = sinsθ

sinθ
. (13)

Since these polynomials are also theSU(2) characters, their products are theSU(2) fusion rules. In particular, the coefficien
in this multiplication table are either zero or one.

The formula (12) for the ring elements would obviously be incorrect if it were not supplemented by additional relat
the ring, since otherwise we would find infinitely many ring elements. Comparing with the range ofr ands in (10), we see tha
the correct ring relations to impose are

Uq−1(X) = Up−1(Y ) = 0. (14)

(With only X present, this is familiar from the representation ring of̂SU(2).) The ring relations (14) preserve the simplicity
the multiplication table, i.e.,all the coefficients are still just zero or one! In the traditional worldsheet analysis of the minim
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Having understood the ground ring and its structure in some detail, we can now apply our knowledge to the stud
operators at other ghost numbers. Ghost number conservation implies that the set of all operators at a given ghost nu
a module under the action of the ground ring. The simplest such module consists of the ghost number one ‘tachyon’ o

Tr,s = cc̄Or,se2βr,sφ, 1� r � p − 1, 1� s � q − 1, (15)

BRST invariance requires�(Tr,s ) = 0, which according to (2) and (7) is satisfied when2

2βr,s = p + q − |rq − sp|√
pq

. (16)

Unlike the ground ring elements (but like the minimal model primaries), the tachyons satisfy a reflection relation:

Tp−r,q−s = Tr,s . (17)

Thus there are exactly as many independent tachyons as primaries in the minimal model.
Since the tachyons form a module under the action of the ground ring, a trivial application of the fusion rules in the

CFT leads to the following simple formula for the tachyons in terms of the ring elements:

Tr,s = Ôr,sT1,1 = Us−1(X)Ur−1(Y )T1,1. (18)

This formula is actually quite useful. We mention two applications:

– The tachyons obviously do not form a faithful representation of the ring, since there are half as many tachyons a
ring elements. Indeed, combining the reflection relation (17) with (18), we obtain a new relation in the module:

Tp(Y ) − Tq(X) = 0 (19)

with Tp(Y ) the Chebyshev polynomials of the first kind,

Tp(Y = cosθ) = cospθ. (20)

The relation (19) can also be written asUp−2(Y ) − Uq−2(X) = 0. This relation as well as (14) were first discovered
relations in the fusion ring in [24].

– Using the ring and its module, we can easily derive some correlation functions. For instance,

〈Tr1,s1Tr2,s2Tr3,s3〉 = 〈Ôr1,s1Ôr2,s2Ôr3,s3T1,1T1,1T1,1〉 = N(r1,s1)(r2,s2)(r3,s3). (21)

In other words, the three-point functions of tachyon operators in(p, q) minimal string theory are precisely the fusio
rules of the associated(p, q) minimal CFT. This surprisingly simple result had been derived previously using much
complicated methods in [25–27]. Our new derivation shows why the correlators are so simple: it is due to the un
simplicity of the ground ring.

3. D-branes in minimal string theory

In the previous section, we described how minimal string theories are put together at the worldsheet level, focusin
closed string sector. Now let us turn to the open strings and describe how to construct the D-branes of minimal strin
These are built out of the D-branes of Liouville theory and minimal CFT. They are conveniently described using the b
state formalism, which associates to every D-brane a ‘Cardy state’ labelled by a highest-weight Virasoro representat
open string channel.

In the minimal models, the Cardy states are in one-to-one correspondence with the Virasoro representations, and t
given minimal model has a finite number of branes given by the number of primary operators. The branes are usually
by |k, l〉, with k andl taking the same integer values as for the primariesOk,l of the minimal model.

The D-branes of Liouville theory were discovered more recently through the work of [6–8]. There are two kinds of D
in Liouville theory. The first kind, called FZZT branes [6,7], fall into a continuous family parametrized by the ‘bou
cosmological constant’µB which multiplies the boundary interaction

δS = µB

∮
ebφ. (22)

2 Note thatβr,s is determined by a quadratic equation, and we have chosen the root withβr,s < Q/2. This bound can be understood in t
semiclassical approximation as a requirement on the locality of the vertex operator [23].
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Fig. 1. A plot of the minisuperspace wavefunction of the FZZT brane. The dotted line denotes the location of the ‘tip’ of the FZZT braφ

space.

Solving the equation of motion forφ on a worldsheet with bulk action (4) and boundary interaction (22) gives rise to Neum
like boundary conditions for the Liouville field:

∂σ φ = −2πbµBebφ. (23)

The FZZT branes are extended semi-infinitely inφ space. One way to see this is using the minisuperspace wavefunction
FZZT brane. In the semiclassicalb → 0 limit, this is given by

ψ(φ) = 〈φ|µB 〉 = e−µB ebφ
. (24)

According to (24), the FZZT brane comes in fromφ = −∞ and dissolves atφ ≈ − 1
b

logµB (see Fig. 1).
In the boundary state formalism, the FZZT brane labelled byµB corresponds to a Cardy state|σ 〉 labelled by the nondegen

erate Virasoro representation with dimension

� = 1

4
σ2 + Q2

4
(25)

(in the notation of (7), this corresponds toα = Q/2+ iσ/2) whereσ andµB are related by3

µB = coshπbσ. (26)

This expression allows us to analytically continueσ ∈ C, which is a infinite multiple cover ofµB ∈ C.
The second kind of Liouville branes are the ZZ branes [8]. These fall into a discrete, two-parameter family paramet

integersm,n � 1, and they are all localized in the strong coupling regionφ → +∞. In the boundary state formalism, the Z
branes correspond to the degenerate representations of Liouville theory, which according to (8) and the mapα = Q/2 + iσ/2
are given by

σ = σ(m,n) = i

(
m

b
+ nb

)
, m,n ∈ Z+. (27)

Subtracting the null vectors in the degenerate representation leads to a formula for the boundary state of the ZZ brane
of the FZZT branes [8]

|m,n〉 = ∣∣σ(m,n)
〉 − ∣∣σ(m,−n)

〉
. (28)

Notice that the two FZZT branes in (28) have the same value of the boundary cosmological constant [11]:

µB = (−1)m cosπnb2. (29)

We will give a geometric interpretation to this fact below.
Having described the branes of Liouville theory and minimal CFT, we are now ready to form the D-branes of m

string theory. We simply tensor together a boundary state from Liouville theory (either FZZT or ZZ) together with a bo
state|k, l〉 from the minimal model. (Note that we also have to setb = √

p/q in the formulas above.) However, not all
these tensored boundary states are linearly independent. Before we can write down the actual list of D-branes in mini
theory, there are three subtleties we have to take into account.

3 This relation can be motivated in Liouville theory as the boundary analogue of the Bäcklund transformation. In the bulk, the B
transformation maps the Liouville fieldφ to a free fieldφ̃. The FZZT brane satisfies Neumann-like boundary conditions inφ space (23), which
are mapped to purelyDirichlet boundary conditions iñφ space withφ̃ = σ .
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– Naively, it would seem that there are a number of different FZZT branes and ZZ branes, distinguished by the c
matter state. However, it turns out that only the branes with matter state|1,1〉 are independent.4 The FZZT branes with
matter state|k, l〉 are related to those with matter state|1,1〉 by the identifications

|σ ;k, l〉 =
k−1∑

m′=−(k−1),2

l−1∑
n′=−(l−1),2

∣∣∣∣σ + i(m′q + n′p)√
pq

;1,1

〉
. (30)

The ZZ branes satisfy the same relations, thanks to (28). Note that these identifications are meant to be statem
the BRST cohomology, i.e., the branes on the two sides of (30) cannot be distinguished by any physical observab

– Another consequence of the BRST cohomology is that not all of the FZZT branes labelled byσ are distinct. It turns ou
that the independent FZZT branes are reduced to|σ 〉 → |z〉 with the parameterz defined to be

z = cosh
πσ√
pq

. (31)

In the next section we will see thatz plays a central role in the geometrical interpretation of minimal string theory.
– Finally, there are subtleties having to do with Virasoro representation theory for rationalb2. Without getting into the details

let us just say that taking them into account (and imposing the BRST cohomology) reduces the infinite family of L
ZZ branes to a finite number|m,n〉 with 1 � m � p − 1, 1� n � q − 1, andqm − pn > 0 [15].

Combining these three facts, we arrive at the final list of independent D-branes in minimal string theory:

FZZT: |z〉 ⊗ |1,1〉, z ∈ C,

ZZ: |m,n〉 ⊗ |1,1〉, 1� m � p − 1, 1� n � q − 1, qm − pn > 0.
(32)

4. Geometric interpretation

In the previous two sections, we collected many different facts about open and closed minimal string theory. No
show how these seemingly unrelated facts combine to form a simple geometric picture of minimal string theory. The
point is the observation that the disk amplitudeZ(µB) of the FZZT brane is not a single valued function ofµB . Instead, if we
define

x ≡ µB = coshπbσ, y ≡ ∂µB Z(µB) = cosh
πσ

b
(33)

thenx andy satisfy the algebraic equation

Fp,q(x, y) = Tp(y) − Tq(x) = 0. (34)

This describes a genus(p − 1)(q − 1)/2 Riemann surfaceMp,q with (p − 1)(q − 1)/2 pinchedA-cycles (singularities). An
example of such a surface is shown in Fig. 2. The singularities occur at the simultaneous solution of (34) and

T ′
p(y) = pUp−1(y) = 0, T ′

q(x) = qUq−1(x) = 0. (35)

We recognize (34) and (35) to be precisely the ground ring relations and the relation in the tachyon module! Thus thealgebraic
structure of the ground ring is directly related to thegeometricstructure of the FZZT brane.

Fig. 2. An example of a Riemann surface with pinched cycles, viewed also as a double-cover of the complex plane.

4 This can be seen from an analysis of the one-point functions. See [15] for the details.
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As promised, the parameterz defined in (31) plays an important role in the geometrical description: it is theuniformizing
parameter ofMp,q . By this we mean the following. It is trivial to see that the equation (34) for the surface is solved by

x = Tp(z), y = Tq(z). (36)

This means that, apart from the singularities, every point(x, y) on the surface is in one-to-one correspondence with a poz
in the complex plane. Thus, the complicated structure ofMp,q is mapped to the complexz plane by (36), i.e., the surfac
is uniformizedby (36). The singularities are then points where this one-to-one correspondence breaks down. For the
described by (34), there are exactly two values ofz corresponding to a given singularity.

Since the surfaceMp,q arose from the FZZT disk amplitude, it is not surprising that it encodes the FZZT brane
natural way. What is surprising, however, is that it also knows about the ZZ branes. Let us see how this comes about.
the following one form onMp,q :

ω ≡ y dx. (37)

Then the D-branes correspond to line integrals ofω. The FZZT brane is obviously an integral ofω along an open contour:

Z(x) =
x∫

P

ω. (38)

On the other hand, the(m,n) ZZ brane is a difference between two FZZT branes with the same value ofx = xm,n =
(−1)m cosπpn/q, so it corresponds to an integral ofω along aclosedcontour:

Z(m,n) =
∮

Bm,n

ω. (39)

This gives a geometric interpretation to the relation (28) between the ZZ and FZZT boundary states.5

Note that since the disk amplitudeZ(m,n) is nonzero, the contour of the(m,n) brane must be a nontrivial cycle of th
surface. We can confirm this geometrically by noticing thatBm,n passes through(xm,n, ym,n), which according to (35) is
a singularity of the surface. ThereforeBm,n is the conjugateB-cycle to the pinchedA-cycle located at(xm,n, ym,n). These
contours are shown in Fig. 3.

We can also rephrase the preceding paragraph in a way that leads to a new insight about the ZZ branes. The ass
the ZZ branes with the singularities of the surface means that there is a sense in which they are ‘located’ at the singula
can make this more precise by recalling that the equations for the singularities are the same as the ground ring relat
suggests that the ZZ branes and the ground ring are related in some natural way. Indeed, one can show that the ZZ
eigenstatesof the ground ring elements, with eigenvalues(xm,n, ym,n):

X|m,n〉 = xm,n|m,n〉, Y |m,n〉 = ym,n|m,n〉. (40)

We note in passing that this leads to a simple derivation of the ring relations (12) and (14). More to the point, howe
makes precise the idea that the ZZ branes are located at the singularities. According to (40), we can think of the ring genX

andY as measuring the ‘position’ of the ZZ brane onMp,q .

Fig. 3. A Riemann surface with examples of FZZT and ZZ contours.

5 The formula for the ZZ brane as a closed contour integral was first derived for a special case in [14].
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So far we have been considering a special closed-string background corresponding to the Liouville action (4) with
mological constant interaction. This gives rise to the surface described by (34). We can also consider more general bac
obtained by adding other physical operators to the worldsheet action (e.g., the tachyons (15)). These will deform the
of the Riemann surface, but in such a way as to preserve its geometrical properties. In particular, the surface will
finite-sheeted cover of the complexx plane, and it will still have a number of singularities. Thus the deformed surface
still possess a uniformizing parameterz. In fact, one can characterize the deformations as deformations of the uniform
map (36):

δx = εR(z), δy = εS(z) (41)

with R andS polynomials inz. One can show that infinitesimal deformations by closed string states correspond to sing
preserving deformations ofMp,q of the form (41). Conversely, the list of all polynomial deformations tox(z) andy(z) captures
the spectrum of physical closed string states at all ghost numbers.

Of course, we can also imagine deformations of the surface which do not preserve the singularities. These corre
addingO(1/gs) background ZZ branes. This has a nice geometrical realization in terms of the contours of the surf
period

∮
Bm,n

ω creates(m,n) ZZ branes, while the conjugate period
∮
Am,n

ω measures how many are present:∮
Am,n

ω = gsNm,n. (42)

In target space, these deformations can be thought of as adding background tachyons with the ‘wrong’ Liouville
α � Q/2. Such tachyons diverge in the strong coupling regionφ → +∞, and so they are naturally identified with the additi
of background ZZ branes [18].

5. Deriving the dual matrix model

Besides providing a unified description of minimal string theory, the geometric picture outlined in the previous sec
an important added benefit: it leads directly to the dual matrix model. The fact that minimal strings are dual to certainN

random matrix models is well known (for a review and references, see [1,2]), and the duality has been verified in many
ways. Now, with our improved knowledge of the worldsheet description of minimal string theory, we can shed new light
duality and basically derive it.

For simplicity, let us focus on the models with (p = 2, q = 2k − 1), which are dual to the one matrix model

Z(g) =
∫

dM e− 1
g

Tr V (M) (43)

with M anN × N Hermitian matrix. The surface forp = 2 is

2y2 − 1= T2k−1(x). (44)

This describes a double cover of the complexx plane on whichy(x) is single valued. The two sheets are connected along
−∞ < x � −1. There are alsok singularities (pinched cycles) located at(

xn = cos
2πn

2k − 1
, yn = 0

)
, n = 1, . . . , k. (45)

Now we can proceed to match the surface with quantities in the matrix model. The discontinuity ofy(x) along the cut is the
eigenvalue density:

ρ(x) = Im
√

2+ 2T2k−1(x). (46)

More generally,y(x) corresponds to the force on an eigenvalue (note thaty = 0 at the singularities), and the disk amplitude
the FZZT brane

Z(x) =
x∫
y dx′ = −1

2
Veff(x) (47)

is the effective potential of a probe eigenvalue (Fig. 4). Since the ZZ branes are located at the singularities, we conc
they correspond to eigenvalues at the stationary points ofVeff(x) (wherey = 0). The cut atx < −1 corresponds to the Ferm
sea—the ZZ branes decay (condense) and fill the Fermi sea. The matrixM of the matrix model then corresponds to open stri
betweenN → ∞ condensed ZZ branes.
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Fig. 4. An example of the effective potential of the matrix model. The blue line denotes the branch cut in the effective potential (corre
to the Fermi sea), and the blue dots at the local extrema denote stationary eigenvalues corresponding to ZZ branes.

The FZZT brane in the matrix model is described by themacroscopic loop operator

W(x) = Tr log(x − M). (48)

ThusZ(x) = 〈W(x)〉, andy = ∂xZ(x) is the resolvent of the matrix model. The full, nonperturbative FZZT brane corresp
to worldsheets with any number of boundaries (and handles). This is accomplished in the matrix model by exponentiatiW(x),
leading to a simple formula for the FZZT-brane creation operator

�(x) ∼ det(x − M). (49)

Note that we can write this as a Grassmann integral over 2N fermionsχi andχ
†
i

:

det(x − M) =
∫

dχ† dχ eχ†(x−M)χ . (50)

We interpretχ , χ† to befermionicopen strings between ZZ and FZZT branes.

6. Conclusions

We have seen how an effective ‘target space’, consisting of a certain Riemann surfaceMp,q , emerges as the moduli spa
of branes. This surface captures many of the properties of the minimal string, including its D-branes, its spectrum o
string operators, and their correlation functions. The D-branes correspond to integrals of a certain one-formω on the Riemann
surface, while the deformations of the surface encode the closed-string observables (singularity preserving) and the
of localized branes (singularity destroying).

We also saw how this geometric picture is complemented by the algebraic structure of the ground ring. In particular
relations controlled the correlation functions, the defining equation of the surface, and the location of its singularities.

Finally, we gave a worldsheet derivation of the matrix model, and added a new perspective to the understanding
eigenvalues of the matrix model are associated with D-branes [28,29,10,12].

Let us conclude with the following comment on the regime of validity of our results. Clearly, the geometrical p
described here (which emerged from the disk amplitude of the FZZT brane) is only meant to apply at the level of pert
theory in the string coupling. In fact, nonperturbative effects change the ‘target space’Mp,q very dramatically [30]. Order-by
order in perturbation theory, the moduli space of FZZT branes is a multiple cover of the complexx plane. But the exact FZZT
observables are entire functions ofx, and therefore the exact moduli space is reduced to just a single copy of thex plane [30].
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