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Abstract

A few different examples of Euclidean wormholes with AdS asymptotics are constructed. These are geometries w
completely regular, and are solutions of ten- or eleven-dimensional supergravity. We point out that such geometries are
from the AdS/CFT point of view, and try to speculate on possible resolutions of this puzzle. A better understandin
physics of these geometries could lead to interesting insights into the nature of quantum gravity and to some new inter
of closed cosmologies.To cite this article: L. Maoz, C. R. Physique 6 (2005).
 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Trous de vers dans AdS. On construit quelques exemples de trous de vers euclidiens avec un espace AdS asymptoti
géométries sont complétement régulières, et sont des solutions des supergravité en dimensions dix et onze. Nous
en quoi ces géométries sont intriquantes du point de vue de la correspondance AdS/CFT, et nous spéculons sur d
résolutions de ces questions. Une meilleure compréhension de ces géométries peut amener des progrès intéres
nature de la gravité quantique et à de nouvelles interprétations des cosmologies fermées.Pour citer cet article : L. Maoz, C. R.
Physique 6 (2005).
 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction

This article comes from a talk given at ‘Strings ’04’, based on hep-th/0401024 with J. Maldacena [1].
Wormholes are configurations which have fascinated physicists for a long time. The main interest in wormhole

context of quantum gravity, started in the late 1980s, when it was thought that wormholes might cause violations of uni
and that they are likely to nucleate on large scales, leading to a ‘wormhole catastrophe’ [3]. Later it was argued t
catastrophes would actually not occur [4–8], and the interest in wormholes in that respect diminished. In the mor
context of the AdS/CFT correspondence, wormholes raise a new and interesting puzzle.
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Fig. 1. The CFT expectation value can be approximated as a sum over geometries. The sum includes both connected and discon
configurations.

The AdS/CFT correspondence [9] basically states that the sum over all geometries with fixed boundary conditio
same as a (conformal) field theory living on the boundary. More accurately, it states that:

〈
exp

[
−

∫
ϕ

(0)
j

Oj (x)ddx

]〉
CFT

= Zstring[ϕj ] ≈ ZSUGRA[ϕj ] ≈
∑

cl.sols

exp
(−S[ϕj ]) (1)

whereϕj are some bulk fields with boundary valuesϕ
(0)
j

, and on the right-hand side, we first used a smallα′ approximation and
then a saddle point approximation, replacing the path integral by a sum over classical solutions with the given bounda
One example where the CFT path integral was actually shown to equal a sum over such classical solutions (with ap
weights), is the case of a CFT with target spaceHilbk(K3) which is dual to IIB string theory onAdS3 × S3 × K3 [10].

A natural question that arises is how such a correspondence could work if the boundary has a few disconnected com1

In such a case, the correspondence principle instructs us to sum over all fillings of the boundary. These can be of tw
either such where the bulk itself has a few disconnected components, each ending on a different boundary compone
that the bulk is connected, i.e., such that the spacetime is a wormhole.

Now, on the one hand, the left-hand side of (1) involves a CFT living on the sum of disjoint boundary components a
is no evident way in which they should be coupled. One therefore would expect the CFTs to be completely independen
correlations between the different boundaries should factorize. On the other hand, the sum on the right-hand side of (1
also the wormhole geometries, where the different asymptotic regions are connected (see Fig. 1). Thus at least na
should expect to find some correlations between the different boundaries. This puzzle becomes even clearer when the
geometry is not just a saddle point of the path integral, but is actually a local or even global minimum, and therefo
dominant contribution in the sum over geometries.

In order to resolve this puzzle and try to understand how the AdS/CFT correspondence could work in these cases, o
first obtain some string theory examples of wormhole geometries, which are regular, are asymptotically AdS and ha
defined corresponding field theory. In previous examples of wormhole-like solutions either the two asymptotic regio
not as well understood, or they were not solutions of 10- or 11-dimensional supergravity [6,7,12–17]. In this article w
describe some new wormhole geometries of the type we are looking for. In Section 2, we first discuss briefly the cond
the existence of wormhole geometries. Then in Section 3 we will describe some general features of all wormhole solu
have built. Sections 4–6 describe in more detail three different types of solutions. For each we will see show how it can
as a reduction of 10- or 11-dimensional supergravity, and try to find perturbative and nonperturbative instabilities, in
determine which kind of extremum that geometry is. Finally in Section 7 we end by returning to the AdS/CFT related
discuss the open issues, and try to give some speculation as to how the puzzle might be resolved.

2. The conditions for existence of wormholes

The first question one would like to answer is in which setups wormholes with AdS asymptotics could arise as
geometries. In the Lorentzian case, for asymptotically AdS spacetimes, a topological censorship theorem was pro
which basically states that under certain physically reasonable conditions, the presence of multiple boundaries force
to be separated by horizons, in such a way that the different boundary components are not causally connected th
bulk. More precisely, the theorem states that ifM ′ is a globally hyperbolic spacetime with a timelike boundaryI satisfying the
average null energy condition,2 and ifI0 is a connected component ofI such that either (i)I0 admits a compact spacelike cut

1 See also [11] for a brief survey of some aspects of AdS/CFT related to the role of topology of the boundary in the correspondence.
2 The average null energy condition states that for each pointp in M nearI , and any future complete null geodesics → η(s) in M starting

atp with tangentX,
∫ ∞

R XaXb ds � 0.
0 ab
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(ii) M ′ satisfies the generic condition,3 thenI0 cannot communicate with any other component ofI , i.e.,J+(I0)∩ (I \ I0) = ∅.
This theorem implies that the different holographic boundary theories are uncorrelated, and do not interact dynami
example where such a situation arises is the extremal AdS Schwarzschild black holes, which have two boundaries
by horizons. Indeed in that case the dual CFTs are decoupled and the only correlations between them are through
entangled state [19].

In the Euclidean case, looking at Einstein manifoldsM of negative curvature, the boundary can either have negativ
positive curvature. In the first case, it was shown by Seiberg and Witten [20] that the holographic theory living on the
curvature boundary would be unstable for any boundary dimensionn � 3. We will expand on this instability in the next sectio
In the second case, when one of the boundary components hasR > 0, a theorem by Witten and Yau basically shows that
boundary must be connected [21]. This theorem was later generalized by Cai and Galloway [22] to cases where the
has zero scalar curvature. The precise statement is: LetMn+1 be a complete Riemannian manifold which admits a confor
compactification, with conformal boundaryNn, and with the Ricci tensor ofM satisfyingRic � −ng such thatRic → −ng

sufficiently fast on the approach to conformal infinity.4 If N has a component of nonnegative curvature, then the follow
holds:

(i) N is connected;
(ii) If M is orientable, thenHn(M,Z) = 0;

(iii) The mapi∗ :Π1(N) → Π1(M) (i = inclusion) is onto.

This seems to exclude the existence of stable Euclidean wormhole-like solutions. However, as we shall descri
following sections, one can actually go around these problems. One way to do this is to consider spaces with negative
boundaries, but where the field theory is two-dimensional, defined on an arbitrary Riemann surface, and does not su
the regular instabilities. Another way is to consider spaces with positive curvature boundaries, but which are not pure
manifolds, but rather solutions of supergravity, where extra fields, apart of the metric, are turned on. These geometri
obey the constraint on the Ricci tensor, appearing in the Witten–Yau and Cai–Galloway theorems.5

3. General features

Before we go into the details of the different solutions, let us describe some common general features of all worm
consider. All configurations we construct are completely regular Euclidean geometries, which are asymptotically AdS
solutions of 10d or 11d supergravity. The metric of the solutions is of the form

ds2
n+1 = dρ2 + w(ρ)2 ds2

Σn
(2)

whereΣn—a constantρ slice—is a compactn-dimensional surface, andw(ρ) ∼ e|ρ| asρ → ±∞. The two disconnecte
boundaries are atρ = ±∞, and the asymptotic behavior ofw(ρ) ensures that the geometries are asymptotically AdS.
solutions we construct also have the property that they are reflection symmetric underρ → −ρ. The Wick rotation of these
wormholes geometries into Lorentzian signature, obtained by takingρ = it , describes closed universe cosmologies with
bang and big crunch singularities, and compact spatial surfacesΣn (see Fig. 2). This gives another important motivation
finding the holographic description of the wormholes, namely finding a field theory interpretation of such closed cosm

Finally, another feature of all the configurations we will describe is that they are not supersymmetric. There is a
argument showing why one should not expect supersymmetric wormhole configurations of this form. Basically the re
symmetry of the Euclidean solutions (2) implies that the Wick rotated Lorentzian geometry is time-reflection symmetri
ever, supersymmetric Lorentzian solutions possess a timelike or null killing vector [24], and if their spatial sections are c
this implies they cannot have time reflection symmetry.

3 The generic condition is satisfied iff every timelike or null geodesic with tangent vectorX contains a point at whichXaXbX[cRd]ab[eXf ]
is nonzero.

4 I.e., r−2(Ric + ng) → 0 asr → 0 where the bulk metric is expanded in a neighborhood of the boundary asg = 1
r2 (dr2 + rr ), and the

conformal boundary is atr → 0.
5 More details about the physical interpretation of this feature can be found in [23].
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Fig. 2. On the left is a sketch of the Euclidean geometry with two boundaries and reflection symmetry aroundρ = 0. On the right is the Wick
rotated Lorentzian geometry. This is a big bang-big crunch cosmology.

4. Quotients of hyperbolic space

The first family of wormholes we consider, which are probably the simplest wormhole examples is just quotients o
bolic space, i.e., of Euclidean AdS. Hyperbolic space is usually written in the following form:

ds2
Hn+1

= dy2 + sinh2 y ds2
�n

(3)

wherey is a radial coordinatey ∈ [0,∞) and equaly slices aren-spheres. In particular, the boundary of the space is aty = ∞
and is anSn. However, by a change of coordinates, one can recast this space in the following form:

ds2
Hn+1

= dρ2 + cosh2 ρ ds2
Hn

(4)

whereρ ∈ (−∞,∞) and equalρ slices are again hyperbolic spaces. Naively it might seem that this space has two bo
components, atρ = ±∞. However, this is, of course, not true. Retracing the coordinate transformation between the two s
one can map the sphere aty = ∞ back and see that the entire northern hemisphere maps to theρ = ∞ slice, and the souther
hemisphere to theρ = −∞ slice (see Fig. 3). So the boundary is still only one connected component. Equivalently, o
regard these as two boundary disks with ‘transparent’ boundary conditions.

In order to create a space with two disconnected boundaries out of this, one can perform a quotient of the hyperbo
Hn by a discrete subgroupΓ of the hyperbolic symmetry groupSO(1, d). We pickΓ such that the resulting sliceΣn = Hn/Γ

is a compact, smooth and finite volume surface.
To be concrete, let us look at the specific case ofn = 2, i.e., at quotients ofH3. The relevant group of isometries isSL(2,C),

and in order to create a multiple boundary space, one should choose a discrete subgroupΓ ⊂ SL(2,C) to quotientH3 by.
Different choices ofΓ lead to different boundary structures. For example, performing a quotient by a fuchsian discrete6

results in a space with two boundaries, each a Riemann surface, and both having the same modulitα (see Fig. 4).
One could also perform a quotient ofH3 by a quasi-fuchsian subgroup. This would result again in a space with

boundaries, which are Riemann surfaces, but this time the two Riemann surfaces can have different moduli (see F
fact a theorem by Bers [25] (‘the Bers simultaneous uniformization theorem’) states that there is a 1–1 correspond

Fig. 3. A sketch of the hyperbolic slicing of hyperbolic space.ρ increases from−∞ on the left to+∞ on the right. The mapping of th
spherical slicing into this one is indicated.

6 This is a group which is actually a subgroup ofSL(2,R). Any Riemann surface can be represented as a quotient ofH2 by an appropriate
such group.
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Fig. 4. The quotient of the diskH2 by a fuchsian subgroup is a Riemann surface. The quotient ofH3 by a fuchsian subgroup is a space w
two boundaries, both Riemann surfaces with the same moduli.

Fig. 5. Performing a quotient ofH3 by a quasi-fuchsian subgroup results in a space with two boundaries which are Riemann surf
different moduli.

Fig. 6. Two disconnected three-dimensional manifolds, each ending on a different boundary. Each of the manifolds results from the q
H3 by a Schottky group.

tween the choice of such groups and the choice of two points in Teichmuler space, i.e., thatQF(Sg,n) is homeomorphic to
Teich(Sg,n) × Teich(Sg,n).

Additionally, one could quotientSL(2,C) by a Schottky subgroup. This quotient results in a space with only one boun
which is a Riemann surface (see Fig. 6).7 Taking two such spaces, we can recover the same boundary structure as in the p
cases, but this time the bulk itself is also disconnected.

As hyperbolic spaces come up very frequently as solutions of 10d and 11d supergravity, by performing such quoti
can easily create wormhole geometries in string theory.

The next question that naturally arises is whether such solutions are stable and thus consist of local or even glob
of the path integral over geometries, so as to dominate it.

Looking first for perturbative instabilities, we check for negative modes of a scalar field in the bulk. Consider the me

ds2
n+1 = dρ2 + cosh2 ρ ds2

Σn
(5)

whereΣn = Hn/Γ is a constant negative curvature compact manifold. Solving the scalar field equation of motion
background[−∇2 + m2]φ = λφ for regular normalizable fields, gives the following modes:

λk = ∆(∆ − n) + k(n − k) (6)

wherek ∈ Z, 0< k � n/2 and∆ = n/2+
√

(n/2)2 + m2. Thus negative modes appear when∆ < n, i.e., when the correspond
ing operator in the CFT is relevant.

7 See [26] for further discussion of this.
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Fig. 7. A codimension 1 BPS brane in AdS, sitting at some finiteρ coordinate, would be unstable towards moving to the boundary.

Let us look at a few examples. Forn = 2, we consider type IIB string theory onAdS3 × S3 × K3. In this case there
are no negative modes, but there is a zero mode for an operator of∆ = 1. This operator transforms as (1/2,1/2) under the
SU(2)L × SU(2)R parameterizing theS3 rotations. It can be projected out of the theory, if one performs a quotient of
a ZN ⊂ U(1)L ⊂ SU(2)L. This quotient has no fixed points, and results on the CFT side in a(4,0) supersymmetric theory
which was studied in [27]. Another example is whenn = 4. We consider type IIB string theory onAdS5 × S5 and see that in
this case one obtains negative modes for∆ = 2. It can be shown that differently from the previous example, here there
subgroupΓ ⊂ SO(6), such thatAdS5 × (S5/Γ ) has no fixed points and projects out all the∆ = 2 operators (which are in th
20 of SO(6)).

Let us now turn to examine possible non-perturbative instabilities of such quotients. These are the ones mentione
tion 2, arising from the fact that the boundary has negative curvature.

As was shown by Seiberg and Witten [20], if one looks at a codimension 1 BPS brane at a constant largeρ (see Fig. 7), its
action is roughly given by:

S ≈ T · (area) − n · q · (volume) ≈ − 2n

2n(n − 2)
e(n−2)ρ + · · · . (7)

As the leading nonvanishing contribution is negative, and becomes more negative asρ increases, one finds an instabili
towards the nucleation of a brane–antibrane pair in the bulk and moving one of them towards the boundary atρ → ±∞. This
instability is non-perturbative as one needs to overcome a barrier∼ 1/gs in order to create the branes. On the field theory s
this instability translates into the existence of a scalar field with negative mass squared, coming from its conformal co
the negative curvature surface:m2

conf = n−2
4(n−1)

R < 0.
Such instabilities could in principle be removed in two different ways. One can try and add some mass terms to

theory Lagrangian, which would basically overwhelm the negative conformal mass. This would be something in the
the deformations described in [28,29], only while they were discussing a field theory on flat space, here one needs to
negatively curved spaces.8 Another way to try and eliminate the instabilities is to look at theH3 case again. If one goes to
generic point in the moduli space of the CFT and turns on some RR fields on theK3, the branes are not BPS anymore, and th
tension is always greater than their charge. We denoteε ≡ T/q − 1. Repeating the calculation of the brane action as in (7),
finds that in this case the action behaves as:

S ≈ q

4
[εe2ρ − 4ρ + 2]. (8)

Here, for largeρ, the leading term, which is proportional to the non-BPSness parameterε, is positive and grows withρ.
Therefore for largeρ there is no instability, and the asymptotic boundary conditions are stable. However, for largeQ1,Q5
there exist branes withε  1, for which it is still favorable to nucleate a pair of brane–antibrane and move one of th
some finite positionρ0. We conclude that there still is some nonperturbative instability, which we expect to lead to a new
configuration with the same asymptotics.

Finally, let us try and compute the correlation function of boundary operators using gravity. Before performing the q
one can simply compute the bulk to boundary propagator in hyperbolic coordinates, and find:

G(r,ρ; r0) ∼ 1

[coshρ]∆[coshs − tanhρ]∆ (9)

where(r, ρ) are the coordinates of the bulk point, andr0 labels a boundary point.s is the distance between the pointsr andr0
with the boundary hyperbolic metric.

8 In fact, in a recent paper by Buchel [30] a similar thing was attempted, but after adding the mass terms in that case, it was foun
geometries developed naked singularities.
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Takingρ → ±∞ and renormalizing by e∆ρ should roughly give the boundary to boundary propagators.9 For operators on
the same boundary we find:

〈
O(r, θi)1O(r ′, θ ′i )1

〉 ∼ 1

[sinhs/2]2∆
(10)

and for operators on different boundaries:

〈
O(r, θi)1O(r ′, θ ′i )2

〉∼ 1

[coshs/2]2∆
. (11)

Now we need to implement the quotientHn/Γ , and this can be done on the gravity side by summing over all ima
Performing this sum, gives a result which is generically nonzero and coordinate dependent. Thus it seems that from t
point of view, there are correlations between the two boundaries.10

5. Meron wormholes with AdS4 asymptotics

Let us now describe a different kind of wormhole having two boundaries of positive curvature. This is a 4-dimension
with boundaries which are 3-spheres, and asymptotics at both boundaries ofAdS4. This wormhole solution, which was als
described in [17,32,33], can actually be embedded in 11-dimensional supergravity. Starting with 11-dimensional sup
it is possible to make the reduction to the following 4-dimensional action, containing no scalars or Chern–Simons term

S ∼ N1/2
∫

d4x
√

g
[−(R + 6) + Fa

µνFaµν
]

(12)

whereFa
µν is an SU(2) gauge field. This reduction can be done in two different ways. One way is to look at theSO(8)

gauged supergravity obtained by theS7 compactification of 11-dimensional supergravity [34]. Then one can take the 8c spinor
representation ofSO(8), map it under triality to theSO(8)v and truncate keeping only fields which are invariant under
SO(5) in the subgroupSO(3) × SO(5) ⊂ SO(8). This projects out the scalars of theSO(8) gauged supergravity. Another wa
is to take theSO(4) 4-dimensional truncation described in [35] and truncate it to the diagonalSU(2) in the decomposition
SO(4) = SU(2)L × SU(2)R . One can show that the 8v of SO(8) transforms as a pair of 2s ofSU(2). In any case, one is lef
with the action (12) withA = i σ

a

2 Aa andF = dA + A2.
In this setting we are able to exactly realize the scenario mentioned in the introduction and depicted in Fig. 1: w

CFT defining some boundary conditions, and we will manage to construct both solutions which are wormhole like, a
solutions which have two disconnected bulk components, having the same boundary conditions.

Having at hand the string theory description in terms of M2 branes, enables one to determine the field theory dual
the field theory on a stack of M2-branes, coupled to a fixed backgroundSU(2) connection. It is not known how to write dow
the Lagrangian for a system of multiple M2-branes. However, it can be shown that this theory breaks supersymmetry.

The 4-dimensional wormhole solution, with the given asymptotics is the following:

ds2
4 = dρ2 + 1

2
(
√

5 cosh 2ρ − 1)ds2
S3; Aa = 1

2
wa (13)

wherewa areSU(2) left-invariant spin-connections, and theS3 metric is given by ds2
S3 = 1

4wawa .

The metric is written in anS3 slicing, and the gauge connection is in a meron configuration, i.e., it is proportional
SU(2) left-invariant spin connections on theS3.

This wormhole solution is definitely an extremum of the path integral in (1). In order to check if it is actually a min
dominating the path-integral, or merely a saddle point, one needs to check for perturbative instabilities. A natural def
of (13) is by a mode of the form:

Aa =
[

1

2
+ ε(ρ)

]
wa with lim

ρ→±∞ ε(ρ) = 0. (14)

9 The correct procedure is a bit more involved, but this gives the correct result up to a∆-dependent factor [31].
10 It might be that one needs to average these correlators over the isometry group of the hyperbolic space, as from the boundary the
view the result should be invariant under these. However, from the gravity point of view, it is not clear why such an averaging should
We thank E. Witten for his comment in this matter.
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Indeed, when one inserts this back into the Euclidean action, and expands it to second order in the perturbation, one
this is a negative mode. This means that the wormhole solution is perturbatively unstable, and might decay to a differen
with the same boundary conditions.

One candidate for such a solution is the one we mentioned earlier, made up of two disconnected bulk compone
ending on a different boundary component. Each one of these components has just theAdS4 metric, but contains a nonvanishin
gauge connection, which is (anti)self dual and asymptotes the appropriate constant valued gauge connection on the
The self dual solution is given by:

ds2 = dy2 + sinh2 y ds2
S3,

Aa = f (y)wa; f −1(y) = 1+ 1

tanh2 y/2
. (15)

Note that limy→∞ f −1(y) = (1/2)−1, so that on the boundary the gauge connection does not vanish, and in all, this is ‘
instanton’ inAdS4. It can be verified that the instanton breaks the supersymmetries ofAdS4. Evaluating the action of this on
boundary solution, and comparing it to that of the wormhole solution, we get:

2S1bdy< Swormhole.

This confirms that the solution where the bulk is disconnected is more stable than the wormhole one, and that the inst
found for the wormhole solution might deform it into such a disconnected configuration.

6. Instanton–antiinstanton wormholes with AdS5 asymptotics

In this section we describe another example of wormholes, rather similar to the previous one. Here, too, the bound
of positive curvature, and are, in fact, again spheres. However, this example seems to be more stable than the one
in the last section. It is a 5-dimensional wormhole, where only the metric and a gauge field are excited, and is a so
a consistent 5-dimensional reduction of IIB string theory on anS5. This reduction was described in [36] and keeps anSO(6)

gauge field and some scalars. The 5-dimensional reduced action is:

L5 = R ∗ 1− 1

4
T −1
IJ

∗ DTJK ∧ T −1
KL

DTLI − 1

4
T −1
IK

T −1
JL

∗ FIJ ∧ FKL − V ∗ 1

− 1

48
εI1···I6

(
FI1I2FI3I4AI5I6 − gF I1I2AI3I4AI5J AJI6 + 2

5
g2AI1I2AI3J AJI4AI5KAKI6

)
(16)

whereAIJ are SO(6) gauge fields,T IJ a 6× 6 symmetric unimodular matrix of scalars, and the potentialV is given by
V = 1

2g2(2TIJ TIJ − (TII )2).
We are interested in finding solutions, similar to the one we had in 4 dimensions, where the gauge field is tu

making an instanton configuration on theS4 boundaries. However, due to the Chern–Simons terms and the scalar cou
in (16), turning on only anSU(2) instanton is not a consistent solution. Instead, it is possible to separate theSO(6) gauge

group toSO(3) × S̃O(3) ⊂ SO(6) that rotate the first three coordinates and last three coordinates ofR6. We denote byLa,IJ ,

I, J = 1,2,3; a = 1,2,3, the generators ofSO(3) and byL̃a,IJ , I, J = 4,5,6; a = 1,2,3, the generators of̃SO(3). Then

we build a gauge field configuration, consisting of an instanton onS4 for the SO(3) and an antiinstanton for thẽSO(3). The
instantons areSO(5) symmetric under rotations of theS4. These boundary conditions determine the field theory: it is justN = 4
SYM with an external gauge field coupled to theSO(6) currents. This field theory seems well defined and stable.

The wormhole solution with this boundary behaviour is given by the following set of fields:

ds2
5 = dρ2 + e2w(ρ) ds2

S4 = dρ2 + e2w(ρ)

[
dθ2 + sin2 θ

1

4
wawa

]
; e2w(ρ) = 1

2
(
√

5 cosh 2ρ − 1),

AIJ
µ = iAa

µLa,IJ + iÃa
µL̃a,IJ ; Aa = cos2 θ

(
θ

2

)
wa; Ãa = sin2

(
θ

2

)
wa,

T IJ = δIJ . (17)

This configuration actually has zero totalSO(6) instanton number, and thus the equations of motion, including the Ch
Simons terms are obeyed.

Having this solution at hand, one would like to check whether it is a stable solution. One natural deformation to c
is deforming theSO(6) gauge field. As can be checked, the gauge field onS4 is topologically trivial as anSO(6) gauge field,
and therefore can be continuously deformed into a pure gauge configuration. In fact considering theSO(6) gauge theory on the
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S4, such a deformation indeed produces a negative mode. However, requiring also normalizability of the modes atρ → ±∞
removes the negative modes from the full 5-dimensional geometry. Another candidate for negative modes is the flu
of the scalar fields. However, an analysis shows that such negative modes too do not exist. In principle one should
other fields of the 10-dimensional supergravity theory to determine if there are any negative modes leading to instabili
solution. It would also be interesting to find a single boundary solution, with the same boundary behaviour, and check
it is more or less stable than the wormhole solution.

7. Summary and discussion

In the previous section we have described the construction of a variety of Euclidean geometries, of the wormhole
which connect two boundaries. They all have AdS asymptotics on both boundaries, and are all completely regular c
solutions of string theory. The first family of such geometries is quotients of hyperbolic space. These have bound
negative curvature and although generically unstable, we were able to construct the example ofAdS3/Γ × S3/ZN ×K3 which
seems rather stable. The second type of solutions are wormholes withAdS4 asymptotics, and anSU(2) gauge field in a meron
configuration. They have two boundaries of positive curvature. Yet we have found some perturbative instabilities in t
and another configuration of lower action and same boundary conditions, where the bulk itself is disconnected. The las
is of a wormhole withAdS5 asymptotics and again with boundaries of positive curvature. In this example theSO(6) gauge fields
are in an instanton–antiinstanton configuration, and as far as we have checked, we could not find any instabilities, or
action solution with the same asymptotics.

The configurations we described seem to correspond to perfectly well-defined field theories, and therefore provide
examples to the puzzle mentioned in the introduction, related to the AdS/CFT correspondence. To recapitulate, on
theory side, it seems the correlation functions across the two boundaries should factorize, while from the gravity point
there seem to be correlations between the boundaries. In the examples where the wormhole geometry seemed to be
puzzle is most evident, as the wormhole dominates the sum over geometries.

What could be the possible resolutions to this puzzle?
One resolution could be that maybe after summing over all geometries, including the wormhole geometry, the

correlators would factorize. It is hard to see how such a magical cancellation could happen, but maybe one can
inspiration from the works of Coleman from the 1980s [8,4]. Coleman analyzed a somewhat different problem, nam
nonlocal interactions in axionic wormholes in Lorentzian spacetimes. It was believed that these nonlocal interactions
existence of disconnected baby universes would lead to violations of unitarity [2]. However, Coleman suggested that
to these concerns, in fact the sum over all possible wormholes has a different effect. It leads to the appearance of sup
sectors characterized by some parametersαi . The physics remain unitary, but the parametersαi cannot be computed by th
observers, and have to be measured experimentally, and regarded as arbitrary constant of nature. Thus loss of
replaced by loss of predictive power (or in Coleman’s words: “The predictive power of the theory of everything has gone down
the wormhole” [5]). It is possible that something similar to Coleman’s factorization would occur in our context as well.
it would seem that the field theory on the boundary would determine theα parameters and thus also the wavefunction for
associated closed universes.

A different resolution of the puzzle could be that in the end there is some subtle correlation between the two field
and the partition function would be of the form:Z = ∑

i Z1
i
Z2

i
where 1,2 indicate the two field theories on the two boundar

andi runs over some ‘sector’ of the field theory. Such a situation may arise if the partition functions of the field theories
well defined. An example for this is a chiral boson in 2 dimensions, for which no modular invariant partition function
Only if one considers both left and right moving sectors, there is a modular invariant partition function, and it is of the c
form above, where 1,2 are left and right, andi runs over spin structures on the 2-dimensional surface.11

Either way, a resolution of this puzzle, and a better understanding of the physics of wormholes and their hologra
scription, would be very interesting, and would shed some new light on the nature of quantum gravity.
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