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Abstract

In this article, the multiloop amplitude prescription using the super-Poincaré invariant pure spinor formalism for the su-
perstring is reviewed. Unlike the RNS prescription, there is no sum over spin structures and surface terms coming from the
boundary of moduli space can be ignored. Masslégsoint multiloop amplitudes vanish fav < 4, which implies (with
two mild assumptions) the perturbative finiteness of superstring theory. Afsterms receive no multiloop contributions in
agreement with the Type IIB-duality conjecture of Green and Gutperl®.cite this article: N. Berkovits, C. R. Physique 6
(2005).
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Résumé

Calculs covariants d’amplitudes de supercordes a plusieur s boucles. Dans cet article, une prescription pour calculer des
amplitudes de supercordes a plusieur boucles avec le formalisme invariant de (super-)Poincaré des spineurs purs est passé ¢
revue. Contrairement a la prescription de RNS, il n'y a pas de somme sur les structures de spins et aucun termes du bord de
I'espace des modules ne doit étre ignoré. Les amplitudes a plusieur boucles états externes de masse nulle sont nulles
pour N < 4, ce qui implique (modulo deux hypothéses mineures) que la théorie des cordes perturbative est finie. En plus, les
termes erk? ne recoivent pas de contributions a plusieur boucles en accord avec la conjecture de digeiieen et Gutperle
pour la théorie de type IIBPour citer cet article: N. Berkovits, C. R. Physique 6 (2005).
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1. Introduction

The computation of multiloop amplitudes in superstring theory has many important applications such as verifying per-
turbative finiteness and testing duality conjectures. Nevertheless, this subject has received little attention over the last fifteen
years, mainly because of difficulties in computing multiloop amplitudes using either the Ramond—Neveu—Schwarz (RNS) or
Green-Schwarz (GS) formalism.

In the RNS formalism, spacetime supersymmetric amplitudes are obtained after summing over spin structures, which can be
done explicitly only when the number of loops and external states is small [1]. Since there are divergences near the boundary
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of moduli space before summing over spin structures, surface terms in the amplitude expressions need to be treated with
care [2-5]. Furthermore, the complicated nature of the Ramond vertex operator in the RNS formalism [6] makes it difficult to
compute amplitudes involving external fermions or Ramond—Ramond bosons. For these reasons, up to now, explicit multiloop
computations in the RNS formalism have been limited to four-point two-loop amplitudes involving external Neveu—Schwarz
bosons [7,5].

In the GS formalism, spacetime supersymmetry is manifest but one needs to fix light-cone gauge and introduce non-covariant
operators at the interaction points of the Mandelstam string diagram [8—10]. Because of complications caused by these non-
covariant interaction point operators [11], explicit amplitude expressions have been computed using the light-cone GS formalism
only for four-point tree and one-loop amplitudes [8].

Over the past twenty years, there have been several approaches to covariant quantization of the superstring. However, none
of these approaches were able to compute even tree-level amplitudes in a super-Poincaré covariant manner. Four years ago,
new formalism for the superstring was proposed [12,13] with manifest ten-dimensional super-Poincaré covariance. In conformal
gauge, the worldsheet action is quadratic and physical states are defined using a BRST operator constructed from superspac
matter variables and a pure spinor ghost variable. A super-Poincaré covariant prescription was given for cavirpatirtg
tree amplitudes, which was shown to coincide with the standard RNS prescription [14,15]. It was also proven that the BRST
cohomology reproduces the correct superstring spectrum [16] and that BRST invariance in a curved supergravity background
implies the low-energy superspace equations of motion for the background superfields [17,18].

Because of the pure spinor constraint satisfied by the worldsheet ghosts, it was not obvious how to define functional inte-
gration in this formalism. For this reason, the tree amplitude prescription in [12] relied on BRST cohomology for defining the
correct normalization of the worldsheet zero modes. Furthermore, there was no haghost in this formalism, which made
it difficult to define amplitudes in a worldsheet reparameterization-invariant manner. Because of these complications, it was
not clear how to compute loop amplitudes using this formalism and other groups looked for ways of relaxing the pure spinor
constraint without modifying the BRST cohomology [19-21].

Recently, it was shown how to perform functional integration by defining a Lorentz-invariant measure for the pure spinor
ghosts, introducing appropriate ‘picture-changing’ operators, and constructing a conbpgisitst in a non-zero picture. With
these three ingredients, it was straightforward to generalize the tree amplitude prescription of [12] to a super-Poincaré covariant
prescription forN -point g-loop amplitudes [22].

The need for picture-changing operators in this formalism is not surprising since, like the bg&gnighosts in the RNS
formalism [6], the pure spinor ghosts are chiral bosons with worldsheet zero modes. As in the RNS formalism, the worldsheet
derivatives of these picture-changing operators are BRST trivial so, up to possible surface terms, the amplitudes are independen
of their locations on the worldsheet. However, unlike the RNS formalism, there is no need to sum over spin structures and
there are no divergences at the boundary of moduli space. Thus, surface terms can be safely ignored in the loop amplitude
computations.

Although the explicit computation of arbitrary loop amplitudes is complicated, there are several features of the prescription
which are simpler than in the RNS prescription. For example, there is no sum over spin structures, no surface terms from the
boundary of moduli space, and no unphysical poles from negative-energy chiral bosons. Furthermore, the partition functions
for the matter and ghost variables cancel, amplitudes involving external Ramond states are no more complicated than those
involving external Neveu—Schwarz states, and one can easily prove vanishing theorems by counting zero modes of the fermionic
superspace variables. For example, S-duality of the Type IIB superstring implig&*tterms in the low-energy effective action
receive no perturbative corrections above one-loop [23]. After much effort, this was recently verified in the RNS formalism at
two-loops [7,5]. Using the formalism described here, this S-duality conjecture can be easily verified for all loops.

Similarly, one can easily prove the non-renormalization theorem that maaslpesmt multiloop amplitudes vanish when-
ever N < 4. Assuming factorization, this non-renormalization theorem implies the absence of divergences near the boundary
of moduli space [4,24]. Note that the boundary of moduli space includes two types of degenerate surfaces: surfaces where the
radiusR of a handle shrinks to zero, and surfaces which split into two worldsheets connected by a thin tube. As explained in
[4], the first type of degenerate surface does not lead to divergent amplitudes in a tachyon-free theory since, after including the
log(R) dependence coming from integration over the loop momenta, the amplitude integrand diverges slowgr thidre1
second type of degenerate surface can lead to a divergent amplitude if there is an onshell state propagating along the thin tube
between the two worldsheets. But when all external states are on one of the two worldsheets, vanishing of the one-point function
implies the absence of this divergence. And when all but one of the external states are on one of the two worldsheets, vanishing
of the two-point function implies the absence of this divergence. Finally, when there are at least two external states on each of
the two worldsheets, the divergence can be removed by analytic continuation of the external momenta [4]. Note that vanishing
of the three-point function is not required for finiteness.
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So with the two mild assumptions of factorization and absence of unphysical divergences in the interior of modtititipace,
non-renormalization theorem implies that massless multiloop superstring amplitudes are finite order-by-order in perturbation
theory. Previous attempts to prove this non-renormalization theorem using the RNS formalism [24] were unsuccessful because
they ignored unphysical poles of the spacetime supersymmetry currents [2] and incorrectly assumed that the integrand of the
scattering amplitude was spacetime supersymmetric. Using the GS formalism, there are arguments for the non-renormalization
theorem [26], however, these arguments do not rule out the possibility of unphysical divergences in the interior of moduli
space from contact term singularities between light-cone interaction point operators [11]. Mandelstam was able to overcome
this obstacle and prove finiteness [25] by combining different features of the RNS and GS formalisms. However, the finiteness
proof here is more direct than the proof of [25] since it is derived from a single formalism.

In Section 2 of this article, the worldsheet action and BRST operator in the super-Poincaré invariant pure spinor formalism of
[12] are reviewed. In Section 3, the three new ingredients needed for multiloop amplitude computations are described: Lorentz-
invariant measure factors for the pure spinor ghosts; picture-changing operators; and a canghmsten non-zero picture. In
Section 4, a super-Poincaré covariant prescription is giveivfpoint g-loop amplitudes which has been shown to agree with
the RNS prescription for tree and massless four-point one-loop amplitudes. (See [22] for a more detailed version of Sections 3
and 4.) In Section 5, the counting of fermionic zero modes is used to prove certain vanishing theorems. Finally, in Section 6,
some open questions and further applications are discussed.

2. Review of super-Poincaréinvariant pure spinor formalism
2.1. Worldsheet action

The worldsheet variables in the Type I1B version of this formalism include the Green—Schwarz—-Siegel [27,28] matter vari-
gbles(xm, 0%, pa; 0%, py) form =0to 9 andx = 1 to 16, and the pure spinor ghost variable®, wq; AY, wy) whereA® and
A% are constrained to satisfy the pure spinor conditions

A (Meprf =0, X% (y™M)eprf =0 (1)

form =010 9.(y™)ys and (y’”)"‘ﬁ are 16x 16 symmetric matrices which are the off-diagonal blocks of the«&2 ten-
dimensional”"-matrices and satisfgy )45 ()P = 24"} . For the Type IIA version of the formalism, the chirality of the
spinor indices on the right-moving variables is reversed, and for the heterotic version, the right-moving variables are the same
as in the RNS formalism.

In conformal gauge, the worldsheet action is

1 - _ _ _ -
S :/dzz [—Eaxmaxm — pad0® — padf% + wedr* + u‘;aa/\“} )
wherer® andA® satisfy (1). The OPE'’s for the matter variables are easily computed to be

AR = —™logly — 212 pa(OP(2) > (v — 27 LE, ®)

however, the pure spinor constraint b# prevents a direct computation of its OPE’s witly . As discussed in [12], one can

solve the pure spinor constraint and exprgdsn terms of eleven unconstrained free fields which manifestly preserve a U(5)

subgroup of the (Wick-rotated) Lorentz group. Although the OPE’s of the unconstrained variables are not manifestly Lorentz-

covariant, all OPE computations involving can be expressed in a manifestly Lorentz-covariant manner. So the non-covariant

unconstrained description of pure spinors is useful only for verifying certain coefficients in the Lorentz-covariant OPE's.
Because of the pure spinor constraintdh the worldsheet variablas, contain the gauge invariance

Swy = Am()’m}\)as 4)

so 5 of the 16 components af, can be gauged away. To preserve this gauge invariangcean only appear in the gauge-
invariant combinations

1
Nn = Ewa(ymn)“,sxﬁ, J =wgr?, (5)

1n light-cone gauge, unphysical divergences in the interior of moduli space could come from singularities between colliding interaction
points [11,25]. In conformal gauge, there are no obvious potential sources for these unphysical divergences in the interior of moduli space since
the amplitudes are independent (up to surface terms) of the locations of picture-changing operators.
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which are the Lorentz currents and ghost current. As shown in [15] and [16] using either the U(5) or SO(8) unconstrained
descriptions of pure spinorad,, andJ satisfy the Lorentz-covariant OPE’s
1 _ _

Nn A% @) = 5= mnh)® TR @) > (=), (6)

Nkl(y)Nmn (2) > —3(y — Z)—2()7rl[knl]m) +(y— Z)—1(nm[lNk]n _ Un[lNk]m),

JMI@) > =4y -2 J()N™(z)— regular

NonWT (@) = (v =2 PNun(2), JTWT (@) > =8y —2) >+ (y =2 2 (2),
where

1
T = —éaxmaxm — a0 + wedr® (M

is the left-moving stress tensor. From the OPE’s of (6), one sees that the pure spinor condition implies that the levels for
the Lorentz and ghost currents ar@ and—4, and that the ghost-number anomaly-i8. Note that the total Lorentz current
M™M= —%(py’””@) + N"™" has levek = 4—3 = 1, which coincides with the level of the RNS Lorentz currgft” = """,

The ghost-number anomaly ef8 will be related in Section 3.1 to the pure spinor measure factor. Finally, the stress tensor of (7)
has no central charge since thel0— 32) contribution from the(x™, 6%, p,) variables is cancelled by the22 contribution

from the eleven independe(t®, wy) variables.

2.2. BRST operator and massless vertex operators

Physical open string states in this formalism are defined as super-Poincaré covariant states of ghost-tuimtibe
cohomology of the nilpotent BRST-like operator

0=§ids ®
where

dy = L moby L m 0Po7 967 9

a—Pa_E)’a/g xm_éyaﬁ)/m IZ) ©)
is the supersymmetric Green—Schwarz constraint. As shown by Sieged/{283tisfies the OPE’s

du(Ndp@) > (v =) W m,  deMI™ (@)~ (v — 2 1y s6P (), (10)
de(10P ) —> (v —2728E, T (2) > —(y — 272,

wherelT" = 9x™ + %eymae is the supersymmetric momentum and

1 1
Go = f (pa + 57a0” Bxm + 5 ViV yseﬂeyzwa) (11)
is the supersymmetric generator satisfying

{qa,qﬁ}=y{,’f3?§8xm, (90, T" ()] =0,  {qa,dp(2)} =0.

To compute the massless spectrum of the open superstring, note that the most general vertex operator with zero conformal

weight at zero momentum angl ghost-number is

V=2%4(x,0), 12)
where Ay (x, 0) is a spinor superfield depending only on the worldsheet zero mode¥ aind 6%. Using the OPE that
da(y) f(x(2),6(2)) = (y —2)"1Dg f where

a 1
— 7 4 ZpB

Dy = PV + 29 yggam
is the supersymmetric derivative, one can easily check ghdt=0 andéV = QA implies that Ay (x,6) must satisfy
A%3P Dy Ag = 0 with the gauge invariana®y = Dy A. ButA%A# Dy Ag = 0 implies that

DaAﬂ +DﬁAa =)/0773Am (13)
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for some vector superfield,, with the gauge transformations
SAy = Dy A, 8Am = dmA. (14)

In components, one can use (13) and (14) to gaig@nd A, to the form

; 1 1
Ag(x,0) = elk-x <Eam ()’me)a - §(§Vm€)(ym9)a + - ‘)s (15)

An(x,6) =€ (am + (Ey"60) + ),

wherek? = k™ a,, = k™ (ym€)q = 0, and- - - involves products ok, with a,, or €. So (13) and (14) are the equations of
motion and gauge invariances of the ten-dimensional super-Maxwell multiplet, and the cohomology at ghostiofh@r
correctly describes the massless spectrum of the open superstring [29].

As in bosonic string theory, one can obtain the integrated open string vertex opé#atoi(z) from the unintegrated vertex
operatorV by requiring thatQU (z) = dV (z). For the massless states where the unintegrated vertex operateri§ A, (x, 0),
one finds that

1
U = 30%Aq(x,0) + IT" A (x, 0) + da W (x, 6) + E1\1"1”35,,,,@, 0) (16)

satisfiesQU = 0(A* Ay) whereA,, = %Day,ﬁﬁAﬁ is the vector gauge superfield,? = %)y,f{ﬁ(DaAm — 3™ Agy) is the spinor
superfield strength, anfl;,;;, = %Da Ymn)® g wh = o Ay is the vector superfield strength.

3. Functional integration, picture-changing operators and the b ghost
3.1. Measure factor for pure spinor ghosts

As reviewed in Section 2.1, the gauge invariance of (4) implies that pure spinor ghosts can only appear through the operators
A%, Nmn andJ. Correlation functions for the non-zero modes of these operators are easily computed using the OPE’s of (6).
However, after integrating out the non-zero worldsheet modes, one still has to functionally integrate over the worldsheet zero
modes. Becaus&* has zero conformal weight and satisfies the pure spinor constraint

Ay™r =0, a7)

A% has 11 independent zero modes on a gensisrface. And becaus¥€,,, andJ have+1 conformal weight and are defined
from gauge-invariant combinations af,, they have 1% independent zero modes on a gegusirface. Note that (17) implies
that Ny, = %(wymn)\) andJ = wa are related by equation [30]

1
SN Yimapg — 5 JAX: )/O'Zﬁ = Zytfﬁa)\“ (18)

where the normal-ordered product is defined Mj?:(z)k“ @:=¢dy(y— z)’lUA(y))J" (z). (The coefficient of thé@r® term

is determined by computing the double pole of the left-hand side of (18)Jw)tdust as (17) implies that all 16 components
of A% can be expressed in terms of 11 components, equation (18) implies that all 45 componéfitsen be expressed in
terms ofJ and ten components of"™".

Because of the constraints of (17) and (18), it is not immediately obvious how to functionally integrate over the pure spinor
ghosts. However, as will be shown below, there is a natural Lorentz-invariant measure factor for the pure spinor ghosts which
can be used to define functional integration.

A Lorentz-invariant measure factor for th& zero modes can be obtained by noting that

(dll)h)[oclaz...alﬂ = A0 A dAY2 A A d2O1L )
satisfies the identity

)Lﬁyortriﬁ (dtyyleezeunl — g (20)

because.ydx = 0. Using the properties of pure spinors, this implies that;% components ofd11)lere11l gre related
to each other by a Lorentz-invariant measure fagfox] of +8 ghost number which is defined by

114 \[og--q1] _ [ag---a11] 5 B1, B2, B3
(@) = [DAT (5, 6,y M A2A )
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whereT([(%llb;‘ﬁlsl)]) is the unique Lorentz-invariant tensor (up to rescaling) which is symmetricyandtrix traceless (i.e.,

yﬁlf’zf([(%ll'/é‘z‘j;;}) — 0) in three lowered indices and antisymmetric in eleven raised indices. It is defined by

[og-e1a]l _ g1 m n P _Loviag mn n P
T((ﬂlﬁzﬁs))_g (y’”"P)“lWl?’[Vﬁlamyﬁzalsyﬁsale 2074 V(prp2Y BaaralversVsase |-

One can similarly construct a Lorentz-invariant measure factor foNthé andJ zero modes from
(dYIN)llmanallmanz]-Imionioll — g nlmanal \ glmanal .o A g nImi0na0l A g, (22)
Using the constraint of (18) and keepiig fixed while varyingN™" andJ, one finds that (22) satisfies the identity
¥y (dllN)[[mmﬂ[m2n2]~-[M1onlo]] -0 (23)
Using the properties of pure spinors, this implies thatié% components of
(d11 Ny limanallmana]--[maonioll
are related to each other by a Lorentz-invariant measure fgtgil of —8 ghost number which is defined by
(d11nlimanallmanzl--[mionioll — (p ((hy™MLmLm2m3Ma ) ) (3,1, MSNSN2MENT ) ) (3 MBNGNINGMN ) ) (1, M10110M4NTNG )
+ permutationy (24)

where the permutations are antisymmetric under the exchangs; afith »;, and also antisymmetric under the exchange
of [mjn ;] with [mgn;]. Note that the index structure on the right-hand side of (24) has been chosen such the expression is
non-vanishing after summing over the permutations.
After using the OPEs of (6) to integrate out the non-zero modes of the pure spinor ghosts on g garfase, one will
obtain an expression

A=(f(,N1,J1,N2, J2,...,Ng, Jp)) (25)

which only depends on the 11 worldsheet zero modes, @nd on the 13 worldsheet zero modes & and J. Using the
Lorentz-invariant measure factors defined in (21) and (24), the natural definition for functional integration over these zero
modes is

A= /[DA][DNl][DNZ] ---[DNglf (A, N1, J1, N2, Jp, ..., Ng, Jg). (26)

Note that with this definitionf (1, N1, J1, N2, J2, ..., Ng, Jg) must carry ghost number8 + 8¢ to give a non-vanishing
functional integral, which agrees with theB ghost-number anomaly in the OPE biwith 7. It will now be shown how the
functional integral of (26) can be explicitly computed with the help of picture-changing operators.

3.2. Picture-changing operators

As is well-known from the work of Friedan, Martinec and Shenker [6] and E. Verlinde and H. Verlinde [2,3], picture-
changing operators are necessary in the RNS formalism because of the bgsgnighosts. Since the picture-raising and
picture-lowering operators involve the delta functiéiig) ands(y), insertion of these operators in loop amplitudes are needed
to absorb the zero modes of tiy& ) ghosts on a gemgssurfacez. Up to possible surface terms, the amplitudes are independent
of the worldsheet positions of these operators since the worldsheet derivatives of the picture-changing operators are BRST-
trivial. The surface terms come from pulling the BRST operator through tifeosts to give total derivatives in the worldsheet
moduli. If the correlation function diverges near the boundary of moduli space, these surface terms can give finite contributions
which need to be treated carefully. As will now be shown, functional integration over the bosonic ghosts in the pure spinor
formalism also requires picture-changing operators with similar properties to those of the RNS formalism. However, since the

2 In the RNS formalism, it is convenient to bosonize tfey) ghosts a8 = 3¢ e ¢ andy = ne? since the spacetime supersymmetry
generator involves a spin field constructed for the negative-energy chiral osidre delta functiong(8) andé(y) can then be expressed
in terms of¢ ass(B) = e® ands(y) = e~?. However, in the pure spinor formalism, there is no advantage to performing such a bosonization
since all operators can be expressed directly in term$§ pfV*" andJ. Furthermore, since functional integration over ¢hehiral boson can
give rise to unphysical poles in the correlation functions, the fact that all operators in the pure spinor formalism can be expressed in terms of
A, N J) allows one to avoid unphysical poles in pure spinor correlation functions.
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correlation functions in this formalism do not diverge near the boundary of moduli space, there are no subtleties due to surface
terms.

To absorb the zero modes af, N,,, and J, picture-changing operators in the pure spinor formalism will involve the
delta-functionss (Co A%), 8 (B N™™) ands (J) whereC, and B, are constant spinors and antisymmetric tensors. Although
these constant spinors and tensors are needed for the construction of picture-changing operators, it will be shown that scattering
amplitudes are independent of the choiceCgfand B, SO Lorentz invariance is preserved. As will be discussed later, this
Lorentz invariance can be made manifest by integrating over all choio€s ahd B,,;,. Note that the use of constant spinors
and tensors in picture-changing operators is unrelated to the pure spinor constraint, and is necessary whenever the bosoni
ghosts are not Lorentz scalars.

As in the RNS formalism, the picture-changing operators will be BRST-invariant with the property that their worldsheet
derivative is BRST-trivial. A ‘picture-lowering’ operatdfc with these properties is

Y = Co0%5(CprP) @7)
whereCy, is any constant spinor. Note thatr- = (CaA“)S(C,g)JS) =0and
Y =(C06)6(CAr) + (CH(CANS' (Cr) = Q[(CBQ)(C@)&’(CA)] (28)

wheres’ (x) = %S(x) is defined using the usual rules for derivatives of delta functions,&dx) = —§(x).
Although Y is not spacetime-supersymmetric, its supersymmetry variation is BRST-trivial since

gaYc = Ca8(CL) = —Cq (CL)8'(CL) = Q[—Co (CH)S'(C)]. (29)

Similarly, Y¢ is not Lorentz invariant, but its Lorentz variation is BRST-trivial since
1 1 1
M"Y = E(Cy"”‘e)(S(CA) + E(CG)(C)/'””A)B’(CA) = Q[E(Cymne)(CH)S/(CA)]. (30)

So different choices o€, only changeYc by a BRST-trivial quantity, and any on-shell amplitude computations involving
insertions ofY will be Lorentz invariant and spacetime supersymmetric up to possible surface terms. The fact that Lorentz
invariance is preserved only up to surface terms is unrelated to the pure spinor constraint, and is caused by the bosonic ghost:
not being Lorentz scalars.

One can also construct BRST-invariant operators involieB™" N,,;,,) ands(J) with the property that their worldsheet
derivative is BRST-trivial. These “picture-raising” operators will be callgglandZ ; and are defined by

1
Zp= Ean()\)’mnd)(S(B‘”quq)s Z;= (A¥dy)8(J), (31)

whereB,,,, is a constant antisymmetric tensor. One can check@¥t = 0Z; =0 and thaBZg anddZ; are BRST-trivial.
Furthermore, different choices &f,,,, only changeZ g by a BRST-trivial quantity.

3.3. Construction of b ghost

To computeg-loop amplitudes, the usual string theory prescription requires the inserti@g of 3) » ghosts of—1 ghost-
number which satisfy

{Q.bw)} =T ) (32)

whereT is the stress tensor of (7). After integratib@:) with a Beltrami differentialu p (u) for P =1 to 3¢ — 3, the BRST
variation ofb(u) generates a total derivative with respect to the Teichmuller parametessociated to the Beltrami differential

wup. But sincew, can only appear in gauge-invariant combinations of zero ghost number, there are no operators of negative
ghost number in the pure spinor formalism, so one cannot construct Sudghast. Nevertheless, as will now be shown, the
picture-raising operator

1
Zp= Ean(Ay’””d)S(BN)

can be used to construct a suitable substitute fobthleost in non-zero picture.
Since genug amplitudes also require }Qnsertions ofZg(z), one can combing3g — 3) insertions ofZg(z) with the
desired insertions of thix(u) ghost and look for a non-local operatog (1, z) which satisfies

[0.bpu,2)} =TwW) Zp(2). (33)
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Note thatZp carries+1 ghost-number, sbg carries zero ghost number. And (33) implies that integratiag z) with the
Beltrami differential p () has the same properties as integratig with u p (1) in the presence of a picture-raising operator

Zp(2).
Using

Z Z
ZB(Z):ZB(”)+/dvazB(U):ZB(”)+/ dv{Q, BpqgdNP1(v)§(BN(v))},
u u
one can define
bp(u,z)=bg )+ T(u)fdv Bpg NP (v)8(BN (v)) (34)

whereb g (1) is a local operator satisfying
{Q.bpw)} =Tw)Zp ). (35)
The explicit formula forbz (1) satisfying (35) is complicated and was computed in [22] up to some undetermined coeffi-
cients. Ignoring Lorentz indicegg has the form
bg = B(d®IT +dN 30 + N2+ N IT?)8(BN) + B>(d* + d°N IT + N°IT? + N?d36)s'(BN)
+ B3(d*N + d*N? 18" (BN) + B*d*N?)s" (BN). (36)

For proving vanishing theorems, it will be useful to note that all ternisgirhave+2 conformal weight and-4 ‘engineering’
dimension wherégx, 6, x,d, N] are defined to carryo, % 1, % 2] engineering dimension ant{BN) carries—1 conformal
weight and zero engineering dimension.

4. Multiloop amplitude prescription

Using the picture-changing operators dnglghost of Section 3, one can define a super-Poincaré covariant prescription for
computingN -point g-loop closed superstring scattering amplitudes as

3¢-3 10g g 11 2
-4=i/d2ﬁ:~d2n@3< I1 /?ﬂupup(uprPuULZP) [T zs.e [] zswr) []Ye, 00
P=1 P=3g-2 R=1 =1

N
X 1_[ /dth UT(IT)>, (37)
T=1

where| |2 signifies the left—right productp are the Teichmuller parameters associated to the Beltrami differentjalsp ),
and Uy (t7) are the dimensioil, 1) closed string vertex operators for theexternal states. The number of picture-lowering
and picture-raising operators in (37) are appropriate for absorbing the 11 zero maefesnaf the 1% zero modes ofy,, and
the locations of these picture-changing operators can be chosen arbitrarily. The constant antisymmetri'f¢nsorss,,
andZg, will be chosen such tha; = B;;10="-- = B410(g—1) for I =1to 10. In other words, there will be ten constant
antisymmetric tensorB}"", each of which appear igi picture-raising operators @iz ghosts.
Wheng = 1, the prescription of (37) needs to be modified for the usual reason that genus-one worldsheets are invariant under
constant translations, so one of the vertex operators should be unintegrated. The one-loop amplitude prescription is therefore

10 11 2 N
A=/d2f< /dzu n@bpy(u,z1) [] Zsp@p)Z10) [ ] Yo, 00| Vit [ ] /dth UT(IT)>» (38)
P=2 =1 T=2

whereVy(t1) is the unintegrated closed string vertex operator. And when0, three of the vertex operators are unintegrated
and one uses the prescription

a{ 2

11

1_[ Ye,(vp)

I=1

N
V1(11) Va(12) Va(t3) fﬁwwwv (39)
T=4
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As discussed in Section 3, the Lorentz variationsz?gj,, Zp, andYc, are BRST-trivial, so the prescription is Lorentz-
invariant up to possible surface terms. Also, all operators are manifestly spacetime supersymmetric ex¢gptvitiose
supersymmetry variation is BRST-trivial. In Section 5, it will be argued that surface terms can be ignored in this formalism
because of finiteness properties of the correlation functions. So the amplitude prescriptions of (37)—(39) are super-Poincaré
covariant andA is independent of the eleven constant spinGysand ten constant tensoBy which appear in the picture-
changing operators. One can therefore obtain manifestly Lorentz-covariant expressions from this amplitude prescription by
functionally integrating over the matter fields and pure spinor ghosts.

As usual, the functional integration factorizes into partition functions and correlation functions for the different worldsheet
variables. However, in the pure spinor formalism, the partition functions for the different worldsheet variables cancel each other
out. This is easy to verify since the partition function for the ten boseHivariables gives a factor atletdy) ~2(detdy) >
wheredg anddg are the holomorphic and antiholomorphic derivatives acting on fields of zero conformal weight, the partition
function for the sixteen fermioni¢#®, py) and (6%, p,) variables gives a factor afdetd)6(detd)16, and the partition
function for the eleven bosonia.%, wy) and (A%, w,) variables gives a factor ailetdg)~11(detdp) ~11. So to perform the
functional integral, one only needs to compute the correlation functions for the matter variables and pure spinor ghosts.

As described in detail in [22], these correlation functions can be computed by first separating off the zero modes from the
worldsheet variables and then using the OPE’s of (6) and (10) for performing the correlation functions for the nonzero modes of
these variables. Finally, one integrates over the worldsheet zero modes using the usual measure factors for the matter variable:
(x™, 6%, py) and using the Lorentz-invariant measure factors of Section 3.1 for the pure spinor ghost variables.

The resulting expression for the scattering amplitude naively depends on the eleven constantCgpamatgen constant
tensorsBp which appear in the picture-changing operators. However, due to Lorentz invariance of the picture-changing opera-
tors, one is guaranteed that this dependenc€;oand B p is BRST-trivial. One can therefore integrate over all possible choices
of C; and Bp and obtain a manifestly Lorentz-covariant expression for the multiloop amplitude. As shown in [22], integration
overC; andBp is straightforward and the resulting covariant expression agrees for tree amplitudes and for massless four-point
one-loop amplitudes with the well-known RNS expression.

5. Vanishing theorems

In this section, the amplitude prescription of Section 4 will be used to prove certain vanishing theorems for massless closed
superstring scattering amplitudes. In Section 5.1, it will be proven that magglgsant g-loop amplitudes are vanishing
wheneverN < 4 andg > 0, implying (with two mild assumptions) the perturbative finiteness of superstring theory. After, in
Section 5.2, it will be proven that the low-energy limit of the four-point massless amplitude gets no perturbative contributions
above one-loop, in agreement with the Type [IB S-duality conjecture of Green and Gutperle.

To prove these vanishing theorems, it will be useful to express the massless closed superstring vertex operator as the left—
right product of two open superstring vertex operator¥@ssed= Vopen x Vopenwhere the closed superstring gravitof”,
gravitini y2 andy%, and Ramond—Ramond field strength? are identified with left—right products of the open superstring
photona,, and photina® as

hn = amin, Vi =amE, Uy =§am, FP=£"EP.

Using the unintegrated and integrated open superstring massless vertex operators of (12) and (16), this implies that
Velosed= %3P Agp (x,60,0) = €¥*2% 4, 0)7P A5(6) and (40)
Uclosed= € (89°‘Aa(9) I A (6) + dog W (O) + %Nmn]:mn (0))

x (se‘ﬁA p@) + 17 Ap@) +ds WP @) + SN Py @) (41)
are the unintegrated and integrated massless closed superstring vertex operators.

5.1. Non-renormalization theorem

In this subsection, the amplitude prescription of Section 4 will be used to prove that maggtesst g-loop amplitudes
vanish wheneveW < 4 andg > 0. For N = 0, this implies vanishing of the cosmological constant; foe= 1, it implies
absence of tadpoles; fay = 2, it implies the mass is not renormalized; and /o= 3, it implies the coupling constant is
not renormalized. Using the arguments of [4,24] which were summarized in the introduction, and assuming factorization and
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the absence of unphysical divergences in the interior of moduli space, these non-renormalization theorems imply that massless
superstring scattering amplitudes are finite order-by-order in perturbation theory.

Although surface terms were ignored in deriving the amplitude prescription of Section 4, it is necessary that the proof of
the non-renormalization theorem remain valid even if one includes such surface term contributions. Otherwise, there could be
divergent surface term contributions which would invalidate the proof. For this reason, one cannot assume Lorentz invariance
or spacetime supersymmetry to prove the non-renormalization theorem since the prescription of (37) is Lorentz invariant and
spacetime supersymmetric only after ignoring the surface terms.

Fortunately, it will be possible to prove the non-renormalization theorem using only the counting of zero modes. Since this
type of argument implies the pointwise vanishing of the integrand of the scattering amplitude (as opposed to only implying that
the integrated amplitude vanishes), the proof remains valid if one includes the contribution of surface terms.

On a surface of arbitrary genus, one needs 16 zero modg% ahdd® for the amplitude to be non-vanishing. Since the
only operators in (37) containingf* zero mode3 are the elevery¢ picture-lowering operators and tiig; vertex operators,
and since eachic contributes a singlé® zero mode, thé/7 vertex operators must contribute at least fi¢eand fived® zero
modes for the amplitude to be non-vanishing. This immediately implies that zero-point amplitudes vanish.

For one-point amplitudes, conservation of momentum implies that the external state must have mokffeatmBut
whenk”™ = 0, the maximum number of zero modes in the vertex operator i®®mad one?® coming from the superfield

Agp(0,0) = hypn(y"0)a(y"0)p.

All other components in the superfields appearing in the vertex operators of (40) and (41) are either fermionic or involve powers
of k™. So all one-point amplitudes vanish.
To prove that massless two and three-point amplitudes vanish for norg-zeng needs to count the available zero modes
of dy, as well as the zero modes »f,,,. On a genug surface, non-vanishing amplitudes requirg #&ro modes ofl,. In
addition, the number oW,,;, zero modes must be at least as large as the number of derivatives acting on the delta functions
3(BN) in the amplitude prescription. Otherwise, integration overMi& zero modes will trivially vanish.
To prove theN -point g-loop non-renormalization theorem fof = 2 and N = 3, it is useful to distinguish between one-
loop amplitudes and multiloop amplitudes. For masshkégsoint one-loop amplitudes using the prescription of (38), there are
(N —1) integrated vertex operators of (41), each of which can either provigezaro mode or aiv,;,;, zero mode. So one has
at most(N —1— M) d,, zero modes and N,,,, zero modes coming from the vertex operators whidrg N — 1. Each of the
nine Zp, operators and ong; operator can provide a singig zero mode, so to get a total of 1 zero modeshg must
provide at least

16— (N—1—M)—9—1=7—N+M (42)

dy zero modes.

It is easy to verify from (36) thakg can provide a maximum of fouf, zero modes, however, the terms containing four
dy zero modes also contai{r-1) Ny, zero modes where a derivative acting&iB N) counts as a negativi¥,,, zero mode.
This fact can easily be derived from thetl engineering dimension dfg where[A%, 6%, x™, dy, Nmn] are defined to carry
engineering dimensiofd, % 1, :—23 2] ands(BN) is defined to carry zero engineering dimension. Si@)é carries engineering
dimension+-6, it can only appear ihg together with a term such @& B N) which carries engineering dimensier2.

So forN < 3 andM =0, (42) implies that the only way to obtain #§ zero modes is ibg provides at least foud,, zero
modes. But in this casép contains(—1) N,,, zero modes, so the amplitudes vanish since there are not eddpglzero
modes to absorb the derivatives&(B N). And whenM > 0, the amplitude vanishes fof < 3 since one needs more than four
dy zero modes to come froing.

For multiloop amplitudes, the argument is similar, but one nowMéstegrated vertex operators instead &f— 1). So the
vertex operators can contribute a maximum(&f— M) d, zero modes anf N,,, zero modes wherg/ < N. And each of
the 7g + 3 Zp andg Z; operators can provide a singlg zero mode. So to get a total of 4@/, zero modes, thé3g — 3)
bp's must provide at least

16— (N-M)—(7g+3)—g=8g—-3-N+M (43)
3 When expressed in terms of the free field¥', 6%, py), 1™ andd, containd’s without derivatives which naively could contributé&

zero modes. However, if the supersymmetric OPEs of (10) are used to integrate out the non-zero worldsheet modes, the OPER fhvolving
anddy will never produce®* zero modes.
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dy zero modes. Sinc€g — 3) bp's carry engineering dimension ¢2- 12, d, carries engineering dimensic% and Ny,
carries engineering dimensiaf?, the(3g — 3) bg's can provide a maximum aBg — 8) d, zero modes with no derivatives of
8(BN),or(8g —8+ %M) dy zero modes withVf derivatives ofs (BN). Since

4
88+ ZM <Bg—3-N+M (44)

wheneverM < N < 3, there is no way for thé3g — 3) bpg’s to provide enougll, zero modes without providing too many
derivatives oS (BN).
So theN-point multiloop non-renormalization theorem has been provevfer 3. Note that whemV = 4,

4
8z —8+ M >8—3-N+M (45)

if one choosesV = 3 or M = 4. So four-point multiloop amplitudes do not need to vanish. However, as will be shown in
Section 5.2, one can prove that the low-energy limit of these multiloop amplitudes vanish, which implies théttén in
the effective action gets no perturbative corrections above one loop.

5.2. Absence of multiloop R* contributions

Although the four-point massless amplitude is expected to be non-vanishing at all loops, there is a conjecture based on
S-duality of the Type IIB effective action th&* terms in the low-energy effective action do not get perturbative contributions
above one-loop [23]. After much effort, this conjecture was recently verified in the RNS formalism at two loops [7,5]. As will
now be shown, the multiloop prescription of Section 4 can be easily used to prove the validity of this S-duality conjecture at all
loops.

It was proven using (45) that the four-point massless multiloop amplitude vanishes unless at least three of the four integrated
vertex operators contribute &, zero mode. Since the only operators contaiirzgro modes are the eleven picture-lowering
operators and the external vertex operators, the functional integrad @ezo modes in the multiloop prescription for the four-

point amplitude gives an expression of the form
2
‘ / d169<e>11 dan ©) + > N,,qf"qw)) H Nun F7" (0)] - (46)
T=2

Since the external vertex operators must contribute at le@®tamdd® zero modes, one easily sees that there is no way to
produce ariF4|2 term which would imply anR* term in the effective action. In fact, by examining the component expansion
of the F,,, (9) and W (9) superfields, one finds that the term with fewest number of spacetime derivatives which contributes 5
s and 59s is|(d F)(d F) F2|2, which would imply a3% R* contribution to the low-energy effective action.

So it has been proven that there are no multiloop contribution&*tterms (orazR4 terms) in the low-energy effective
action of the superstring. It should be noted that this proof has assumed that the correlation functi6hdnes not contribute
inverse powers o which could cancel momentum factors coming fromatiategration in (46). Although the” correlation
function does contain poles as a functionk&f when the external vertex operators collide, these poles only contribute to non-
local terms in the effective action which involve massless propagators, and are not expected to contribute to local terms in the
effective action such as the? term.

6. Conclusions

As discussed in these proceedings, the super-Poincaré covariant prescription for multiloop superstring amplitudes has severa
advantages over the RNS prescription. There is no sum over spin structures, surface terms from the boundary of moduli space
can be ignored, and there are no unphysical poles from a negative-energy chiral boson. Furthermore, the partition functions
for the matter and ghost variables cancel, amplitudes involving external Ramond states are no more complicated than those
involving external Neveu—Schwarz states, and one can easily prove certain vanishing theorems by counting zero modes of the
fermionic superspace variables.

Nevertheless, there are still some open questions concerning the super-Poincaré covariant prescription which would be useful
to answer. Since the formalism has only been defined in conformal gauge, it is not yet clear how to derive the BRST operator and
picture-changing operators from a worldsheet reparameterization-invariant action analogous to the Nambu—Goto action for the
bosonic string. One clue may come from thie= 2 twistor-string formalism which has been shown at the classical level to be
related to the pure spinor formalism and thghost [31]. Another important question is to show that the multiloop prescription
is unitary, possibly by proving its equivalence with a light-cone gauge prescription.
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There are many possible applications of the multiloop prescription described here. For example, one could try to verify
duality conjectures which imply vanishing theorems for higher-derivatitéerms [32],R* H4¢—* terms [33], andF?" terms
[34]. Another possible application is to generalize multiloop computations in a flat ten-dimensional background to multiloop
computations in a Calabi-Yau background, perhaps by using the hybrid formalism. Finally, a recent exciting application of
these methods has been developed by Anguelova, Grassi and Vanhove [35] for computing covariant one-loop amplitudes in
eleven dimensions using the pure spinor version ofithel1 superparticle [36].
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