
/

gauged

de-
s

f gravity.
edom is
far from
manifold,
menolog-
l of the

racy
upersym-
years by

11]. The
efines in
y breaking
onstant

e).
C. R. Physique 6 (2005) 199–208

http://france.elsevier.com/direct/COMREN

Strings, gravity, and the quest for unification/Cordes, gravitation, et la quête d’unification

No-scale supergravity from higher dimensions

Riccardo D’Auriaa, Sergio Ferrarab,c, Mario Trigiantea

a Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
b CERN, Physics Department, CH 1211 Geneva 23, Switzerland

c INFN, Laboratori Nucleari di Frascati, Italy

Presented by Guy Laval

Abstract

We discuss recent results on the interpretation of flux compactifications on certain Type IIB orientifolds in terms of
N -extended supergravities of no-scale type.To cite this article: R. D’Auria et al., C. R. Physique 6 (2005).
 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Supergravité sans échelle des dimensions supplémentaires.Nous rapportons des résultats récents sur l’interprétation
compactifications avec flux sur certains orientifolds de type IIB, entermes de supergravités étenduesN jaugées de type san
échelle.Pour citer cet article : R. D’Auria et al., C. R. Physique 6 (2005).
 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction

Superstring/M-theory are considered to be the most promising candidates to describe the fundamental theory o
Upon compactification to four dimensions, the effective low-energy dynamics of both bulk and brane degrees of fre
encoded in a four-dimensional supergravity. Ordinary compactifications typically yield supergravity models which are
being realistic, since they describe a plethora of massless scalar fields, in part related to the moduli of the internal
which are not observed in nature and whose v.e.v. define a continuum of degenerate vacua. In order to derive pheno
ically viable models from string/M-theory new dynamics should be introduced, which would be described at the leve
low-energy effective theory by a suitable scalar potentialV . The effect of this potential should be to lift the vacua degene
making the model more predictive and define at the same time vacua with interesting properties like spontaneous s
metry breaking, cosmological constant etc. . . Remarkable progress in this direction has been made in the last four
considering compactifications in the presence of non-vanishing p-form fluxes across cycles of the internal manifold [1–
presence of fluxes determines indeed a non-trivial scalar potential in the effective low-energy supergravity, which d
some cases vacua with vanishing cosmological constant (at tree level), in which spontaneous (partial) supersymmetr
may occur and (some of) the moduli of the internal manifold are fixed. In fact theories with vanishing cosmological c
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1631-0705/$ – see front matter 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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are generalized no-scale models, which were studied long ago in the pure supergravity context [12,13]. The presenc
gives also rise in the low-energy supergravity to local symmetries gauged by vector fields.1 Supergravity models with suc
gauge symmetries (gauged supergravities) have been extensively studied in the literature [14,15], also in connecti
compactifications or Scherk–Schwarz dimensional reduction [16–26]. Actually in extended supergravities(N � 2) thegauging
procedure, which consists in promoting a global symmetry group of the Lagrangian to local invariance, is the only
introducing a non-trivial scalar potential without explicitly breaking supersymmetry. The global symmetry group of ex
supergravities is the isometry groupG of the scalar manifold, whose non-linear action on the scalar fields is associated w
electric/magnetic duality action on thenv vector field strengths and their duals [27]. This duality transformation is requir
four dimensions to be symplectic and thus is defined by the embedding ofG inside Sp(2nv,R). Gauge symmetries derivin
from flux compactifications typically are related to non-semisimple Lie groupsG containing Abelian translational isometrie
acting on axionic fields which originate from ten dimensional R–R formsC(p) (p = 0,2,4 for Type IIB) or the NS two form
B(2). The embedding ofG insideG is defined at the level of the corresponding Lie algebras by the flux tensors thems
which play the mathematical role of anembedding matrix[15].

No-scale models arising from flux compactifications or Scherk–Schwarz dimensional reduction give rise to a semi
definite scalar potential which has an interpretation in terms of anN -extended gauged supergravity in four dimensions. Le
recall the general form of such scalar potentialV (Φ) (Φ denoting collectively the scalar fields) [28]:

δA
BV (Φ) = −3SACSBC + NIANIB, (1)

whereSAB = SBA, andNIA appear in the gravitino and spin 1/2 supersymmetry transformations

δψAµ = 1

2
SABγµεB + · · · , (2)

δλI = NIAεA + · · · , (3)

and give rise in the supergravity Lagrangian to the following terms:

1√−g
L = · · · + SABψ̄A

µ σµνψB
ν + iNIAλ̄I γ µψµA − V (Φ). (4)

Flat space demands that on the extremes∂V /∂Φ = 0 the potential vanishes, so

3
∑
C

SACSCA =
∑
I

NIANIA, ∀A. (5)

The first term in the potential (1) is the square of the gravitino mass matrix. It is Hermitian, so it can be diagonaliz
unitary transformation. Assume that it is already diagonal, then the eigenvalue in the entry(A0,A0) is non zero if and only if
NIA0 �= 0 for someI . On the other hand, if the gravitino mass matrix vanishes thenNIA must be zero.

For no-scale models, there is a subset of fieldsλI ′
for which

3
∑
C

SACSCA =
∑
I ′

NI ′ANI ′A, ∀A, (6)

at any point in the scalar manifoldMscal. This implies that the potential is given by

V (Φ) =
∑
I �=I ′

NIANIA, (7)

and it is manifestly positive definite. Zero vacuum energy on a point ofMscal implies thatNIA = 0, I �= I ′ at that point. This
happens independently of the number of unbroken supersymmetries, which is controlled byNI ′A.

In the sequel we shall first discuss in some detail the supergravity description of Type IIB superstring onK3 × T 2/Z2
orientifold in the presence of fluxes and D3/D7 branes. Eventually we shall comment on some general properties of
in no-scale supergravities originating from flux compactifications and Scherk–Schwarz dimensional reduction, conclud
a comment on the dynamical generation of a cosmological constant.

1 In four-dimensional supergravities coupled to linear multiplets, fluxes may give rise to more general couplings.
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2. Type IIB on K3× T 2/Z2 orientifold with fluxes and D3/D7 branes

Consider Type IIB superstring theory compactified onK3 × T 2/Z2 orientifold [29] to four-dimensions [5]. Letxµ

(µ = 0, . . . ,3) denote the four-dimensional Minkowski coordinates,x
 (
 = 4, . . . ,7) theK3 coordinates andxp (p = 8,9)
the coordinates ofT 2. The low-energy effective theory is aN = 2 supergravity [17,23] which describes the gravitational m
tiplet coupled to 3 vector multiplets and 20 hypermultiplets. The scalar manifold is the product of a special Kähler m
spanned by the three complex scalarss, t, u in the vector multiplets and a quaternionic Kähler manifold describing th
hyperscalars [17]:

Mscal= MSK × MQK,

MSK =
(

SU(1,1)

U(1)

)
s

×
(

SU(1,1)

U(1)

)
t

×
(

SU(1,1)

U(1)

)
u

,

MQK = SO(4,20)

SO(4) × SO(20)
(8)

s, t, u being complex scalars spanning each factor ofMSK are defined as follows:

s = C(4) − i Vol(K3),

t = g12

g22
− i

√
detg

g22
,

u = C(0) − i eϕ, (9)

whereC(4) is the axion originating from the components of the ten-dimensional four-form along the directions ofK3, Vol(K3)

is the volume ofK3 in the ten-dimensional Einstein frame,C(0) andϕ are the ten-dimensional axion, dilaton and the matrig

denotes the metric onT 2. The vector fieldsAΛ
µ in the bulk sector originate from the componentsBα

µp of the ten-dimensiona
two forms{Bα

(2)
} ≡ {B(2),C(2)} whereα = 1,2 is the doublet index of the ten-dimensional Type IIB duality group SL(2,R)u,

and the indexΛ = 0, . . . ,3 runs over the4 of SL(2,R)u × SL(2,R)t .
Let us recall some properties of theK3 cohomology. The second order cohomology groupH(2)(K3,Z) is isomorphic to the

latticeΓ 3,19 in which the following inner product between harmonic two-forms is defined:(α,β) = ∫
K3 α ∧ β. Let us denote

by ωI , I = 1, . . . ,22, a basis ofH(2)(K3,Z), and letm = 1,2,3 anda = 1, . . . ,19 be the indices running over the positive a
negative signature directions respectively. The manifoldMQK can be written in the form:

MQK =
[

SO(3,19)

SO(3) × SO(19)
× O(1,1)

]
� {22+} (10)

where{22+} denote a subspace generated by 22 Abelian isometriesZI (with positive grading with respect to the O(1,1)

generator). These are parametrized by the axionsCI originating from the components of the four form with two indices alo
K3 and two indices alongT 2. The O(1,1) factor is parametrized by the volume ofT 2:

√
det(g) = eφ . Finally the 40 complex

structure moduli and the 17 Kähler moduli (except the volume) ofK3 are described by a 3× 19 matrixem
a which span the

SO(3,19)/SO(3) × SO(19) submanifold. These scalars are arranged in the 20 hyperscalars as follows:{Cm,φ}, {Ca, em
a }.

Let us now add to the microscopic setting a stack ofn3 space-filling D3 branes and one ofn7 space-filling D7 branes
wrapped aroundK3. The low-energy brane dynamics is described by a SYM theory on their world volume. We shall co
the SYM theories on the D3/D7 branes to be in the Coulomb phase (namely the branes to be separated from each oth
the gauge group and the massless bosonic modes on the world volume theories are:

D3: gauge group= U(1)n3; bosonic 0-modes:Ar
µ, yr = y8,r + ty9,r (r = 1, . . . , n3),

D7: gauge group= U(1)n7; bosonic 0-modes:Ak
µ, xk = x8,k + tx9,k (k = 1, . . . , n7),

whereyr andxk are complex scalars describing the position of each D3, D7-brane alongT 2 respectively. The massless bra
degrees of freedom will enter the low-energy theory asn3+n7 additional vector multiplets, causing the special Kähler mani
to enlarge to a homogeneous non-symmetric(3+ n3 + n7)-dimensional space denoted byL(0, n3, n7) [30]. The metric of this
manifold was computed in terms of the bulk/brane fields, using the solvable Lie algebra parametrization, in [25].
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2.1. Geometry ofMSK

Let us briefly recall the main formulae of special Kähler geometry. The geometry of the manifold is encoded in th
morphic sectionΩ = (XΛ,FΣ) which, in thespecial coordinatesymplectic frame, is expressed in terms of a prepoten
F (s, t, u, xk, yr ) = F(XΛ)/(X0)2 = F (XΛ/X0), as follows:

Ω = (
XΛ,FΛ = ∂F/∂XΛ

)
. (11)

In our caseF is given by

F (s, t, u, xk, yr ) = stu − 1

2
sxkxk − 1

2
uyryr . (12)

The Kähler potentialK is given by the symplectic invariant expression:

K = − log
[
i
(
XΛFΛ − FΛXΛ

)]
. (13)

In terms ofK the metric has the formgi̄ = ∂i∂̄K . The matricesUΛΣ andN ΛΣ are respectively given by:

UΛΣ = eKDiX
ΛD̄ XΣgi̄ = −1

2
Im(N )−1 − eKXΛXΣ,

N ΛΣ = ĥΛ|I ◦ (
f̂ −1)I

Σ
, wheref̂ Λ

I =
(

DiX
Λ

XΛ

)
; ĥΛ|I =

(
DiFΛ

FΛ

)
. (14)

For our choice ofF , K has the following form:

K = − log

[
−8

(
Im(s)Im(t)Im(u) − 1

2
Im(s)

(
Im(x)k

)2 − 1

2
Im(u)

(
Im(y)r

)2
)]

, (15)

with Im(s), Im(t), Im(u) < 0 atxk = yr = 0. The componentsXΛ,FΣ of the symplectic section which correctly describe o
problem, are chosen by performing a constant symplectic change of basis from the one in (11) given in terms of the pre
in Eq. (12). The rotated symplectic sections then become [23]

X0 = 1√
2

(
1− tu + (xk)2

2

)
, X1 = − t + u√

2
,

X2 = − 1√
2

(
1+ tu − (xk)2

2

)
, X3 = t − u√

2
,

Xk = xk, Xr = yr ,

F0 = s(2− 2tu + (xk)2) + u(yr )2

2
√

2
, F1 = −2s(t + u) + (yr )2

2
√

2
,

F2 = s(2+ 2tu − (xk)2) − u(yr )2

2
√

2
, F3 = 2s(−t + u) + (yr )2

2
√

2
,

Fi = −sxk, Fr = −uyr . (16)

Note that, since∂XΛ/∂s = 0, the new sections do not admit a prepotential, and the no-go theorem on partial supersy
breaking [31] does not apply in this case. As in [17], we limit ourselves to gauge shift-symmetries of the quaternionic m
of theK3 moduli-space. Other gaugings which include the gauge group on the branes will be considered elsewhere.

2.2. Fluxes

Let us consider the effect of switching on fluxes of the three-form field strengths across cycles of the internal manif
only components ofFα

(3)
= dBα

(2)
which survive the orientifold projection are:Fα

(3)
= FαI

p ωI ∧ dxp . We can describe thes

flux components in terms of four integer vectorsf I
Λ, Λ = 0, . . . ,3:

FαI
p ≡ FI

Λ = 4π2

R3
α′f I

Λ; f I
Λ = {f m

Λ ,ha
Λ} ∈ Γ 3,19, (17)

whereR is the linear size of the internal manifold and last property follows from the flux quantization condition.
The presence of these fluxes imply local invariance in the low-energy supergravity. A way to see this is to cons

dimensional reduction of the kinetic term forC :
(4)
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D = 10→ D = 4,

F(5) ∧∗ F(5) → (
∂CI − f I

ΛAΛ
µ

)2
, (18)

where the four form field strength is defined as:F(5) = dC(4) + 1
2εαβBα

(2)
∧F

β
(3)

. The Stueckelberg-like kinetic terms forCI in

four dimensions are clearly invariant under the local translationsCI → CI + f I
ΛξΛ, ξΛ being four local parameters, provide

the bulk vectors are subject to the gauge transformationAΛ
µ → AΛ

µ + ∂µξΛ. Thus from general arguments we expect tha
the presence of three form fluxes, the low-energy supergravity should be invariant under a four-dimensional Abelia
groupG , subgroup ofG whose generatorsXΛ = f I

ΛZI are gauged by the bulk vectors. TheN = 2 supergravity originated
from the flux compactification is obtained therefore from the ungauged theory through the gauging procedure which co
promoting the subgroupG of the isometry group ofMQK to local invariance of the Lagrangian. Supersymmetry then requ
the introduction of additional terms (fermion shifts) in the fermion supersymmetry transformation rules, fermion mas
and a scalar potentialV (Φ) whose expression is constrained to be a well defined bilinear in the fermion shifts [32]. In the
we shall denote byPx

Λ andkI
Λ the momentum maps and the Killing vectors of the gauged isometriesXΛ:

kI
Λ = f I

Λ; Px
Λ = √

2eφ
([(

1+ eet
)1/2]x

m
f m
Λ + ex

aha
Λ

)
. (19)

In terms of these quantities the scalar potential can be written as follows:

V = 4e2φ
(
f m
Λ f m

Σ + 2ea
mea

nf m
Λ f n

Σ + ha
Λha

Σ

)
L̄ΛLΣ

+ 2e2φ
(
UΛΣ − 3L̄ΛLΣ

)(
f m
Λ f m

Σ + ea
mea

nf m
Λ f n

Σ + 2
[(

1+ eeT
)1/2]n

m
en
af m

(Λha
Σ) + en

aen
bha

Λhb
Σ

)
. (20)

Once the potential is known then we can study the vacua of the theory, that is bosonic backgrounds which extremizeV (Φ). If
we are interested in supersymmetric vacua we need to look for bosonic backgroundsΦ0 which admit a Killing spinorε, namely
directions in the supersymmetry parameter space along which:

δε(fermions)|Φ0 = 0. (21)

If a background admits a Killing spinor, it can be shown that it is also a vacuum of the theory. The spinors of the theory
of the gravitiniψA

µ , the gauginiλi,A (i = 1, . . . , nv ) and the hyperiniζ1,A, ζ a,A. From the Killing spinor equationδεζ a,A = 0
we derive the following conditions which should hold for any supersymmetric vacua:

ea
mf m

Λ = em
a ha

Λ = 0, (22)

ha
ΛXΛ = 0. (23)

Conditions (22) will fix K3 complex structure moduli, while Eq. (23) will fix theT 2 complex structuret and the axion/
dilatonu. The Killing spinor equationsδεζ1,A = 0 andδεψ

A
µ = 0 turn out to be equivalent for this gauging and, together w

the equationsδελi,A = 0, will impose restrictions on the fluxes.

2.2.1. N = 2 vacua
From the gravitino Killing spinor equation we derivePx

Λ ≡ 0, which, upon implementation of Eqs. (22) implies

f m
Λ = 0, (24)

which can be restated as the requirement that no flux vector among thefΛ in Γ 3,19 have positive norm, consistently with th
results by Tripathy and Trivedi [5]. Let us, for the sake of simplicity, choose as the only non-vanishing components of

ha=1
2 = g2; ha=2

2 = g3. (25)

Condition (23) then imply:

X2 = X3 = 0 ⇔ t = u, 1+ t2 = (xk)2

2
, (26)

so thatt, u are fixed, whiles and the brane coordinatesxk, yr remain moduli. Finally conditions (22) implyem
a=1,2 = 0. Since

the two axionsCa=1,2 are Goldstone bosons which provide mass toA2
µ,A3

µ, the whole two hypermultipletsa = 1,2 will not
appear in the low-energy effective theory. This theory will be no-scale since the potential at the minimum vanishes id
in the moduli.
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2.2.2. N = 1,0 vacua
Let us look forN = 1 vacua by requiring the componentε2 to be the Killing spinor. Upon implementation of (22), we obta

the following conditions:

δεψ
A
µ = 0

δελ
i,A = 0

⇒




(f x=1
Λ + if x=2

Λ )XΛ = 0,

(f x=1
Λ + if x=2

Λ )∂iX
Λ = 0,

f x=3
Λ = 0.

(27)

Conditionf x=3
Λ = 0 in particular can be rephrased as the statement that the flux should be defined by at most two

norm vectors inΓ 3,19, consistently with theprimitivity condition on the complexified 3-form field strengthG(3) as found by
Tripathy and Trivedi [5].

Suppose, for the sake of simplicity, that the only non-vanishing flux components are the following

f m=1
0 = g0; f m=2

1 = g1; ha=1
2 = g2; ha=2

2 = g3, (28)

then from the vanishing of the D7-brane gaugini variations in (27) we have the conditionxk = 0, namely that the D7 branes b
stuck at the origin ofT 2. Condition (23) then implies:

X2 = X3 = 0 ⇔ t = u = −i. (29)

The four axionsCm=1,2,Ca=1,2 are Goldstone bosons which provide mass to all the bulk vectors. Finally conditions (22
fix the 40 complex structure moduli ofK3:

ex
a=1,2 = 0; e

x=1,2
a>2 = 0 (30)

leaving the 17 Kähler moduliex=3
a>2 unfixed. The unfixed moduli will enter chiral multiplets in the effectiveN = 1 theory as the

following complex scalars:

s, yr , Cm=3 + i eφ, Ca>2 + i em=3
a>2 , (31)

which span the scalar manifold:

Mscal= U(1,1+ n3)

U(1) × U(1+ n3)
× SO(2,18)

SO(2) × SO(18)
, (32)

the former factor being parametrized bys, yr . We have not dealt with all conditions (27) yet. In particular in the effectiveN = 1
we can construct a superpotential usingN = 2 quantities:

W = [
e−φ

(
Px=1

Λ + iPx=2
Λ

)
XΛ

]∣∣
Φ0

∝ g0 − g1 moduli independent. (33)

On the other hand the expressions in (27)(f x=1
Λ + if x=2

Λ )XΛ and(f x=1
Λ + if x=2

Λ )∂iX
Λ turn all out to be proportional to

g0 − g1. Therefore ifW = 0 we haveN = 1 otherwise the vacuum will break all supersymmetry. In both cases the poten
the minimum vanishes identically in the moduli so that the effective supergravity is no-scale.

2.3. More generalN = 1 vacua

We may generalize the above choice of fluxes so as to have vacua for more general (complex) values fort, u (in the positivity
domain of the Lagrangian), namely:

t = at − i e2λt ; u = au − i e2λu , (34)

at , au,λt , λu being generic real numbers. To this end we use the property of the gauged Lagrangian to be still duality in
providedwe transform under duality symmetry the fluxes as well. The isometry transformation in SU(1,1)t × SU(1,1)u which
maps the valuest = u = −i into those in (34) is represented by the following symplectic matrix:

O = OtOu; Ot =
(

A−1T
t 0
0 At

)
; Ou =

(
A−1T

u 0
Cu Au

)
. (35)

One can verify indeed that

OΩ(s, t, u, x, y) = e−λt−λuΩ(s, t ′, u′, x′, y′),
t ′ = a + e2λt t; u′ = a + e2λuu; y′r = eλt yr ; x′k = eλt+λuxk. (36)
t u
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The flux vectorsf I
Λ are electric since they fill the lower part of a symplectic vector. Due to the perturbative form ofO, its action

on the flux vectors will not produce magnetic charges but will transform them as follows:

f ′m
Λ = AΣ

Λf m
Σ ; h′a

Λ = AΣ
Λha

Σ, (37)

which, in components, read:

f ′1
0 = 1

2
e−λt−λu

(
1+ e2(λt+λu) − at au

)
g0; f ′1

1 = −1

2
e−λt−λu(at + au)g0,

f ′1
2 = 1

2
e−λt−λu

(
1− e2(λt+λu) + at au

)
g0; f ′1

3 = 1

2
e−λt−λu(−at + au)g0,

f ′2
0 =

(
e−λt+λuat

2
+ eλt−λuau

2

)
g1; f ′2

1 =
(

eλt−λu

2
+ e−λt+λu

2

)
g1,

f ′2
2 =

(
−e−λt+λuat

2
− eλt−λuau

2

)
g1; f ′2

3 =
(

eλt−λu

2
− e−λt+λu

2

)
g1,

h′1
0 = −1

2
e−λt−λu

(−1+ e2(λt+λu) + at au

)
g2; h′1

1 = −1

2
e−λt−λu(at + au)g2,

h′1
2 = 1

2
e−λt−λu

(
1+ e2(λt+λu) + at au

)
g2; h′1

3 = 1

2
e−λt−λu(−at + au)g2,

h′2
0 =

(
−e−λt+λuat

2
+ eλt−λuau

2

)
g3; h′2

1 =
(

eλt−λu

2
− e−λt+λu

2

)
g3,

h′2
2 =

(
e−λt+λuat

2
− eλt−λuau

2

)
g3; h′2

3 =
(

eλt−λu

2
+ e−λt+λu

2

)
g3. (38)

One can verify that with this choice of fluxesN = 1 residual supersymmetry implyg0 = g1, xk = 0 andt, u fixed at the values
in (34).

The possibility of fixing the effective string coupling constant to small values as important implications. For inst
makes it possible to apply the model to the construction of inflationary models [33–38], in which theslow-roll of the inflaton
(one of theyr moduli) is realized once perturbative corrections to the potential are taken into account.2

2.3.1. D7 brane world volume fluxes
Within this framework we can consider the effect of switching on fluxes of the D7 gauge field strengthsFk

µν across two

cycles ofK3. This corresponds for instance to gauging additionalZa isometries by means of D7 brane vectorsAk
µ [23].

The constant Killing vectors areku
Λ = gk

4, Λ = 3 + k, k = 1, . . . , n7, along the directionqu = Ca=3,...,2+n7 (recall that the

isometriesZa=1,2 have already been gauged by the vectorsA
2,3
µ ).

As far as supersymmetric vacua are concerned, from inspection of the fermion shifts it is straightforward to verify
existence of a constant Killing spinor always requiresX2,X3,X3+k = 0 which impliesxk = 0 andt = u = −i even in the
N = 2 case (still corresponding to the choiceg0 = g1 = 0). As before we haveN = 1 if g0 = g1 �= 0 andN = 0 otherwise.

3. No-scale supergravity from Scherk–Schwarz generalized dimensional reduction

As pointed out in the introduction, spontaneously broken supergravity can also be obtained through a Scherk–
dimensional-reduction fromD +1 toD dimensions [39,16,15,24]. In order for the theory to admit a stable vacuum the Sc
Schwarz phases should be taken to be in the Cartan subalgebra of the maximal compact subgroup of the isometry grouG of the
theory in(D +1)-dimensions. The scalar potential is obtained from the non-linearσ -model describing the(D +1)-dimensional
scalar fields:

√−det(g)gµνP I
µP I

ν , (39)

whereP I
µ are the pull-back on space-time of the vielbeinsP I

i
of the(D + 1)-dimensional scalar manifold. By takingµ = ν =

D + 1 we have the following potential inD dimensions:

2 We are grateful to R. Kallosh for explaining this point to us.
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D’A. is
V = e−2D−1
D−2σ

P I
D+1P I

D+1 � 0, (40)

whereσ is the modulus associated to the radius of the internal dimension andP I
D+1 = P I

i
Mi

j
φj , M

j
i

being the Scherk–

Schwarz phases. The potential has an absolute minimum (at the origin of the scalar manifold) only ifM
j
i

besides being a globa

symmetry of theD +1 theory is also compact, so that there exist a point in the moduli space in whichP I
D+1 = 0. All the scalars

are fixed at this minimum exceptσ and all the(D + 1)-dimensional scalarsφi for whichM
j
i
φj = 0. Finally the gravitino mas

matrix is provided byQD+1 which is the pull-back on the directionD + 1 of the R-symmetry connectionQi on the scalar
manifold inD + 1 dimensions.

4. Type IIB on T 6/Z2 orientifold with fluxes and D3 branes

As a final example of let us briefly mention the gauged supergravity which describes the (classical) low-energy
Type IIB onT6/Z2 orientifold in the presence of space-filling D3 branes and three form NS and RR fluxes [3,19,20,1
anN = 4 model with an Abelian gauge symmetry generated by twelve independent combinations of the fifteen tran
isometries acting on the axions which originate from the internal components of the ten dimensional 4-formC(4). This model
exhibits vacua with vanishing cosmological constant at tree level and a hierarchical supersymmetry breakingN = 4 → 3 →
2 → 1 → 0 in which the masses of the gravitini are provided by four independent flux parametersmi , i = 1, . . . ,4, expressed
in units ofα′/Vol(T 6)1/2.

5. No-scale supergravities and the cosmological constant

All the models discussed above exhibit partial super-Higgs around Minkowski vacua. Let us comment on the o
corrections to the cosmological constant. We start recalling that the quartic, quadratic and logarithmic divergent par
field theory, are respectively controlled by the following coefficients

Str
(
M2k

) =
∑
J

(−)2J (2J + 1)m2k
J ; k = 0,1,2. (41)

On the other hand, the sum rules

Str
(
M2k

) = 0; k <N , (42)

in N -extended supergravity seem to be of general validity for theories where aN → N − 1 breaking is possible [18]. Thi
requires long massive gravitino multiplets since the massive gravitino is Majorana and therefore cannot be BPS. On
hand, for theories with central charges, like the Scherk–Schwarz breaking ofN = 8, gravitini are pairwise degenerate a
the same sum rules apply only fork < N /2, N being even. It is important to note that the bulk sector ofN = 4 Type IIB
orientifold with fluxes does indeed coincide with aZ2 truncation of theN = 8 Scherk–Schwarz supergravity, as was sho
in [20]. SimilarlyN � 6 Scherk–Schwarz supergravities, byZ2 reduction which removes the gravitino degeneracy, satisfy
same sum rules as the parent theory [26].

As an example let us consider theN = 4 no-scale model from Type IIB onT 6/Z2 orientifold. In this case it was shown th
Str(M2) = Str(M4) = Str(M6) = 0 while from general arguments one would expect Str(M8) ∝ m2

1m2
2m2

3m2
4 �= 0. The first

finite contribution to the cosmological constant would then be:

Λ ∼ m2
1m2

2m2
3m2

4

M4
P l

. (43)

It is intriguing to note that, if the supersymmetry breaking scale is taken to bem1 ∼ m2 ∼ m3 ∼ m4 ∼ 10 TeV∼ 10−15MPl

then we would obtain from the above formulaΛ ∼ 10−120M4
P l

which is consistent with the most recent experimental data [
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