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Abstract

We discuss recent results on the interpretation of flux compactifications on certain Type IIB orientifolds in terms of gauged
N-extended supergravities of no-scale typecite thisarticle: R. D’ Auria et al., C. R. Physique 6 (2005).
0 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Supergravité sans échelle des dimensions supplémentairdous rapportons des résultats récents sur l'interprétation de-
compactifications avec flux sur certains orientifolds de type IIB, entermes de supergravités éténdugges de type sans
échelle Pour citer cet article: R. D’Auriaet al., C. R. Physique 6 (2005).
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Keywords:No-scale; Flux; Supergravity

Mots-clés :Sans échelle ; Flux; Supergravité

1. Introduction

Superstring/M-theory are considered to be the most promising candidates to describe the fundamental theory of gravity.
Upon compactification to four dimensions, the effective low-energy dynamics of both bulk and brane degrees of freedom is
encoded in a four-dimensional supergravity. Ordinary compactifications typically yield supergravity models which are far from
being realistic, since they describe a plethora of massless scalar fields, in part related to the moduli of the internal manifold,
which are not observed in nature and whose v.e.v. define a continuum of degenerate vacua. In order to derive phenomenolog-
ically viable models from string/M-theory new dynamics should be introduced, which would be described at the level of the
low-energy effective theory by a suitable scalar poteritialhe effect of this potential should be to lift the vacua degeneracy
making the model more predictive and define at the same time vacua with interesting properties like spontaneous supersym-
metry breaking, cosmological constant etc... Remarkable progress in this direction has been made in the last four years by
considering compactifications in the presence of non-vanishing p-form fluxes across cycles of the internal manifold [1-11]. The
presence of fluxes determines indeed a non-trivial scalar potential in the effective low-energy supergravity, which defines in
some cases vacua with vanishing cosmological constant (at tree level), in which spontaneous (partial) supersymmetry breaking
may occur and (some of) the moduli of the internal manifold are fixed. In fact theories with vanishing cosmological constant
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are generalized no-scale models, which were studied long ago in the pure supergravity context [12,13]. The presence of fluxes
gives also rise in the low-energy supergravity to local symmetries gauged by vectoﬂf&ldmrgravity models with such
gauge symmetries (gauged supergravities) have been extensively studied in the literature [14,15], also in connection to flux
compactifications or Scherk—Schwarz dimensional reduction [16—26]. Actually in extended superguavitiedy thegauging
procedure, which consists in promoting a global symmetry group of the Lagrangian to local invariance, is the only way of
introducing a non-trivial scalar potential without explicitly breaking supersymmetry. The global symmetry group of extended
supergravities is the isometry grogpof the scalar manifold, whose non-linear action on the scalar fields is associated with an
electric/magnetic duality action on thg vector field strengths and their duals [27]. This duality transformation is required in
four dimensions to be symplectic and thus is defined by the embeddi6gindide Sg2n,,R). Gauge symmetries deriving
from flux compactifications typically are related to non-semisimple Lie grédmontaining Abelian translational isometries
acting on axionic fields which originate from ten dimensional R-R fofiy)s (p =0, 2, 4 for Type 1IB) or the NS two form
B(2). The embedding o inside G is defined at the level of the corresponding Lie algebras by the flux tensors themselves,
which play the mathematical role of @mbedding matrijd5].

No-scale models arising from flux compactifications or Scherk—Schwarz dimensional reduction give rise to a semi-positive
definite scalar potential which has an interpretation in terms gf/aextended gauged supergravity in four dimensions. Let us
recall the general form of such scalar potenti@tp) (¢ denoting collectively the scalar fields) [28]:

§5V (@) = —354Cspc + N1AN, p, (1)

whereS,p = Spa, andN!4 appear in the gravitino and spifi2 supersymmetry transformations

1
MWan=5SaByue” +:--, @
A =NTAgy +..., 3)

and give rise in the supergravity Lagrangian to the following terms:

1 - . -
ﬁ£=---+SABwﬁo““w§+|N’szy“w,m—V(<1>>. (4)
Flat space demands that on the extreEgo® = 0 the potential vanishes, so
3) " s4CSca =) NIANja, VA (5)
c I

The first term in the potential (1) is the square of the gravitino mass matrix. It is Hermitian, so it can be diagonalized by a
unitary transformation. Assume that it is already diagonal, then the eigenvalue in thé &ftryg) is non zero if and only if
N140 £ 0 for somel. On the other hand, if the gravitino mass matrix vanishes #éh must be zero.

For no-scale models, there is a subset of fiattisfor which

3) SACSca=) NIANp,, VA, (6)
C I

at any point in the scalar manifol@Zsc4. This implies that the potential is given by

V(@)=Y N'4N4, @)
I£I

and it is manifestly positive definite. Zero vacuum energy on a poin#afy implies thatv /4 =0, I # I’ at that point. This
happens independently of the number of unbroken supersymmetries, which is contrcNé/d“by

In the sequel we shall first discuss in some detail the supergravity description of Type |IB superstiigy>oi?2/Zy
orientifold in the presence of fluxes and D3/D7 branes. Eventually we shall comment on some general properties of the vacua
in no-scale supergravities originating from flux compactifications and Scherk—Schwarz dimensional reduction, concluding with
a comment on the dynamical generation of a cosmological constant.

1 In four-dimensional supergravities coupled to linear multiplets, fluxes may give rise to more general couplings.
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2. TypelIB on K3 x TZ/ZZ orientifold with fluxes and D3/D7 branes

Consider Type IIB superstring theory compactified &8 x T2/Z, orientifold [29] to four-dimensions [5]. Lek*
(v =0,...,3) denote the four-dimensional Minkowski coordinateS,(¢ = 4, ..., 7) the K3 coordinates and” (p = 8, 9)
the coordinates of 2. The low-energy effective theory is/l = 2 supergravity [17,23] which describes the gravitational mul-
tiplet coupled to 3 vector multiplets and 20 hypermultiplets. The scalar manifold is the product of a special Kéhler manifold
spanned by the three complex scalars « in the vector multiplets and a quaternionic Kahler manifold describing the 20
hyperscalars [17]:

Mscal= M sk % t//lQIo
Men = SUL 1) SUL, 1) SUL, 1)

SK _( u) ) ) ( U >, ) ( u) )
_ S04,20)

SO(4) x SO(20)

Mok (8

s, t, u being complex scalars spanning each factar g are defined as follows:

s = C(4) — iVO|(K3),

_ 812 _i_Vdet’
822 g2
u:C(o)—ie“’, 9)

whereC 4 is the axion originating from the components of the ten-dimensional four-form along the directi&i@s wbl(K 3)

is the volume ofK 3 in the ten-dimensional Einstein fram@g, andg are the ten-dimensional axion, dilaton and the magrix
denotes the metric ofi2. The vector fields4,/} in the bulk sector originate from the componeBlf;p of the ten-dimensional
two forms{Bf‘z)} ={B(), C(2)} wherea = 1,2 is the doublet index of the ten-dimensional Type IIB duality groug2SR),,
and the indexA =0, ..., 3 runs over thel of SL(2, R),, x SL(2, R);.

Let us recall some properties of ti&e8 cohomology. The second order cohomology ng}ﬁ) (K 3,7Z) isisomorphic to the
lattice I"319 in which the following inner product between harmonic two-forms is defiieds) = [, 5« A B. Let us denote
byw;, 1=1,...,22,abasis oH(z)(KS, Z),andletn =1,2,3anda =1, ..., 19 be the indices running over the positive and
negative signature directions respectively. The manifeg) x can be written in the form:

SO@3, 19

Mok = [m x O(1, 1)] X {224} (20)
where {22} denote a subspace generated by 22 Abelian isomefrie@vith positive grading with respect to the(D 1)
generator). These are parametrized by the ax@@hsriginating from the components of the four form with two indices along
K3 and two indices anngTZ. The (1, 1) factor is parametrized by the volume Bf: /det(g) = &?. Finally the 40 complex
structure moduli and the 17 Ké&hler moduli (except the volumek 8fare described by a8 19 matrixe) which span the
SQO(3, 19)/SO3) x SO(19) submanifold. These scalars are arranged in the 20 hyperscalars as o0}, {CY, )} }.

Let us now add to the microscopic setting a stackgfspace-filling D3 branes and one ©f space-filling D7 branes
wrapped aroun& 3. The low-energy brane dynamics is described by a SYM theory on their world volume. We shall consider
the SYM theories on the D3/D7 branes to be in the Coulomb phase (namely the branes to be separated from each other), so tha

the gauge group and the massless bosonic modes on the world volume theories are:

D3: gauge group= U(1)"3;  bosonic 0-modesA),, y" = Y& 09T (r=1,... n3),

D7: gauge groug= U(1)"7; bosonic O-modesAZ, xk = Bk 49K k=1,...,n7),
wherey” andx* are complex scalars describing the position of each D3, D7-brane @®ngspectively. The massless brane
degrees of freedom will enter the low-energy theory#$ n7 additional vector multiplets, causing the special Kéhler manifold
to enlarge to a homogeneous non-symmeBi¢- n3 + n7)-dimensional space denoted by0, ng, n7) [30]. The metric of this
manifold was computed in terms of the bulk/brane fields, using the solvable Lie algebra parametrization, in [25].
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2.1. Geometry of# sk

Let us briefly recall the main formulae of special Kéahler geometry. The geometry of the manifold is encoded in the holo-
morphic section2 = (X4, Fx) which, in thespecial coordinatesymplectic frame, is expressed in terms of a prepotential
F (s, tu,xk y )= F(x1)/(x92 = 2 (x4 xY), as follows:

2= (x4 Fy=0F/3x"). (11)
In our case¥% is given by
1 1
F (s, tu, x5,y =stu — Esxkxk - Euyryr. (12)
The Kahler potentiaK is given by the symplectic invariant expression:
K =—log[i(XAFs — F 4x4)]. (13)

In terms ofK the metric has the forng; ; = ;97K . The matrice/4% and.# 4 5 are respectively given by:
BN 1 _
UAY =eK 9, x4 9;X% g1V = —Elm(;/V)*l —eKxAx%,

— A . ca (DX DiF
N as=haro(f 5. wheref,A:< 74 ); hA|1:< %A/‘) (14)

For our choice of%, K has the following form:
K=—I 1 K21 r?
= —log| —8( Im(s)Im()Im(u) — E|m(s)(|m(x) ) - é|m(u)(|m(y) )7 )| (15)
with Im(s), Im(z), Im(u) < 0 atxk = y"=0.The componentXA, Fyx of the symplectic section which correctly describe our

problem, are chosen by performing a constant symplectic change of basis from the one in (11) given in terms of the prepotential
in Eq. (12). The rotated symplectic sections then become [23]

1 ky2 t
on—(l—tu—i—Q), xto 1t

V2 2 V2
1 ( k)2> t—u
2 3
X=——(14tu— ——), = s
ﬁ( 2 V2
Xk =xk7 X = yr,
$2 = 2tu + (¥92) +u(y")2 —25(1 +u) + (V")?
Fo= ., P TOT
2.2 22
$2+ 2tu — (K)2) —u(y")2 25(—1 +u) + (y")2
Fo= , R T T
2./2 2.2
F=—sxk,  F=-uw" (16)

Note that, sinceéy X /3s = 0, the new sections do not admit a prepotential, and the no-go theorem on partial supersymmetry
breaking [31] does not apply in this case. As in [17], we limit ourselves to gauge shift-symmetries of the quaternionic manifold
of the K3 moduli-space. Other gaugings which include the gauge group on the branes will be considered elsewhere.

2.2. Fluxes

Let us consider the effect of switching on fluxes of the three-form field strengths across cycles of the internal manifold. The
only components oF("é) = dBf‘z) which survive the orientifold projection aré’.%) = Fg’wl A dxP. We can describe these

flux components in terms of four integer vectg‘r/%, A=0,...,3:

472
I I I I 1
Fyl=Fh=—ga'fli fa={/3n4)ersts, (A7)
whereR is the linear size of the internal manifold and last property follows from the flux quantization condition.
The presence of these fluxes imply local invariance in the low-energy supergravity. A way to see this is to consider the

dimensional reduction of the kinetic term fGy4):
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D=10— D =4,
2
Fs) A* Fs)— (0CT — fAAR)", (18)

where the four form field strength is defined &g;) = dC4) + %Saﬂ BEXZ) A F(%). The Stueckelberg-like kinetic terms f6¥ in

four dimensions are clearly invariant under the local translativhs> C’ + f2£4, &4 being four local parameters, provided

the bulk vectors are subject to the gauge transformaZtiQn—> A,‘L‘ + 8M§A. Thus from general arguments we expect that in

the presence of three form fluxes, the low-energy supergravity should be invariant under a four-dimensional Abelian gauge
group¥, subgroup ofG whose generator¥ 4 = f}l Z; are gauged by the bulk vectors. TAé= 2 supergravity originated

from the flux compactification is obtained therefore from the ungauged theory through the gauging procedure which consists in
promoting the subgrouf of the isometry group of# g g to local invariance of the Lagrangian. Supersymmetry then requires

the introduction of additional terms (fermion shifts) in the fermion supersymmetry transformation rules, fermion mass terms,
and a scalar potentidl (@) whose expression is constrained to be a well defined bilinear in the fermion shifts [32]. In the sequel
we shall denote by?% andkj1 the momentum maps and the Killing vectors of the gauged isomeéfries

Kh=rh i =2 ([(L+ed) P f + ein). (19)

m
In terms of these quantities the scalar potential can be written as follows:
V=4 (f1 3+ 26 e £ £+ R R LALE
+ 26 (UAT —BLALT) (£ £+ eyel £ 3 + 2 (L+ e ) Y2]0 et fim s + eltefhy ). (20)

Once the potential is known then we can study the vacua of the theory, that is bosonic backgrounds which ext@milfe
we are interested in supersymmetric vacua we need to look for bosonic backggywiiéch admit a Killing spinog, namely
directions in the supersymmetry parameter space along which:

8¢ (fermiong|p, = 0. (22)
If a background admits a Killing spinor, it can be shown that it is also a vacuum of the theory. The spinors of the theory consist
of the gravitiniy-/, the gaugini4 (i = 1,....n,) and the hypering -4, £4:4. From the Killing spinor equatiof, ;%4 =0
we derive the following conditions which should hold for any supersymmetric vacua:

e fi =egh% =0, (22)

h4 x4 =o0. (23)

Conditions (22) will fix K3 complex structure moduli, while Eq. (23) will fix thE2 complex structure and the axion/
dilatonu. The Killing spinor equations; ;14 =0 andagx//;;‘ = 0 turn out to be equivalent for this gauging and, together with

the equations. A4 = 0, will impose restrictions on the fluxes.

2.2.1. N =2vacua
From the gravitino Killing spinor equation we deri”, = 0, which, upon implementation of Egs. (22) implies
fa =0, (24)

which can be restated as the requirement that no flux vector among tire 319 have positive norm, consistently with the
results by Tripathy and Trivedi [5]. Let us, for the sake of simplicity, choose as the only non-vanishing components of the flux

hs=1=go; h$=2 = g3. (25)
Condition (23) then imply:

2_ 3 2 (&h?
X?=x3=0 & t=u, 1+t°= 5 (26)

so thatr, u are fixed, whiles and the brane coordinate¥, y" remain moduli. Finally conditions (22) imphf"_, , =0. Since

the two axionsC“=1-2 are Goldstone bosons which provide masgfa A3, the whole two hypermultiplets = 1, 2 will not
appear in the low-energy effective theory. This theory will be no-scale since the potential at the minimum vanishes identically
in the moduli.
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2.2.2. N '=1,0vacua
Let us look for\/ = 1 vacua by requiring the componentto be the Killing spinor. Upon implementation of (22), we obtain
the following conditions:

Sevrf =0 S +if2x4 =0,
i = AT+ x4 =0, @7)
Se A =0 x=3 _
fi=2=o.

Condition fj“=3 =0 in particular can be rephrased as the statement that the flux should be defined by at most two positive
norm vectors in">19, consistently with therimitivity condition on the complexified 3-form field strengthz, as found by

Tripathy and Trivedi [5].
Suppose, for the sake of simplicity, that the only non-vanishing flux components are the following

Bt =g0  f{TP=en h§Tr =g h§TP=gs, (28)
then from the vanishing of the D7-brane gaugini variations in (27) we have the confitierd, namely that the D7 branes be
stuck at the origin of 2. Condition (23) then implies:

X2=x3=0 & r1=u=-i (29)
The four axionge™=12 c4=1.2 gre Goldstone bosons which provide mass to all the bulk vectors. Finally conditions (22) will
fix the 40 complex structure moduli & 3:

€12="0: e =3%=0 (30)

a>2
leaving the 17 Kahler modwi;‘fg unfixed. The unfixed moduli will enter chiral multiplets in the effectiVe= 1 theory as the
following complex scalars:
s,y O e, i, (31)
which span the scalar manifold:
U, 1+n3) 9 SQO(2,18)
U@) x Ud+n3)  SO2) x SO(18)°

the former factor being parametrized f3»” . We have not dealt with all conditions (27) yet. In particular in the effective: 1
we can construct a superpotential usixig= 2 quantities:

Mscal= (32)

W =[e"? (25~ +i1257%) x| 4, o 20— g1 moduli independent (33)

On the other hand the expressions in (zszl + ifji:z)XA and (fj;:l + ifj“fz)aiXA turn all out to be proportional to
go — &1. Therefore ifW = 0 we have\ = 1 otherwise the vacuum will break all supersymmetry. In both cases the potential at
the minimum vanishes identically in the moduli so that the effective supergravity is no-scale.

2.3. More generalV' = 1 vacua
We may generalize the above choice of fluxes so as to have vacua for more general (complex) valudmftre positivity

domain of the Lagrangian), namely:

2Ar .

t=a; — i€ uzau—iez‘”, (34)

az, ay, A, Ay being generic real numbers. To this end we use the property of the gauged Lagrangian to be still duality invariant,
providedwe transform under duality symmetry the fluxes as well. The isometry transformationin BUx SU(1, 1),, which

maps the values= u = —i into those in (34) is represented by the following symplectic matrix:
—17 —17
_ . (A 0Y. 5 _(Au 0
O =00y @’,_( 0 Az)’ ﬁu_( C, Au>' (35)

One can verify indeed that

O2(s,t,u,x,y)= _}"_)‘”Q(S,t’,u/,x’,y’),
t'=a +e@i o = ay, + uy; y" =e}“y’; x'k = g thuyk, (36)
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The flux vectorsf /Ix are electric since they fill the lower part of a symplectic vector. Due to the perturbative fafinitsfaction
on the flux vectors will not produce magnetic charges but will transform them as follows:

fAN=AZ S WG = ARRS, 37
which, in components, read:

1, _ 1 .,

f’l = Ee M—hu (1+ g2 thu) —a,au)go; fl’1 =-3 e (ar + au)go,

1 ., _ 1 .,
fz’lzie Mh (1 — M)+ gra,) 0: f3’1=§e M=t (—ay + ay)go,

7)\- +)\u e)\tf)\u é’fi)"u *)Lr+)tu
e M ar a e
f/2=< + u)gl; f/2=< + )gl,

2 2 2 2
f/z . e_)\t‘f')tu ar e)\t _)\u ay ) f/2 . e}tt _)w e_)tr +)Lu
1 1
hg = —Ee_k’_k“ (1+M ) faga,)g0: W= —Ee_*’_k“ (ar + au)g2,

l _A[_

1 5,
hlzl = Ee M= (1+ hith) 4 aray) g2; hégl = Ee e (—ap + au)ga,

h/zz _e*)»t‘Hhuat N e?w*)»uau - h/2: e)»/*)»u B e*)w‘H»u o5
0 2 2 ’ 2 2 ’

—A +)¥u e)\t_)tu e)\r_)hu _)tt+)tu
e a a €
ng = ( - - - )gs; hZ = < + —>g3- (38)

2 2 2 2

One can verify that with this choice of fluxg¢ = 1 residual supersymmetry imphp = g1, x¥ =0 andt, u fixed at the values
in (34).
The possibility of fixing the effective string coupling constant to small values as important implications. For instance it
makes it possible to apply the model to the construction of inflationary models [33—38], in whistotheoll of the inflaton
(one of they” moduli) is realized once perturbative corrections to the potential are taken into aécount.

2.3.1. D7 brane world volume fluxes
Within this framework we can consider the effect of switching on fluxes of the D7 gauge field stré?{g;kmcross two

cycles of K3. This corresponds for instance to gauging additianlisometries by means of D7 brane vectotg [23].

isometriesZ,— » have already been gauged by the vecmié).

As far as supersymmetric vacua are concerned, from inspection of the fermion shifts it is straightforward to verify that the
existence of a constant Killing spinor always requifed X3, X3+* = 0 which impliesx¥ = 0 andr = u = —i even in the
N =2 case (still corresponding to the chojgg= g1 = 0). As before we havd/ =1 if gg = g1 # 0 and " = 0 otherwise.

3. No-scale supergravity from Scherk—Schwarz generalized dimensional reduction

As pointed out in the introduction, spontaneously broken supergravity can also be obtained through a Scherk—Schwarz
dimensional-reduction fron» + 1 to D dimensions [39,16,15,24]. In order for the theory to admit a stable vacuum the Scherk—
Schwarz phases should be taken to be in the Cartan subalgebra of the maximal compact subgroup of the isom@tof greup
theory in(D + 1)-dimensions. The scalar potential is obtained from the non-limeaodel describing théD + 1)-dimensional
scalar fields:

—det(g)g"" Pl P!, (39)
wherePl{ are the pull-back on space-time of the vielbe}?l]’sof the (D + 1)-dimensional scalar manifold. By taking=v =

D + 1 we have the following potential i dimensions:

2 We are grateful to R. Kallosh for explaining this point to us.
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—2Db-1, 1
V=e"02"Pp 1Ppy120, (40)

whereo is the modulus associated to the radius of the internal dimensionPgnd = Pl.’M;'.d)f, Ml.j being the Scherk—

Schwarz phases. The potential has an absolute minimum (at the origin of the scalar manifoldMq’hl;eiﬁides being a global
symmetry of theD + 1 theory is also compact, so that there exist a point in the moduli space in wﬁg;@: 0. All the scalars

are fixed at this minimum exceptand all the(D + 1)-dimensional scalars’ for which Mi’ ¢/ = 0. Finally the gravitino mass
matrix is provided byQ p1 which is the pull-back on the directioB® + 1 of the R-symmetry connectio@; on the scalar
manifold in D + 1 dimensions.

4. Type lIB on T%/7, orientifold with fluxes and D3 branes

As a final example of let us briefly mention the gauged supergravity which describes the (classical) low-energy limit of
Type 1IB on Tg/Z5 orientifold in the presence of space-filling D3 branes and three form NS and RR fluxes [3,19,20,10]. It is
an A\ = 4 model with an Abelian gauge symmetry generated by twelve independent combinations of the fifteen translational
isometries acting on the axions which originate from the internal components of the ten dimensional®4jriiis model
exhibits vacua with vanishing cosmological constant at tree level and a hierarchical supersymmetry bveakihg> 3 —

2— 1— 0in which the masses of the gravitini are provided by four independent flux parameters- 1, ..., 4, expressed
in units ofa’/Vol(T8)Y/2,

5. No-scale supergravities and the cosmological constant

All the models discussed above exhibit partial super-Higgs around Minkowski vacua. Let us comment on the one-loop
corrections to the cosmological constant. We start recalling that the quartic, quadratic and logarithmic divergent parts, in any
field theory, are respectively controlled by the following coefficients

st %) =Y (- @/ + mF: k=012 (41)
J

On the other hand, the sum rules

Str#®)=0; k<N, (42)

in \V-extended supergravity seem to be of general validity for theories whafe-a V' — 1 breaking is possible [18]. This
requires long massive gravitino multiplets since the massive gravitino is Majorana and therefore cannot be BPS. On the other
hand, for theories with central charges, like the Scherk—Schwarz breakifg=ef8, gravitini are pairwise degenerate and
the same sum rules apply only fbr< A//2, N being even. It is important to note that the bulk sectoNo= 4 Type 1IB
orientifold with fluxes does indeed coincide wittZa truncation of the\' = 8 Scherk—Schwarz supergravity, as was shown
in [20]. Similarly A/ < 6 Scherk—Schwarz supergravities, By reduction which removes the gravitino degeneracy, satisfy the
same sum rules as the parent theory [26].

As an example let us consider thé= 4 no-scale model from Type IIB 0716/22 orientifold. In this case it was shown that
Str(.#?) = Sti(.#*) = Str(.#®) = 0 while from general arguments one would expect. &) o m2mZm3m3 # 0. The first
finite contribution to the cosmological constant would then be:

2.2.2..2
mimomany
~ L (43)
Pl

It is intriguing to note that, if the supersymmetry breaking scale is taken te\be mo ~ m3 ~ mg ~ 10 TeV~ 107 15Mmp,
then we would obtain from the above formuta~ 10-129%, which is consistent with the most recent experimental data [40].
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