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Abstract

In this article, the multiloop amplitude prescription using the super-Poincaré invariant pure spinor formalism for
perstring is reviewed. Unlike the RNS prescription, there is no sum over spin structures and surface terms coming
boundary of moduli space can be ignored. MasslessN -point multiloop amplitudes vanish forN < 4, which implies (with
two mild assumptions) the perturbative finiteness of superstring theory. Also,R4 terms receive no multiloop contributions
agreement with the Type IIBS-duality conjecture of Green and Gutperle.To cite this article: N. Berkovits, C. R. Physique 6
(2005).
 2005 Published by Elsevier SAS on behalf of Académie des sciences.

Résumé

Calculs covariants d’amplitudes de supercordes à plusieurs boucles. Dans cet article, une prescription pour calculer
amplitudes de supercordes à plusieur boucles avec le formalisme invariant de (super-)Poincaré des spineurs purs e
revue. Contrairement à la prescription de RNS, il n’y a pas de somme sur les structures de spins et aucun termes d
l’espace des modules ne doit être ignoré. Les amplitudes à plusieur boucles avecN états externes de masse nulle sont nu
pourN < 4, ce qui implique (modulo deux hypothèses mineures) que la théorie des cordes perturbative est finie. En
termes enR4 ne recoivent pas de contributions à plusieur boucles en accord avec la conjecture de dualitéS de Green et Gutperl
pour la théorie de type IIB.Pour citer cet article : N. Berkovits, C. R. Physique 6 (2005).
 2005 Published by Elsevier SAS on behalf of Académie des sciences.
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1. Introduction

The computation of multiloop amplitudes in superstring theory has many important applications such as verify
turbative finiteness and testing duality conjectures. Nevertheless, this subject has received little attention over the la
years, mainly because of difficulties in computing multiloop amplitudes using either the Ramond–Neveu–Schwarz (
Green–Schwarz (GS) formalism.

In the RNS formalism, spacetime supersymmetric amplitudes are obtained after summing over spin structures, whi
done explicitly only when the number of loops and external states is small [1]. Since there are divergences near the

✩ A more detailed version of these proceedings has been published in Journal for High Energy Physics 0409 (2004) 047.
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1631-0705/$ – see front matter 2005 Published by Elsevier SAS on behalf of Académie des sciences.
doi:10.1016/j.crhy.2004.12.009
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of moduli space before summing over spin structures, surface terms in the amplitude expressions need to be tre
care [2–5]. Furthermore, the complicated nature of the Ramond vertex operator in the RNS formalism [6] makes it di
compute amplitudes involving external fermions or Ramond–Ramond bosons. For these reasons, up to now, explicit
computations in the RNS formalism have been limited to four-point two-loop amplitudes involving external Neveu–S
bosons [7,5].

In the GS formalism, spacetime supersymmetry is manifest but one needs to fix light-cone gauge and introduce non
operators at the interaction points of the Mandelstam string diagram [8–10]. Because of complications caused by th
covariant interaction point operators [11], explicit amplitude expressions have been computed using the light-cone GS f
only for four-point tree and one-loop amplitudes [8].

Over the past twenty years, there have been several approaches to covariant quantization of the superstring. How
of these approaches were able to compute even tree-level amplitudes in a super-Poincaré covariant manner. Four y
new formalism for the superstring was proposed [12,13] with manifest ten-dimensional super-Poincaré covariance. In c
gauge, the worldsheet action is quadratic and physical states are defined using a BRST operator constructed from s
matter variables and a pure spinor ghost variable. A super-Poincaré covariant prescription was given for computingN -point
tree amplitudes, which was shown to coincide with the standard RNS prescription [14,15]. It was also proven that th
cohomology reproduces the correct superstring spectrum [16] and that BRST invariance in a curved supergravity ba
implies the low-energy superspace equations of motion for the background superfields [17,18].

Because of the pure spinor constraint satisfied by the worldsheet ghosts, it was not obvious how to define functio
gration in this formalism. For this reason, the tree amplitude prescription in [12] relied on BRST cohomology for defin
correct normalization of the worldsheet zero modes. Furthermore, there was no naturalb ghost in this formalism, which mad
it difficult to define amplitudes in a worldsheet reparameterization-invariant manner. Because of these complication
not clear how to compute loop amplitudes using this formalism and other groups looked for ways of relaxing the pur
constraint without modifying the BRST cohomology [19–21].

Recently, it was shown how to perform functional integration by defining a Lorentz-invariant measure for the pure
ghosts, introducing appropriate ‘picture-changing’ operators, and constructing a compositeb ghost in a non-zero picture. Wit
these three ingredients, it was straightforward to generalize the tree amplitude prescription of [12] to a super-Poincaré
prescription forN -pointg-loop amplitudes [22].

The need for picture-changing operators in this formalism is not surprising since, like the bosonic(β, γ ) ghosts in the RNS
formalism [6], the pure spinor ghosts are chiral bosons with worldsheet zero modes. As in the RNS formalism, the wo
derivatives of these picture-changing operators are BRST trivial so, up to possible surface terms, the amplitudes are in
of their locations on the worldsheet. However, unlike the RNS formalism, there is no need to sum over spin struct
there are no divergences at the boundary of moduli space. Thus, surface terms can be safely ignored in the loop
computations.

Although the explicit computation of arbitrary loop amplitudes is complicated, there are several features of the pres
which are simpler than in the RNS prescription. For example, there is no sum over spin structures, no surface terms
boundary of moduli space, and no unphysical poles from negative-energy chiral bosons. Furthermore, the partition
for the matter and ghost variables cancel, amplitudes involving external Ramond states are no more complicated t
involving external Neveu–Schwarz states, and one can easily prove vanishing theorems by counting zero modes of the
superspace variables. For example, S-duality of the Type IIB superstring implies thatR4 terms in the low-energy effective actio
receive no perturbative corrections above one-loop [23]. After much effort, this was recently verified in the RNS form
two-loops [7,5]. Using the formalism described here, this S-duality conjecture can be easily verified for all loops.

Similarly, one can easily prove the non-renormalization theorem that masslessN -point multiloop amplitudes vanish when
everN < 4. Assuming factorization, this non-renormalization theorem implies the absence of divergences near the b
of moduli space [4,24]. Note that the boundary of moduli space includes two types of degenerate surfaces: surfaces
radiusR of a handle shrinks to zero, and surfaces which split into two worldsheets connected by a thin tube. As expl
[4], the first type of degenerate surface does not lead to divergent amplitudes in a tachyon-free theory since, after incl
log(R) dependence coming from integration over the loop momenta, the amplitude integrand diverges slower than 1/R. The
second type of degenerate surface can lead to a divergent amplitude if there is an onshell state propagating along th
between the two worldsheets. But when all external states are on one of the two worldsheets, vanishing of the one-poin
implies the absence of this divergence. And when all but one of the external states are on one of the two worldsheets,
of the two-point function implies the absence of this divergence. Finally, when there are at least two external states o
the two worldsheets, the divergence can be removed by analytic continuation of the external momenta [4]. Note that v
of the three-point function is not required for finiteness.
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So with the two mild assumptions of factorization and absence of unphysical divergences in the interior of moduli spa1 this
non-renormalization theorem implies that massless multiloop superstring amplitudes are finite order-by-order in per
theory. Previous attempts to prove this non-renormalization theorem using the RNS formalism [24] were unsuccessfu
they ignored unphysical poles of the spacetime supersymmetry currents [2] and incorrectly assumed that the integra
scattering amplitude was spacetime supersymmetric. Using the GS formalism, there are arguments for the non-renor
theorem [26], however, these arguments do not rule out the possibility of unphysical divergences in the interior of
space from contact term singularities between light-cone interaction point operators [11]. Mandelstam was able to o
this obstacle and prove finiteness [25] by combining different features of the RNS and GS formalisms. However, the fi
proof here is more direct than the proof of [25] since it is derived from a single formalism.

In Section 2 of this article, the worldsheet action and BRST operator in the super-Poincaré invariant pure spinor form
[12] are reviewed. In Section 3, the three new ingredients needed for multiloop amplitude computations are described
invariant measure factors for the pure spinor ghosts; picture-changing operators; and a compositeb ghost in non-zero picture. I
Section 4, a super-Poincaré covariant prescription is given forN -point g-loop amplitudes which has been shown to agree w
the RNS prescription for tree and massless four-point one-loop amplitudes. (See [22] for a more detailed version of S
and 4.) In Section 5, the counting of fermionic zero modes is used to prove certain vanishing theorems. Finally, in S
some open questions and further applications are discussed.

2. Review of super-Poincaré invariant pure spinor formalism

2.1. Worldsheet action

The worldsheet variables in the Type IIB version of this formalism include the Green–Schwarz–Siegel [27,28] mat
ables(xm, θα,pα; θ̄α, p̄α) for m = 0 to 9 andα = 1 to 16, and the pure spinor ghost variables(λα,wα; λ̄α, w̄α) whereλα and
λ̄α are constrained to satisfy the pure spinor conditions

λα(γ m)αβλβ = 0, λ̄α(γ m)αβ λ̄β = 0 (1)

for m = 0 to 9. (γ m)αβ and(γ m)αβ are 16× 16 symmetric matrices which are the off-diagonal blocks of the 32× 32 ten-

dimensionalΓ -matrices and satisfy(γ (m)αβ(γ n))βγ = 2ηmnδ
γ
α . For the Type IIA version of the formalism, the chirality of th

spinor indices on the right-moving variables is reversed, and for the heterotic version, the right-moving variables are
as in the RNS formalism.

In conformal gauge, the worldsheet action is

S =
∫

d2z

[
−1

2
∂xm∂̄xm − pα∂̄θα − p̄α∂θ̄α + wα∂̄λα + w̄α∂λ̄α

]
(2)

whereλα andλ̄α satisfy (1). The OPE’s for the matter variables are easily computed to be

xm(y)xn(z) → −ηmn log|y − z|2, pα(y)θβ(z) → (y − z)−1δ
β
α , (3)

however, the pure spinor constraint onλα prevents a direct computation of its OPE’s withwα . As discussed in [12], one ca
solve the pure spinor constraint and expressλα in terms of eleven unconstrained free fields which manifestly preserve a
subgroup of the (Wick-rotated) Lorentz group. Although the OPE’s of the unconstrained variables are not manifestly
covariant, all OPE computations involvingλα can be expressed in a manifestly Lorentz-covariant manner. So the non-cov
unconstrained description of pure spinors is useful only for verifying certain coefficients in the Lorentz-covariant OPE’

Because of the pure spinor constraint onλα , the worldsheet variableswα contain the gauge invariance

δwα = Λm(γmλ)α, (4)

so 5 of the 16 components ofwα can be gauged away. To preserve this gauge invariance,wα can only appear in the gaug
invariant combinations

Nmn = 1

2
wα(γmn)αβλβ, J = wαλα, (5)

1 In light-cone gauge, unphysical divergences in the interior of moduli space could come from singularities between colliding in
points [11,25]. In conformal gauge, there are no obvious potential sources for these unphysical divergences in the interior of moduli s
the amplitudes are independent (up to surface terms) of the locations of picture-changing operators.
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which are the Lorentz currents and ghost current. As shown in [15] and [16] using either the U(5) or SO(8) uncon
descriptions of pure spinors,Nmn andJ satisfy the Lorentz-covariant OPE’s

Nmn(y)λα(z) → 1

2
(y − z)−1(γmnλ)α, J (y)λα(z) → (y − z)−1λα, (6)

Nkl(y)Nmn(z) → −3(y − z)−2(
ηn[kηl]m) + (y − z)−1(

ηm[lNk]n − ηn[lNk]m)
,

J (y)J (z) → −4(y − z)−2, J (y)Nmn(z) → regular,

Nmn(y)T (z) → (y − z)−2Nmn(z), J (y)T (z) → −8(y − z)−3 + (y − z)−2J (z),

where

T = −1

2
∂xm∂xm − pα∂θα + wα∂λα (7)

is the left-moving stress tensor. From the OPE’s of (6), one sees that the pure spinor condition implies that the l
the Lorentz and ghost currents are−3 and−4, and that the ghost-number anomaly is−8. Note that the total Lorentz curre
Mmn = −1

2(pγ mnθ)+Nmn has levelk = 4−3= 1, which coincides with the level of the RNS Lorentz currentMmn = ψmψn.
The ghost-number anomaly of−8 will be related in Section 3.1 to the pure spinor measure factor. Finally, the stress tenso
has no central charge since the(+10− 32) contribution from the(xm, θα,pα) variables is cancelled by the+22 contribution
from the eleven independent(λα,wα) variables.

2.2. BRST operator and massless vertex operators

Physical open string states in this formalism are defined as super-Poincaré covariant states of ghost-number+1 in the
cohomology of the nilpotent BRST-like operator

Q =
∮

λα dα (8)

where

dα = pα − 1

2
γ m
αβθβ∂xm − 1

8
γ m
αβγm γ δθ

βθγ ∂θδ (9)

is the supersymmetric Green–Schwarz constraint. As shown by Siegel [28],dα satisfies the OPE’s

dα(y)dβ(z) → −(y − z)−1γ m
αβΠm, dα(y)Πm(z) → (y − z)−1γ m

αβ∂θβ(z), (10)

dα(y)∂θβ(z) → (y − z)−2δ
β
α , Πm(y)Πn(z) → −(y − z)−2ηmn,

whereΠm = ∂xm + 1
2θγ m∂θ is the supersymmetric momentum and

qα =
∮ (

pα + 1

2
γ m
αβθβ∂xm + 1

24
γ m
αβγm γ δθ

βθγ ∂θδ

)
(11)

is the supersymmetric generator satisfying

{qα, qβ } = γ m
αβ

∮
∂xm,

[
qα,Πm(z)

] = 0,
{
qα, dβ(z)

} = 0.

To compute the massless spectrum of the open superstring, note that the most general vertex operator with zero
weight at zero momentum and+1 ghost-number is

V = λαAα(x, θ), (12)

whereAα(x, θ) is a spinor superfield depending only on the worldsheet zero modes ofxm and θα . Using the OPE tha
dα(y) f (x(z), θ(z)) → (y − z)−1Dαf where

Dα = ∂

∂θα
+ 1

2
θβγ m

αβ∂m

is the supersymmetric derivative, one can easily check thatQV = 0 and δV = QΛ implies thatAα(x, θ) must satisfy
λαλβDαAβ = 0 with the gauge invarianceδAα = DαΛ. But λαλβDαAβ = 0 implies that

D A + D A = γ m A (13)
α β β α αβ m
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δAα = DαΛ, δAm = ∂mΛ. (14)

In components, one can use (13) and (14) to gaugeAα andAm to the form

Aα(x, θ) = eik·x
(

1

2
am(γ mθ)α − 1

3
(ξγmθ)(γ mθ)α + · · ·

)
, (15)

Am(x, θ) = eik·x(
am + (ξγ mθ) + · · ·),

wherek2 = kmam = km(γmξ)α = 0, and · · · involves products ofkm with am or ξα . So (13) and (14) are the equations
motion and gauge invariances of the ten-dimensional super-Maxwell multiplet, and the cohomology at ghost-number+1 of Q

correctly describes the massless spectrum of the open superstring [29].
As in bosonic string theory, one can obtain the integrated open string vertex operator

∫
dzU(z) from the unintegrated verte

operatorV by requiring thatQU(z) = ∂V (z). For the massless states where the unintegrated vertex operator isV = λαAα(x, θ),
one finds that

U = ∂θαAα(x, θ) + ΠmAm(x, θ) + dαWα(x, θ) + 1

2
NmnFmn(x, θ) (16)

satisfiesQU = ∂(λαAα) whereAm = 1
8Dαγ

αβ
m Aβ is the vector gauge superfield,Wβ = 1

10γ
αβ
m (DαAm −∂mAα) is the spinor

superfield strength, andFmn = 1
8Dα(γmn)αβWβ = ∂[mAn] is the vector superfield strength.

3. Functional integration, picture-changing operators and the b ghost

3.1. Measure factor for pure spinor ghosts

As reviewed in Section 2.1, the gauge invariance of (4) implies that pure spinor ghosts can only appear through the
λα , Nmn andJ . Correlation functions for the non-zero modes of these operators are easily computed using the OPE
However, after integrating out the non-zero worldsheet modes, one still has to functionally integrate over the worldsh
modes. Becauseλα has zero conformal weight and satisfies the pure spinor constraint

λγ mλ = 0, (17)

λα has 11 independent zero modes on a genusg surface. And becauseNmn andJ have+1 conformal weight and are define
from gauge-invariant combinations ofwα , they have 11g independent zero modes on a genusg surface. Note that (17) implie
thatNmn = 1

2(wγmnλ) andJ = wλ are related by equation [30]

: Nmnλα : γmαβ − 1

2
: Jλα : γ n

αβ = 2γ n
αβ∂λα (18)

where the normal-ordered product is defined by:UA(z)λα(z) := ∮
dy (y − z)−1UA(y)λα(z). (The coefficient of the∂λα term

is determined by computing the double pole of the left-hand side of (18) withJ .) Just as (17) implies that all 16 compone
of λα can be expressed in terms of 11 components, equation (18) implies that all 45 components ofNmn can be expressed i
terms ofJ and ten components ofNmn.

Because of the constraints of (17) and (18), it is not immediately obvious how to functionally integrate over the pur
ghosts. However, as will be shown below, there is a natural Lorentz-invariant measure factor for the pure spinor ghos
can be used to define functional integration.

A Lorentz-invariant measure factor for theλα zero modes can be obtained by noting that

(d11λ)[α1α2···α11] ≡ dλα1 ∧ dλα2 ∧ · · · ∧ dλα11 (19)

satisfies the identity

λβγ m
α1β

(d11λ)[α1α2···α11] = 0 (20)

becauseλγ mdλ = 0. Using the properties of pure spinors, this implies that all16!
5!11! components of(d11λ)[α1···α11] are related

to each other by a Lorentz-invariant measure factor[Dλ] of +8 ghost number which is defined by

(d11λ)[α1···α11] = [Dλ]T [α1···α11] λβ1λβ2λβ3 (21)

((β1β2β3))
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whereT [α1···α11]
((β1β2β3))

is the unique Lorentz-invariant tensor (up to rescaling) which is symmetric andγ -matrix traceless (i.e.

γ
β1β2
m T [α1···α11]

((β1β2β3))
= 0) in three lowered indices and antisymmetric in eleven raised indices. It is defined by

T [α1···α11]
((β1β2β3))

= εα1···α16(γmnp)α12α13

[
γ m
β1α14

γ n
β2α15

γ
p
β3α16

− 1

40
γ

γ δ
q γ

q
(β1β2

γ m
β3)α14

γ n
γα15

γ
p
δα16

]
.

One can similarly construct a Lorentz-invariant measure factor for theNmn andJ zero modes from

(d11N)[[m1n1][m2n2]···[m10n10]] ≡ dN [m1n1] ∧ dN [m2n2] ∧ · · · ∧ dN [m10n10] ∧ dJ. (22)

Using the constraint of (18) and keepingλα fixed while varyingNmn andJ , one finds that (22) satisfies the identity

(λγm1)α(d11N)[[m1n1][m2n2]···[m10n10]] = 0. (23)

Using the properties of pure spinors, this implies that all45!
10!35! components of

(d11N)[[m1n1][m2n2]···[m10n10]]

are related to each other by a Lorentz-invariant measure factor[DN ] of −8 ghost number which is defined by

(d11N)[[m1n1][m2n2]···[m10n10]] = [DN ]((λγ m1n1m2m3m4λ)(λγ m5n5n2m6m7λ)(λγ m8n8n3n6m9λ)(λγ m10n10n4n7n9λ)

+ permutations
)

(24)

where the permutations are antisymmetric under the exchange ofmj with nj , and also antisymmetric under the exchan
of [mjnj ] with [mknk]. Note that the index structure on the right-hand side of (24) has been chosen such the expre
non-vanishing after summing over the permutations.

After using the OPEs of (6) to integrate out the non-zero modes of the pure spinor ghosts on a genusg surface, one will
obtain an expression

A = 〈
f (λ,N1, J1,N2, J2, . . . ,Ng,Jg)

〉
(25)

which only depends on the 11 worldsheet zero modes ofλ, and on the 11g worldsheet zero modes ofN andJ . Using the
Lorentz-invariant measure factors defined in (21) and (24), the natural definition for functional integration over the
modes is

A =
∫

[Dλ][DN1][DN2] · · · [DNg]f (λ,N1, J1,N2, J2, . . . ,Ng,Jg). (26)

Note that with this definition,f (λ,N1, J1,N2, J2, . . . ,Ng,Jg) must carry ghost number−8 + 8g to give a non-vanishing
functional integral, which agrees with the−8 ghost-number anomaly in the OPE ofJ with T . It will now be shown how the
functional integral of (26) can be explicitly computed with the help of picture-changing operators.

3.2. Picture-changing operators

As is well-known from the work of Friedan, Martinec and Shenker [6] and E. Verlinde and H. Verlinde [2,3], pi
changing operators are necessary in the RNS formalism because of the bosonic(β, γ ) ghosts. Since the picture-raising a
picture-lowering operators involve the delta functionsδ(β) andδ(γ ), insertion of these operators in loop amplitudes are nee
to absorb the zero modes of the(β, γ ) ghosts on a genusg surface.2 Up to possible surface terms, the amplitudes are indepen
of the worldsheet positions of these operators since the worldsheet derivatives of the picture-changing operators a
trivial. The surface terms come from pulling the BRST operator through theb ghosts to give total derivatives in the worldshe
moduli. If the correlation function diverges near the boundary of moduli space, these surface terms can give finite cont
which need to be treated carefully. As will now be shown, functional integration over the bosonic ghosts in the pur
formalism also requires picture-changing operators with similar properties to those of the RNS formalism. However, s

2 In the RNS formalism, it is convenient to bosonize the(β, γ ) ghosts asβ = ∂ξ e−φ andγ = η eφ since the spacetime supersymme
generator involves a spin field constructed for the negative-energy chiral bosonφ. The delta functionsδ(β) andδ(γ ) can then be expresse
in terms ofφ asδ(β) = eφ andδ(γ ) = e−φ . However, in the pure spinor formalism, there is no advantage to performing such a boson
since all operators can be expressed directly in terms ofλα , Nmn andJ . Furthermore, since functional integration over theφ chiral boson can
give rise to unphysical poles in the correlation functions, the fact that all operators in the pure spinor formalism can be expressed i
(λα,Nmn,J ) allows one to avoid unphysical poles in pure spinor correlation functions.
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correlation functions in this formalism do not diverge near the boundary of moduli space, there are no subtleties due t
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To absorb the zero modes ofλα , Nmn and J , picture-changing operators in the pure spinor formalism will involve
delta-functionsδ(Cαλα), δ(BmnNmn) andδ(J ) whereCα andBmn are constant spinors and antisymmetric tensors. Altho
these constant spinors and tensors are needed for the construction of picture-changing operators, it will be shown that
amplitudes are independent of the choice ofCα andBmn, so Lorentz invariance is preserved. As will be discussed later,
Lorentz invariance can be made manifest by integrating over all choices ofCα andBmn. Note that the use of constant spino
and tensors in picture-changing operators is unrelated to the pure spinor constraint, and is necessary whenever t
ghosts are not Lorentz scalars.

As in the RNS formalism, the picture-changing operators will be BRST-invariant with the property that their worl
derivative is BRST-trivial. A ‘picture-lowering’ operatorYC with these properties is

YC = Cαθαδ(Cβλβ) (27)

whereCα is any constant spinor. Note thatQYC = (Cαλα)δ(Cβλβ) = 0 and

∂YC = (C∂θ)δ(Cλ) + (Cθ)(C∂λ)δ′(Cλ) = Q
[
(C∂θ)(Cθ)δ′(Cλ)

]
(28)

whereδ′(x) ≡ ∂
∂x

δ(x) is defined using the usual rules for derivatives of delta functions, e.g.,xδ′(x) = −δ(x).
AlthoughYC is not spacetime-supersymmetric, its supersymmetry variation is BRST-trivial since

qαYC = Cαδ(Cλ) = −Cα(Cλ)δ′(Cλ) = Q
[−Cα(Cθ)δ′(Cλ)

]
. (29)

Similarly, YC is not Lorentz invariant, but its Lorentz variation is BRST-trivial since

MmnYC = 1

2
(Cγ mnθ)δ(Cλ) + 1

2
(Cθ)(Cγ mnλ)δ′(Cλ) = Q

[
1

2
(Cγ mnθ)(Cθ)δ′(Cλ)

]
. (30)

So different choices ofCα only changeYC by a BRST-trivial quantity, and any on-shell amplitude computations involv
insertions ofYC will be Lorentz invariant and spacetime supersymmetric up to possible surface terms. The fact that
invariance is preserved only up to surface terms is unrelated to the pure spinor constraint, and is caused by the boso
not being Lorentz scalars.

One can also construct BRST-invariant operators involvingδ(BmnNmn) andδ(J ) with the property that their worldshee
derivative is BRST-trivial. These “picture-raising” operators will be calledZB andZJ and are defined by

ZB = 1

2
Bmn(λγ mnd)δ(BpqNpq), ZJ = (λαdα)δ(J ), (31)

whereBmn is a constant antisymmetric tensor. One can check thatQZB = QZJ = 0 and that∂ZB and∂ZJ are BRST-trivial.
Furthermore, different choices ofBmn only changeZB by a BRST-trivial quantity.

3.3. Construction of b ghost

To computeg-loop amplitudes, the usual string theory prescription requires the insertion of(3g − 3) b ghosts of−1 ghost-
number which satisfy{

Q,b(u)
} = T (u) (32)

whereT is the stress tensor of (7). After integratingb(u) with a Beltrami differentialµP (u) for P = 1 to 3g − 3, the BRST
variation ofb(u) generates a total derivative with respect to the Teichmuller parameterτP associated to the Beltrami differenti
µP . But sincewα can only appear in gauge-invariant combinations of zero ghost number, there are no operators of
ghost number in the pure spinor formalism, so one cannot construct such ab ghost. Nevertheless, as will now be shown,
picture-raising operator

ZB = 1

2
Bmn(λγ mnd)δ(BN)

can be used to construct a suitable substitute for theb ghost in non-zero picture.
Since genusg amplitudes also require 10g insertions ofZB(z), one can combine(3g − 3) insertions ofZB(z) with the

desired insertions of theb(u) ghost and look for a non-local operatorb̃B(u, z) which satisfies{
Q, b̃ (u, z)

} = T (u)Z (z). (33)
B B
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Note thatZB carries+1 ghost-number, sõbB carries zero ghost number. And (33) implies that integratingb̃(u, z) with the
Beltrami differentialµP (u) has the same properties as integratingb(u) with µP (u) in the presence of a picture-raising opera
ZB(z).

Using

ZB(z) = ZB(u) +
z∫

u

dv ∂ZB(v) = ZB(u) +
z∫

u

dv
{
Q,Bpq∂Npq(v)δ

(
BN(v)

)}
,

one can define

b̃B(u, z) = bB(u) + T (u)

z∫
u

dv Bpq∂Npq(v)δ
(
BN(v)

)
(34)

wherebB(u) is a local operator satisfying{
Q,bB(u)

} = T (u)ZB(u). (35)

The explicit formula forbB(u) satisfying (35) is complicated and was computed in [22] up to some undetermined c
cients. Ignoring Lorentz indices,bB has the form

bB = B(d2Π + dN ∂θ + N2 + N Π2)δ(BN) + B2(d4 + d2N Π + N2Π2 + N2d∂θ)δ′(BN)

+ B3(d4N + d2N2 Π)δ′′(BN) + B4(d4N2)δ′′′(BN). (36)

For proving vanishing theorems, it will be useful to note that all terms inbB have+2 conformal weight and+4 ‘engineering’
dimension where[λ, θ, x, d,N ] are defined to carry[0, 1

2,1, 3
2,2] engineering dimension andδ(BN) carries−1 conformal

weight and zero engineering dimension.

4. Multiloop amplitude prescription

Using the picture-changing operators andbB ghost of Section 3, one can define a super-Poincaré covariant prescripti
computingN -pointg-loop closed superstring scattering amplitudes as

A =
∫

d2τ1 · · ·d2τ3g−3

〈∣∣∣∣∣
3g−3∏
P=1

∫
d2uP µP (uP )b̃BP

(uP , zP )

10g∏
P=3g−2

ZBP
(zP )

g∏
R=1

ZJ (vR)

11∏
I=1

YCI
(yI )

∣∣∣∣∣
2

×
N∏

T =1

∫
d2tT UT (tT )

〉
, (37)

where| |2 signifies the left–right product,τP are the Teichmuller parameters associated to the Beltrami differentialsµP (uP ),
andUT (tT ) are the dimension(1,1) closed string vertex operators for theN external states. The number of picture-lower
and picture-raising operators in (37) are appropriate for absorbing the 11 zero modes ofλα and the 11g zero modes ofwα , and
the locations of these picture-changing operators can be chosen arbitrarily. The constant antisymmetric tensorsBmn

P
in bBP

andZBP
will be chosen such thatBI = BI+10 = · · · = BI+10(g−1) for I = 1 to 10. In other words, there will be ten consta

antisymmetric tensorsBmn
I

, each of which appear ing picture-raising operators orbB ghosts.
Wheng = 1, the prescription of (37) needs to be modified for the usual reason that genus-one worldsheets are invari

constant translations, so one of the vertex operators should be unintegrated. The one-loop amplitude prescription is t

A =
∫

d2τ

〈∣∣∣∣∣
∫

d2uµ(u)b̃B1(u, z1)

10∏
P=2

ZBP
(zP )ZJ (v)

11∏
I=1

YCI
(yI )

∣∣∣∣∣
2

V1(t1)

N∏
T =2

∫
d2tT UT (tT )

〉
, (38)

whereV1(t1) is the unintegrated closed string vertex operator. And wheng = 0, three of the vertex operators are unintegra
and one uses the prescription

A =
〈∣∣∣∣∣

11∏
YCI

(yI )

∣∣∣∣∣
2

V1(t1)V2(t2)V3(t3)

N∏ ∫
d2tT UT (tT )

〉
. (39)
I=1 T =4
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As discussed in Section 3, the Lorentz variations ofb̃BP
, ZBP

andYCI
are BRST-trivial, so the prescription is Lorent

invariant up to possible surface terms. Also, all operators are manifestly spacetime supersymmetric except forYCI
, whose

supersymmetry variation is BRST-trivial. In Section 5, it will be argued that surface terms can be ignored in this for
because of finiteness properties of the correlation functions. So the amplitude prescriptions of (37)–(39) are super
covariant andA is independent of the eleven constant spinorsCI and ten constant tensorsBP which appear in the picture
changing operators. One can therefore obtain manifestly Lorentz-covariant expressions from this amplitude prescr
functionally integrating over the matter fields and pure spinor ghosts.

As usual, the functional integration factorizes into partition functions and correlation functions for the different wor
variables. However, in the pure spinor formalism, the partition functions for the different worldsheet variables cancel ea
out. This is easy to verify since the partition function for the ten bosonicxµ variables gives a factor of(det∂̄0)−5(det∂0)−5

where∂0 and ∂̄0 are the holomorphic and antiholomorphic derivatives acting on fields of zero conformal weight, the pa
function for the sixteen fermionic(θα,pα) and (θ̄α, p̄α) variables gives a factor of(det∂̄0)16(det∂0)16, and the partition
function for the eleven bosonic(λα,wα) and(λ̄α, w̄α) variables gives a factor of(det∂̄0)−11(det∂0)−11. So to perform the
functional integral, one only needs to compute the correlation functions for the matter variables and pure spinor ghost

As described in detail in [22], these correlation functions can be computed by first separating off the zero modes
worldsheet variables and then using the OPE’s of (6) and (10) for performing the correlation functions for the nonzero m
these variables. Finally, one integrates over the worldsheet zero modes using the usual measure factors for the matte
(xm, θα,pα) and using the Lorentz-invariant measure factors of Section 3.1 for the pure spinor ghost variables.

The resulting expression for the scattering amplitude naively depends on the eleven constant spinorsCI and ten constan
tensorsBP which appear in the picture-changing operators. However, due to Lorentz invariance of the picture-changin
tors, one is guaranteed that this dependence onCI andBP is BRST-trivial. One can therefore integrate over all possible cho
of CI andBP and obtain a manifestly Lorentz-covariant expression for the multiloop amplitude. As shown in [22], integ
overCI andBP is straightforward and the resulting covariant expression agrees for tree amplitudes and for massless f
one-loop amplitudes with the well-known RNS expression.

5. Vanishing theorems

In this section, the amplitude prescription of Section 4 will be used to prove certain vanishing theorems for massle
superstring scattering amplitudes. In Section 5.1, it will be proven that masslessN -point g-loop amplitudes are vanishin
wheneverN < 4 andg > 0, implying (with two mild assumptions) the perturbative finiteness of superstring theory. Aft
Section 5.2, it will be proven that the low-energy limit of the four-point massless amplitude gets no perturbative contr
above one-loop, in agreement with the Type IIB S-duality conjecture of Green and Gutperle.

To prove these vanishing theorems, it will be useful to express the massless closed superstring vertex operator a
right product of two open superstring vertex operators asVclosed= Vopen× V openwhere the closed superstring gravitonhmn,
gravitini ψα

m andψα
m, and Ramond–Ramond field strengthFαβ are identified with left–right products of the open superstr

photonam and photinoξα as

hmn = aman, ψα
m = amξα, ψα

m = ξαam, Fαβ = ξαξβ .

Using the unintegrated and integrated open superstring massless vertex operators of (12) and (16), this implies that

Vclosed= λαλ̄βAαβ(x, θ, θ̄ ) = eik·xλαAα(θ)λ̄βĀβ(θ̄) and (40)

Uclosed= eik·x
(

∂θαAα(θ) + ΠmAm(θ) + dαWα(θ) + 1

2
NmnFmn(θ)

)

×
(

∂̄ θ̄β Āβ(θ̄) + Π̄pĀp(θ̄) + d̄βW̄β(θ̄) + 1

2
N̄pq F̄pq(θ̄)

)
(41)

are the unintegrated and integrated massless closed superstring vertex operators.

5.1. Non-renormalization theorem

In this subsection, the amplitude prescription of Section 4 will be used to prove that masslessN -point g-loop amplitudes
vanish wheneverN < 4 andg > 0. For N = 0, this implies vanishing of the cosmological constant; forN = 1, it implies
absence of tadpoles; forN = 2, it implies the mass is not renormalized; and forN = 3, it implies the coupling constant
not renormalized. Using the arguments of [4,24] which were summarized in the introduction, and assuming factoriza
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the absence of unphysical divergences in the interior of moduli space, these non-renormalization theorems imply tha
superstring scattering amplitudes are finite order-by-order in perturbation theory.

Although surface terms were ignored in deriving the amplitude prescription of Section 4, it is necessary that the
the non-renormalization theorem remain valid even if one includes such surface term contributions. Otherwise, there
divergent surface term contributions which would invalidate the proof. For this reason, one cannot assume Lorentz in
or spacetime supersymmetry to prove the non-renormalization theorem since the prescription of (37) is Lorentz inva
spacetime supersymmetric only after ignoring the surface terms.

Fortunately, it will be possible to prove the non-renormalization theorem using only the counting of zero modes. S
type of argument implies the pointwise vanishing of the integrand of the scattering amplitude (as opposed to only impl
the integrated amplitude vanishes), the proof remains valid if one includes the contribution of surface terms.

On a surface of arbitrary genus, one needs 16 zero modes ofθα and θ̄α for the amplitude to be non-vanishing. Since t
only operators in (37) containingθα zero modes3 are the elevenYC picture-lowering operators and theUT vertex operators
and since eachYC contributes a singleθα zero mode, theUT vertex operators must contribute at least fiveθα and fiveθ̄α zero
modes for the amplitude to be non-vanishing. This immediately implies that zero-point amplitudes vanish.

For one-point amplitudes, conservation of momentum implies that the external state must have momentumkm = 0. But
whenkm = 0, the maximum number of zero modes in the vertex operator is oneθα and oneθ̄α coming from the superfield

Aαβ(θ, θ̄) = hmn(γ mθ)α(γ nθ̄)β .

All other components in the superfields appearing in the vertex operators of (40) and (41) are either fermionic or involve
of km. So all one-point amplitudes vanish.

To prove that massless two and three-point amplitudes vanish for non-zerog, one needs to count the available zero mo
of dα , as well as the zero modes ofNmn. On a genusg surface, non-vanishing amplitudes require 16g zero modes ofdα . In
addition, the number ofNmn zero modes must be at least as large as the number of derivatives acting on the delta fu
δ(BN) in the amplitude prescription. Otherwise, integration over theNmn zero modes will trivially vanish.

To prove theN -point g-loop non-renormalization theorem forN = 2 andN = 3, it is useful to distinguish between on
loop amplitudes and multiloop amplitudes. For masslessN -point one-loop amplitudes using the prescription of (38), there
(N − 1) integrated vertex operators of (41), each of which can either provide adα zero mode or anNmn zero mode. So one ha
at most(N − 1− M) dα zero modes andM Nmn zero modes coming from the vertex operators whereM � N − 1. Each of the
nineZBP

operators and oneZJ operator can provide a singledα zero mode, so to get a total of 16dα zero modes,bB must
provide at least

16− (N − 1− M) − 9− 1= 7− N + M (42)

dα zero modes.
It is easy to verify from (36) thatbB can provide a maximum of fourdα zero modes, however, the terms containing f

dα zero modes also contain(−1) Nmn zero modes where a derivative acting onδ(BN) counts as a negativeNmn zero mode.
This fact can easily be derived from the+4 engineering dimension ofbB where[λα, θα, xm,dα,Nmn] are defined to carry
engineering dimension[0, 1

2,1, 3
2,2] andδ(BN) is defined to carry zero engineering dimension. Since(d)4 carries engineering

dimension+6, it can only appear inbB together with a term such asδ′(BN) which carries engineering dimension−2.
So forN � 3 andM = 0, (42) implies that the only way to obtain 16dα zero modes is ifbB provides at least fourdα zero

modes. But in this case,bB contains(−1) Nmn zero modes, so the amplitudes vanish since there are not enoughNmn zero
modes to absorb the derivatives onδ(BN). And whenM > 0, the amplitude vanishes forN � 3 since one needs more than fo
dα zero modes to come frombB .

For multiloop amplitudes, the argument is similar, but one now hasN integrated vertex operators instead of(N − 1). So the
vertex operators can contribute a maximum of(N − M) dα zero modes andM Nmn zero modes whereM � N . And each of
the 7g + 3 ZB andg ZJ operators can provide a singledα zero mode. So to get a total of 16g dα zero modes, the(3g − 3)

bB ’s must provide at least

16g − (N − M) − (7g + 3) − g = 8g − 3− N + M (43)

3 When expressed in terms of the free fields(xm, θα,pα), Πm anddα containθ ’s without derivatives which naively could contributeθα

zero modes. However, if the supersymmetric OPEs of (10) are used to integrate out the non-zero worldsheet modes, the OPE’s invΠm

andd will never produceθα zero modes.
α
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dα zero modes. Since(3g − 3) bB ’s carry engineering dimension 12g − 12, dα carries engineering dimension32, andNmn

carries engineering dimension+2, the(3g − 3) bB ’s can provide a maximum of(8g − 8) dα zero modes with no derivatives o
δ(BN), or (8g − 8+ 4

3M) dα zero modes withM derivatives ofδ(BN). Since

8g − 8+ 4

3
M < 8g − 3− N + M (44)

wheneverM � N � 3, there is no way for the(3g − 3) bB ’s to provide enoughdα zero modes without providing too man
derivatives ofδ(BN).

So theN -point multiloop non-renormalization theorem has been proven forN � 3. Note that whenN = 4,

8g − 8+ 4

3
M � 8g − 3− N + M (45)

if one choosesM = 3 or M = 4. So four-point multiloop amplitudes do not need to vanish. However, as will be show
Section 5.2, one can prove that the low-energy limit of these multiloop amplitudes vanish, which implies that theR4 term in
the effective action gets no perturbative corrections above one loop.

5.2. Absence of multiloop R4 contributions

Although the four-point massless amplitude is expected to be non-vanishing at all loops, there is a conjecture
S-duality of the Type IIB effective action thatR4 terms in the low-energy effective action do not get perturbative contribut
above one-loop [23]. After much effort, this conjecture was recently verified in the RNS formalism at two loops [7,5]. A
now be shown, the multiloop prescription of Section 4 can be easily used to prove the validity of this S-duality conjectu
loops.

It was proven using (45) that the four-point massless multiloop amplitude vanishes unless at least three of the four i
vertex operators contribute anNmn zero mode. Since the only operators containingθ zero modes are the eleven picture-lower
operators and the external vertex operators, the functional integral overθ zero modes in the multiloop prescription for the fou
point amplitude gives an expression of the form∣∣∣∣∣

∫
d16θ(θ)11

(
dαWα

1 (θ) + 1

2
NpqFpq

1 (θ)

) 4∏
T =2

NmnFmn
T (θ)

∣∣∣∣∣
2

. (46)

Since the external vertex operators must contribute at least 5θα andθ̄α zero modes, one easily sees that there is no wa
produce an|F4|2 term which would imply anR4 term in the effective action. In fact, by examining the component expan
of theFmn(θ) andWα(θ) superfields, one finds that the term with fewest number of spacetime derivatives which contri
θs and 5θ̄s is |(∂F )(∂F )F2|2, which would imply a∂4R4 contribution to the low-energy effective action.

So it has been proven that there are no multiloop contributions toR4 terms (or∂2R4 terms) in the low-energy effectiv
action of the superstring. It should be noted that this proof has assumed that the correlation function overxm does not contribute
inverse powers ofkm which could cancel momentum factors coming from theθ integration in (46). Although thexm correlation
function does contain poles as a function ofkm when the external vertex operators collide, these poles only contribute to
local terms in the effective action which involve massless propagators, and are not expected to contribute to local ter
effective action such as theR4 term.

6. Conclusions

As discussed in these proceedings, the super-Poincaré covariant prescription for multiloop superstring amplitudes h
advantages over the RNS prescription. There is no sum over spin structures, surface terms from the boundary of mo
can be ignored, and there are no unphysical poles from a negative-energy chiral boson. Furthermore, the partition
for the matter and ghost variables cancel, amplitudes involving external Ramond states are no more complicated t
involving external Neveu–Schwarz states, and one can easily prove certain vanishing theorems by counting zero mo
fermionic superspace variables.

Nevertheless, there are still some open questions concerning the super-Poincaré covariant prescription which would
to answer. Since the formalism has only been defined in conformal gauge, it is not yet clear how to derive the BRST ope
picture-changing operators from a worldsheet reparameterization-invariant action analogous to the Nambu–Goto acti
bosonic string. One clue may come from theN = 2 twistor-string formalism which has been shown at the classical level
related to the pure spinor formalism and theb ghost [31]. Another important question is to show that the multiloop prescrip
is unitary, possibly by proving its equivalence with a light-cone gauge prescription.
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There are many possible applications of the multiloop prescription described here. For example, one could try
duality conjectures which imply vanishing theorems for higher-derivativeR4 terms [32],R4H4g−4 terms [33], andF2n terms
[34]. Another possible application is to generalize multiloop computations in a flat ten-dimensional background to m
computations in a Calabi–Yau background, perhaps by using the hybrid formalism. Finally, a recent exciting applic
these methods has been developed by Anguelova, Grassi and Vanhove [35] for computing covariant one-loop amp
eleven dimensions using the pure spinor version of thed = 11 superparticle [36].
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