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Abstract

A few different examples of Euclidean wormholes with AdS asymptotics are constructed. These are geometries which are
completely regular, and are solutions of ten- or eleven-dimensional supergravity. We point out that such geometries are puzzling
from the AAS/CFT point of view, and try to speculate on possible resolutions of this puzzle. A better understanding of the
physics of these geometries could lead to interesting insights into the nature of quantum gravity and to some new interpretations
of closed cosmologiedo cite thisarticle: L. Maoz, C. R. Physique 6 (2005).
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Résumé

Trousdeversdans AdS. On construit quelques exemples de trous de vers euclidiens avec un espace AdS asymptotique. Ces
géomeétries sont complétement régulieres, et sont des solutions des supergravité en dimensions dix et onze. Nous expliquon
en quoi ces géométries sont intriquantes du point de vue de la correspondance AdS/CFT, et nous spéculons sur de possible
résolutions de ces questions. Une meilleure compréhension de ces géométries peut amener des progrés intéressants sur
nature de la gravité quantique et a de nouvelles interprétations des cosmologies fBoméeiser cet article: L. Maoz, C. R.

Physique 6 (2005).
0 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction

This article comes from a talk given at ‘Strings '04’, based on hep-th/0401024 with J. Maldacena [1].

Wormholes are configurations which have fascinated physicists for a long time. The main interest in wormholes, in the
context of quantum gravity, started in the late 1980s, when it was thought that wormholes might cause violations of unitarity [2]
and that they are likely to nucleate on large scales, leading to a ‘wormhole catastrophe’ [3]. Later it was argued that such
catastrophes would actually not occur [4-8], and the interest in wormholes in that respect diminished. In the more recent
context of the AdS/CFT correspondence, wormholes raise a new and interesting puzzle.
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Fig. 1. The CFT expectation value can be approximated as a sum over geometries. The sum includes both connected and disconnected bult
configurations.

The AdS/CFT correspondence [9] basically states that the sum over all geometries with fixed boundary conditions is the
same as a (conformal) field theory living on the boundary. More accurately, it states that:

<exp[— / o 0,-<x>ddx]>CFT= Zstinglj1~ Zsuaralg i1~ Y exp(—Slg;]) (1)

cl.sols

whereg; are some bulk fields with boundary valu,ej(é)), and on the right-hand side, we first used a smadipproximation and

then a saddle point approximation, replacing the path integral by a sum over classical solutions with the given boundary values.
One example where the CFT path integral was actually shown to equal a sum over such classical solutions (with appropriate
weights), is the case of a CFT with target sph{tm"(K3) which is dual to 1IB string theory 0AdSg x $3x K3 [10].

A natural question that arises is how such a correspondence could work if the boundary has a few disconnected cdmponents.
In such a case, the correspondence principle instructs us to sum over all fillings of the boundary. These can be of two kinds—
either such where the bulk itself has a few disconnected components, each ending on a different boundary component, or suct
that the bulk is connected, i.e., such that the spacetime is a wormhole.

Now, on the one hand, the left-hand side of (1) involves a CFT living on the sum of disjoint boundary components and there
is no evident way in which they should be coupled. One therefore would expect the CFTs to be completely independent and that
correlations between the different boundaries should factorize. On the other hand, the sum on the right-hand side of (1) includes
also the wormhole geometries, where the different asymptotic regions are connected (see Fig. 1). Thus at least naively, one
should expect to find some correlations between the different boundaries. This puzzle becomes even clearer when the wormhole
geometry is not just a saddle point of the path integral, but is actually a local or even global minimum, and therefore is the
dominant contribution in the sum over geometries.

In order to resolve this puzzle and try to understand how the AdS/CFT correspondence could work in these cases, one should
first obtain some string theory examples of wormhole geometries, which are regular, are asymptotically AdS and have a well
defined corresponding field theory. In previous examples of wormhole-like solutions either the two asymptotic regions were
not as well understood, or they were not solutions of 10- or 11-dimensional supergravity [6,7,12—17]. In this article we shall
describe some new wormhole geometries of the type we are looking for. In Section 2, we first discuss briefly the conditions for
the existence of wormhole geometries. Then in Section 3 we will describe some general features of all wormhole solutions we
have built. Sections 4—6 describe in more detail three different types of solutions. For each we will see show how it can be built
as a reduction of 10- or 11-dimensional supergravity, and try to find perturbative and nonperturbative instabilities, in order to
determine which kind of extremum that geometry is. Finally in Section 7 we end by returning to the AdS/CFT related puzzle,
discuss the open issues, and try to give some speculation as to how the puzzle might be resolved.

2. Theconditionsfor existence of wormholes

The first question one would like to answer is in which setups wormholes with AdS asymptotics could arise as sensible
geometries. In the Lorentzian case, for asymptotically AdS spacetimes, a topological censorship theorem was proven [18],
which basically states that under certain physically reasonable conditions, the presence of multiple boundaries forces the bulk
to be separated by horizons, in such a way that the different boundary components are not causally connected through the
bulk. More precisely, the theorem states thal/ifis a globally hyperbolic spacetime with a timelike boundasatisfying the
average null energy conditidhand if Iy is a connected component bsuch that either (ijg admits a compact spacelike cut or

1 see also [11] for a brief survey of some aspects of ACIST related to the role of topology of the boundary in the correspondence.
2 The average null energy condition states that for each pointM near!, and any future complete null geodesie> 7(s) in M starting
at p with tangentt, [§° R,pX“X"ds > 0.
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(i) M’ satisfies the generic conditi@nhenlo cannot communicate with any other componenk dfe., J*(Ig) N (I \ Ig) = 2.

This theorem implies that the different holographic boundary theories are uncorrelated, and do not interact dynamically. An
example where such a situation arises is the extremal AdS Schwarzschild black holes, which have two boundaries separatec
by horizons. Indeed in that case the dual CFTs are decoupled and the only correlations between them are through an initial
entangled state [19].

In the Euclidean case, looking at Einstein manifolMsof negative curvature, the boundary can either have negative or
positive curvature. In the first case, it was shown by Seiberg and Witten [20] that the holographic theory living on the negative
curvature boundary would be unstable for any boundary dimemsio3. We will expand on this instability in the next section.

In the second case, when one of the boundary component® baB, a theorem by Witten and Yau basically shows that the
boundary must be connected [21]. This theorem was later generalized by Cai and Galloway [22] to cases where the boundary
has zero scalar curvature. The precise statement isvt’ét! be a complete Riemannian manifold which admits a conformal
compactification, with conformal bounday”, and with the Ricci tensor o#f satisfyingRic > —ng such thatRic — —ng
sufficiently fast on the approach to conformal infirﬂtyf N has a component of nonnegative curvature, then the following
holds:

(i) N is connected,;
(i) If M is orientable, thetH,, (M, Z) = 0;
(iiiy The mapiy : 11 (N) — I11(M) (i = inclusion) is onto.

This seems to exclude the existence of stable Euclidean wormhole-like solutions. However, as we shall describe in the
following sections, one can actually go around these problems. One way to do this is to consider spaces with negative curvature
boundaries, but where the field theory is two-dimensional, defined on an arbitrary Riemann surface, and does not suffer from
the regular instabilities. Another way is to consider spaces with positive curvature boundaries, but which are not pure Einstein
manifolds, but rather solutions of supergravity, where extra fields, apart of the metric, are turned on. These geometries do not
obey the constraint on the Ricci tensor, appearing in the Witten—Yau and Cai-Galloway theorems.

3. General features

Before we go into the details of the different solutions, let us describe some common general features of all wormholes we
consider. All configurations we construct are completely regular Euclidean geometries, which are asymptotically AdS, and are
solutions of 10d or 11d supergravity. The metric of the solutions is of the form

ds3+1 = dp2 + w(,o)2 dS%n @)

where X,—a constanip slice—is a compact-dimensional surface, ang(p) ~ €l asp — +co. The two disconnected
boundaries are gt = +00, and the asymptotic behavior af(p) ensures that the geometries are asymptotically AdS. The
solutions we construct also have the property that they are reflection symmetricaunelerp. The Wick rotation of these
wormholes geometries into Lorentzian signature, obtained by takirg:, describes closed universe cosmologies with big
bang and big crunch singularities, and compact spatial surfagesee Fig. 2). This gives another important motivation to
finding the holographic description of the wormholes, namely finding a field theory interpretation of such closed cosmologies.

Finally, another feature of all the configurations we will describe is that they are not supersymmetric. There is a simple
argument showing why one should not expect supersymmetric wormhole configurations of this form. Basically the reflection
symmetry of the Euclidean solutions (2) implies that the Wick rotated Lorentzian geometry is time-reflection symmetric. How-
ever, supersymmetric Lorentzian solutions possess a timelike or null killing vector [24], and if their spatial sections are compact,
this implies they cannot have time reflection symmetry.

3 The generic condition is satisfied iff every timelike or null geodesic with tangent v&ctamtains a point at whicl¢ XhX[C Rayable X £
is nonzero.

4 e, r*Z(Ric-a— ng) — 0 asr — 0 where the bulk metric is expanded in a neighborhood of the boundq;fy:asl2 (dr2 + rr), and the
conformal boundary is at— 0. '

5 More details about the physical interpretation of this feature can be found in [23].
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Fig. 2. On the left is a sketch of the Euclidean geometry with two boundaries and reflection symmetryateGn®n the right is the Wick
rotated Lorentzian geometry. This is a big bang-big crunch cosmology.

4. Quotients of hyperbolic space

The first family of wormholes we consider, which are probably the simplest wormhole examples is just quotients of hyper-
bolic space, i.e., of Euclidean AdS. Hyperbolic space is usually written in the following form:

dsZHnH =dy? +sinff yds3 3)

wherey is a radial coordinate € [0, co) and equal slices arer-spheres. In particular, the boundary of the space js-ato
and is ans”. However, by a change of coordinates, one can recast this space in the following form:

ds%{n+1 =dp? +cosif p dsi,n (4)

wherep € (—o0, 00) and equalo slices are again hyperbolic spaces. Naively it might seem that this space has two boundary
components, gé = f+o00. However, this is, of course, not true. Retracing the coordinate transformation between the two slicings,
one can map the sphereyat co back and see that the entire northern hemisphere maps toth® slice, and the southern
hemisphere to the = —oo slice (see Fig. 3). So the boundary is still only one connected component. Equivalently, one can
regard these as two boundary disks with ‘transparent’ boundary conditions.

In order to create a space with two disconnected boundaries out of this, one can perform a quotient of the hyperbolic slices
Hy,, by a discrete subgroup of the hyperbolic symmetry groupO(1, d). We pick I" such that the resulting slic,, = H,,/I”
is a compact, smooth and finite volume surface.

To be concrete, let us look at the specific case 2, i.e., at quotients off3. The relevant group of isometriesSk(2, C),
and in order to create a multiple boundary space, one should choose a discrete subgrdig2, C) to quotientHs by.
Different choices of” lead to different boundary structures. For example, performing a quotient by a fuchsian discrefe group
results in a space with two boundaries, each a Riemann surface, and both having the same r{seRilrig. 4).

One could also perform a quotient éf3 by a quasi-fuchsian subgroup. This would result again in a space with two
boundaries, which are Riemann surfaces, but this time the two Riemann surfaces can have different moduli (see Fig. 5). In
fact a theorem by Bers [25] (‘the Bers simultaneous uniformization theorem’) states that there is a 1-1 correspondence be-

a constant
finite
radius

sphere

southern northern
hemisphere hemisphere

Fig. 3. A sketch of the hyperbolic slicing of hyperbolic spapeincreases from-oco on the left to+oo on the right. The mapping of the
spherical slicing into this one is indicated.

6 This is a group which is actually a subgroupf(2, R). Any Riemann surface can be represented as a quotiefip @y an appropriate
such group.
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Fig. 4. The quotient of the disk, by a fuchsian subgroup is a Riemann surface. The quotieflgdy a fuchsian subgroup is a space with
two boundaries, both Riemann surfaces with the same moduli.

Riemann
surface

J

Both boundaries
have same
moduli t *

>l

Fig. 5. Performing a quotient af/3 by a quasi-fuchsian subgroup results in a space with two boundaries which are Riemann surfaces, of
different moduli.

N

Fig. 6. Two disconnected three-dimensional manifolds, each ending on a different boundary. Each of the manifolds results from the quotient of
H3 by a Schottky group.

tween the choice of such groups and the choice of two points in Teichmuler space, i.QFtat,) is homeomorphic to
Teich(Sg,n) x Teich(Sg,»).

Additionally, one could quotierfiL (2, C) by a Schottky subgroup. This quotient results in a space with only one boundary,
which is a Riemann surface (see Fig/6laking two such spaces, we can recover the same boundary structure as in the previous
cases, but this time the bulk itself is also disconnected.

As hyperbolic spaces come up very frequently as solutions of 10d and 11d supergravity, by performing such quotients, one
can easily create wormhole geometries in string theory.

The next question that naturally arises is whether such solutions are stable and thus consist of local or even global minima
of the path integral over geometries, so as to dominate it.

Looking first for perturbative instabilities, we check for negative modes of a scalar field in the bulk. Consider the metric:

ds?, ; =dp? + cosif pds, (5)

where X, = H,/I" is a constant negative curvature compact manifold. Solving the scalar field equation of motion in this
backgrounq[—VZ +m2)¢p = ¢ for regular normalizable fields, gives the following modes:

M= AA—n)+k(n—k) (6)

wherek € Z, 0 < k <n/2 andA =n/2+/(n/2)2 + m2. Thus negative modes appear wher: n, i.e., when the correspond-
ing operator in the CFT is relevant.

7 See [26] for further discussion of this.
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Zd

p

Fig. 7. A codimension 1 BPS brane in AdS, sitting at some fipit®ordinate, would be unstable towards moving to the boundary.

Let us look at a few examples. Far= 2, we consider type IIB string theory ofdS; x S3 x K 3. In this case there
are no negative modes, but there is a zero mode for an operatbre=01. This operator transforms as/@L1/2) under the
VU (2);, x (2)g parameterizing the? rotations. It can be projected out of the theory, if one performs a quotient of it by
aZy cU(@) c U(2),. This quotient has no fixed points, and results on the CFT side(4q@ supersymmetric theory,
which was studied in [27]. Another example is wher- 4. We consider type IIB string theory okdSs x S° and see that in
this case one obtains negative modesAo£ 2. It can be shown that differently from the previous example, here there is no
subgroupl” c SO(6), such thatAdSs x (S5/F) has no fixed points and projects out all the= 2 operators (which are in the
20 of O(6)).

Let us now turn to examine possible non-perturbative instabilities of such quotients. These are the ones mentioned in Sec-
tion 2, arising from the fact that the boundary has negative curvature.

As was shown by Seiberg and Witten [20], if one looks at a codimension 1 BPS brane at a constan{$e€ig. 7), its
action is roughly given by:

~ —n-g- z—L (n=2)p 4 ...
S~T-(area) —n - q - (volume) (1 2)e + e ©)

As the leading nonvanishing contribution is negative, and becomes more negativieaeases, one finds an instability
towards the nucleation of a brane—antibrane pair in the bulk and moving one of them towards the boupdary-abd. This
instability is non-perturbative as one needs to overcome a barrdgg; in order to create the branes. On the field theory side,
this instability translates into the existence of a scalar field with negative mass squared, coming from its conformal coupling to
the negative curvature surfaaegonfz 4&—:21) R <O0.

Such instabilities could in principle be removed in two different ways. One can try and add some mass terms to the field
theory Lagrangian, which would basically overwhelm the negative conformal mass. This would be something in the spirit of
the deformations described in [28,29], only while they were discussing a field theory on flat space, here one needs to consider
negatively curved spac@sAnother way to try and eliminate the instabilities is to look at #ig case again. If one goes to a
generic point in the moduli space of the CFT and turns on some RR fields é&f3ththe branes are not BPS anymore, and their
tension is always greater than their charge. We denetd’ /g — 1. Repeating the calculation of the brane action as in (7), one
finds that in this case the action behaves as:

S~ %[eez'o —4p+2) ®)

Here, for largep, the leading term, which is proportional to the non-BPSness parameigrpositive and grows withp.
Therefore for largep there is no instability, and the asymptotic boundary conditions are stable. However, foQlargs;
there exist branes with « 1, for which it is still favorable to nucleate a pair of brane—antibrane and move one of them to
some finite positionpg. We conclude that there still is some nonperturbative instability, which we expect to lead to a new stable
configuration with the same asymptotics.

Finally, let us try and compute the correlation function of boundary operators using gravity. Before performing the quotient,
one can simply compute the bulk to boundary propagator in hyperbolic coordinates, and find:

1
[coshp]4[coshs — tanhp]4

G(r, p;rg) ~ ©)

where(r, p) are the coordinates of the bulk point, afdabels a boundary point.is the distance between the pointandrg

with the boundary hyperbolic metric.

8 In fact, in a recent paper by Buchel [30] a similar thing was attempted, but after adding the mass terms in that case, it was found that the
geometries developed naked singularities.
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Taking o — 0o and renormalizing by4” should roughly give the boundary to boundary propagatdist operators on
the same boundary we find:

0(r,0MH10(",0")) ~ —————— 10
(0@, 0MH10(",6™)1) [Sinhs /2122 (10)
and for operators on different boundaries:
. . 1
0@, 0100 ,0M) )~ —————. 11
(0@r,0MH10(",6™))) [coshy /225 (11)

Now we need to implement the quotieAt,/I", and this can be done on the gravity side by summing over all images.
Performing this sum, gives a result which is generically nonzero and coordinate dependent. Thus it seems that from the gravity
point of view, there are correlations between the two boundafies.

5. Meron wormholeswith AdS, asymptotics

Let us now describe a different kind of wormhole having two boundaries of positive curvature. This is a 4-dimensional space
with boundaries which are 3-spheres, and asymptotics at both boundaAeS§,0fThis wormhole solution, which was also
described in [17,32,33], can actually be embedded in 11-dimensional supergravity. Starting with 11-dimensional supergravity,
it is possible to make the reduction to the following 4-dimensional action, containing no scalars or Chern—Simons terms

S~ N1/2 / d*x VZ[~(R+6)+ Fl, F] (12)

where F,‘;v is an U (2) gauge field. This reduction can be done in two different ways. One way is to look &0
gauged supergravity obtained by th€compactification of 11-dimensional supergravity [34]. Then one can take.tsgigor
representation 080(8), map it under triality to theSO(8), and truncate keeping only fields which are invariant under the
O(5) in the subgrouBO(3) x SO(5) € SO(8). This projects out the scalars of t8(8) gauged supergravity. Another way
is to take theSO(4) 4-dimensional truncation described in [35] and truncate it to the diag8né?) in the decomposition
O@4) =VU(2)1 x U(2)g. One can show that the, &f SO(8) transforms as a pair of 2s &J(2). In any case, one is left
with the action (12) withd =% A% and F = dA + A2,

In this setting we are able to exactly realize the scenario mentioned in the introduction and depicted in Fig. 1: we have a
CFT defining some boundary conditions, and we will manage to construct both solutions which are wormhole like, and also
solutions which have two disconnected bulk components, having the same boundary conditions.

Having at hand the string theory description in terms of M2 branes, enables one to determine the field theory dual. It is just
the field theory on a stack of M2-branes, coupled to a fixed backgr8uiig) connection. It is not known how to write down
the Lagrangian for a system of multiple M2-branes. However, it can be shown that this theory breaks supersymmetry.

The 4-dimensional wormhole solution, with the given asymptotics is the following:

1

1
ds? = do? + E(JE coshd — 1yds%y; A% = > (13)

§3 = %w“w“.

The metric is written in ars3 slicing, and the gauge connection is in a meron configuration, i.e., it is proportional to the
VU (2) left-invariant spin connections on tsa.

This wormhole solution is definitely an extremum of the path integral in (1). In order to check if it is actually a minimum
dominating the path-integral, or merely a saddle point, one needs to check for perturbative instabilities. A natural deformation
of (13) is by a mode of the form:

wherew? areSU (2) left-invariant spin-connections, and tl58 metric is given by d

A“:[}—l—a(p)]w” with lim &(p) = 0. (14)
2 p—>£o0

9 The correct procedure is a bit more involved, but this gives the correct result up-iependent factor [31].
10 1 might be that one needs to average these correlators over the isometry group of the hyperbolic space, as from the boundary theory point of
view the result should be invariant under these. However, from the gravity point of view, it is not clear why such an averaging should be done.
We thank E. Witten for his comment in this matter.
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Indeed, when one inserts this back into the Euclidean action, and expands it to second order in the perturbation, one sees tha
this is a negative mode. This means that the wormhole solution is perturbatively unstable, and might decay to a different solution
with the same boundary conditions.

One candidate for such a solution is the one we mentioned earlier, made up of two disconnected bulk components, each
ending on a different boundary component. Each one of these components hasAaiStheetric, but contains a nonvanishing
gauge connection, which is (anti)self dual and asymptotes the appropriate constant valued gauge connection on the boundary
The self dual solution is given by:

ds? = dy + Slnl'?ydssg,

1

Al — a; -1 _ )
Fw = +t7anh?y/2

(15)

Note that lim,, £~ = (1/2)71, so that on the boundary the gauge connection does not vanish, and in all, this is ‘half an
instanton’ inAdS,. It can be verified that the instanton breaks the supersymmetrikdSaf Evaluating the action of this one
boundary solution, and comparing it to that of the wormhole solution, we get:

2S:I.bdy < Swormhole

This confirms that the solution where the bulk is disconnected is more stable than the wormhole one, and that the instability we
found for the wormhole solution might deform it into such a disconnected configuration.

6. Instanton—antiinstanton wor mholes with AdSg asymptotics

In this section we describe another example of wormholes, rather similar to the previous one. Here, too, the boundaries are
of positive curvature, and are, in fact, again spheres. However, this example seems to be more stable than the one describe:
in the last section. It is a 5-dimensional wormhole, where only the metric and a gauge field are excited, and is a solution of
a consistent 5-dimensional reduction of I1B string theory orsanThis reduction was described in [36] and keepsSax6)
gauge field and some scalars. The 5-dimensional reduced action is:

1 —1 1 1, pIJ , pKL
Ls=R+1=JT;} « DTyk ATi DTep = JTi8 Ty« F!Y A FKE —v 1
1

48

where A’/ are SO(6) gauge fieldsT// a 6 x 6 symmetric unimodular matrix of scalars, and the poteritidb given by
V= 3g2217 Ty 5 — (T1)?).

We are interested in finding solutions, similar to the one we had in 4 dimensions, where the gauge field is turned on,
making an instanton configuration on ti§& boundaries. However, due to the Chern—Simons terms and the scalar couplings
in (16), turning on onIy arBU(2) instanton is not a consistent solution. Instead, it is possible to separa®¢he gauge

group toSO(3) x SO(3) C S0(6) that rotate the first three coordinates and last three coordina®®. afle denote b)L” 1J

I,J=1,23;a=1,2,3, the generators d80(3) and byL?!/ [ J =4,56;a=1,2,3, the generators c&)(S) Then
we build a gauge field configuration, consisting of an |nstant06‘bﬁ)r the SO(3) and an antiinstanton for tfﬁ)(S) The
instantons ar&0(5) symmetric under rotations of tt#. These boundary conditions determine the field theory: it isjust 4

SYM with an external gauge field coupled to t88(6) currents. This field theory seems well defined and stable.
The wormhole solution with this boundary behaviour is given by the following set of fields:

2
A <F11’2F13’4A’516 _gFhl2pllapls) g 1s ggZAlllelslAJ14A15KAK16> (16)

. 1 1
ds2 = dp? + 2P ds§4 =dp? + P [dez +sinf o Zw“w“]; v — E(«/g cosh — 1),
o 0 _ (6
AL =iad L1 4 iAG LT A =co§9<§>w“; Ad =S|n2<§)w“

T/ =17, (17)

This configuration actually has zero tofD(6) instanton humber, and thus the equations of motion, including the Chern—
Simons terms are obeyed.

Having this solution at hand, one would like to check whether it is a stable solution. One natural deformation to consider,
is deforming theSO(6) gauge field. As can be checked, the gauge fielddis topologically trivial as ar80(6) gauge field,
and therefore can be continuously deformed into a pure gauge configuration. In fact consideBD¢)hgauge theory on the
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$4, such a deformation indeed produces a negative mode. However, requiring also normalizability of the modes-ad

removes the negative modes from the full 5-dimensional geometry. Another candidate for negative modes is the fluctuations
of the scalar fields. However, an analysis shows that such negative modes too do not exist. In principle one should check all
other fields of the 10-dimensional supergravity theory to determine if there are any negative modes leading to instability of this

solution. It would also be interesting to find a single boundary solution, with the same boundary behaviour, and check whether
it is more or less stable than the wormhole solution.

7. Summary and discussion

In the previous section we have described the construction of a variety of Euclidean geometries, of the wormhole type, i.e.,
which connect two boundaries. They all have AdS asymptotics on both boundaries, and are all completely regular consistent
solutions of string theory. The first family of such geometries is quotients of hyperbolic space. These have boundaries of
negative curvature and although generically unstable, we were able to construct the exakilg 6fx S3/Zy x K 3 which
seems rather stable. The second type of solutions are wormholeAd@irasymptotics, and aBU (2) gauge field in a meron
configuration. They have two boundaries of positive curvature. Yet we have found some perturbative instabilities in this case,
and another configuration of lower action and same boundary conditions, where the bulk itself is disconnected. The last example
is of a wormhole withAdSg asymptotics and again with boundaries of positive curvature. In this exam@®tbggauge fields
are in an instanton—antiinstanton configuration, and as far as we have checked, we could not find any instabilities, or any lower
action solution with the same asymptotics.

The configurations we described seem to correspond to perfectly well-defined field theories, and therefore provide concrete
examples to the puzzle mentioned in the introduction, related to the AdS/CFT correspondence. To recapitulate, on the field
theory side, it seems the correlation functions across the two boundaries should factorize, while from the gravity point of view,
there seem to be correlations between the boundaries. In the examples where the wormhole geometry seemed to be stable, thi
puzzle is most evident, as the wormhole dominates the sum over geometries.

What could be the possible resolutions to this puzzle?

One resolution could be that maybe after summing over all geometries, including the wormhole geometry, the gravity
correlators would factorize. It is hard to see how such a magical cancellation could happen, but maybe one can get some
inspiration from the works of Coleman from the 1980s [8,4]. Coleman analyzed a somewhat different problem, namely, the
nonlocal interactions in axionic wormholes in Lorentzian spacetimes. It was believed that these nonlocal interactions, and the
existence of disconnected baby universes would lead to violations of unitarity [2]. However, Coleman suggested that contrary
to these concerns, in fact the sum over all possible wormholes has a different effect. It leads to the appearance of superselectior
sectors characterized by some parametersThe physics remain unitary, but the parametgreannot be computed by the
observers, and have to be measured experimentally, and regarded as arbitrary constant of nature. Thus loss of unitarity is
replaced by loss of predictive power (or in Coleman’s word$ie‘predictive power of the theory of everything has gone down
the wormhole” [5]). It is possible that something similar to Coleman’s factorization would occur in our context as well. Then
it would seem that the field theory on the boundary would determine th&rameters and thus also the wavefunction for the
associated closed universes.

A different resolution of the puzzle could be that in the end there is some subtle correlation between the two field theories,
and the partition function would be of the fori:= ", Zl.lzl.2 where 12 indicate the two field theories on the two boundaries,
andi runs over some ‘sector’ of the field theory. Such a situation may arise if the partition functions of the field theories are not
well defined. An example for this is a chiral boson in 2 dimensions, for which no modular invariant partition function exists.
Only if one considers both left and right moving sectors, there is a modular invariant partition function, and it is of the coupled
form above, where, 2 are left and right, antiruns over spin structures on the 2-dimensional surtace.

Either way, a resolution of this puzzle, and a better understanding of the physics of wormholes and their holographic de-
scription, would be very interesting, and would shed some new light on the nature of quantum gravity.
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11 |t is hard to see why such an effect would arise in the meron and instanton—antiinstanton examples we have described, as they seem well
defined in that sense, and are left-right symmetric.
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