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Abstract

We present the evidence for the existence of the topological string analogue of M-theory, whichZvthealty. The corners
of Z-theory moduli space correspond to the Donaldson—-Thomas theory, Kodaira—Spencer theory, Gromov-Witten theory, and
Donaldson—Witten theory. We discuss the relation&-tfieory with Hitchin’s gravities in six and seven dimensions, and make
our own proposal, involving spinor generalization of Chern—Simons theory of three-féongie this article: N. Nekrasov,
C. R. Physique 6 (2005).
0 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.
Résumé

A larecherche delathéorie m perdue. Nous présentons des arguments pour I'existence d’une théorie M topologique, que
nous appellerons théorig, analogue a celle pour la théorie des cordes. Les limites de I'espace des modules de IZthéorie
correspondent a la théorie de Donaldson-Thomas, la théorie de Kodaira—Spencer, la théorie de Gromov-Witten, et la théorie
de Donaldson-Witten. Nous discutons les relations entre la thBatecelles de gravité d’Hitchin en dimensions six et sept,
et nous donnes une formulation personelle, en termes de généralisation spinorielles de la théorie de Chern—Simons pour I
trois-forme.Pour citer cet article: N. Nekrasov, C. R. Physique 6 (2005).
0 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction

The past ten years of string theory development have taught us that string theory is a wrong name for the fundamental theory
of quantum gravity. We know that the theory has a moduli space of vacua, that this moduli space has some singularities, and
we know that the expansion near different singularities look like different string theories, or like eleven-dimensional supergrav-
ity [1]. In the context of topological strings the situation used to be different, but recent advances in this field suggest the similar
picture. In the past few months a few striking conjectures have been put forward concerning the strong-weak dualities, relating
topological strings oA andB types on the same Calabi—Yau three-f&ldThe conjectures relate the perturbative tgpstring
calculations to the D-branB type calculations, and vice versa. So far most of the known checks of this S-duality conjecture
involved onlyB-type branes.
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Strong-weak coupling duality in the physical superstring follows from the existence of some higher-dimensional theory,
such that its compactification on tori gives rise to the dual theories. The purpose of this lecture is to draw a similar picture of
what we called at various occasions (M)athematical M-theargr f-theory. Some people call it topological M-theory [2,3].
Since for us the main object is a certain partition function, which we denof bythis article we shall call the missing theory
theZ-theory.

The simplest idea would be that the physidéttheory, whatever it is, is related @-theory, just like physical strings
are related to the topological strings [4,5,23]. This may well be true, but two warning signs are in order: this relation would
not explain the relation between the topological gauge theonRAoand the topological string on local Calabi—Yau manifold
within Z-theory; to actually engineer the relation betweenAhe- 1 theories in four dimensions (which is what one gets by
compactifyingM -theory onZ7) and the topological strings one has to use CY compactifications with fluxes (which could be in
principle related taG>-compactifications, but this makes the whole construction less pretty) [6].

2. Evidencefor Z-theory

In this section we describe briefly the topological string theory and the topological gauge theory computations which corre-
spond to various degenerationstheory.

2.1. A story
2.1.1. Gromov-Witten corner

Consider closed\ type topological string on Calabi—Yau threefotd Let k denote the (complexified) Kahler form af,
andt = [k] € H2(X, C). The partition function is defined as a formal series in the string coupling coristant

o
ZaX, )Y =expy " n%ET2F (X: t) (1)
g=0
where
FeXip= Y eXp(—/t)Ng(ﬁ) )
BeH2(X:Z) B

andNg(B) is the ‘number’ of genug stable holomorphic maps % which land in the homology clags. The word ‘number’
here can be defined more precisely using the virtual fundamental cycles but we shall not do that.

2.1.2. Lagrangian branes

By definition, (1), the partition function, is perturbative iin The relation to physical superstring [4] suggests that there
are nonperturbative corrections to the ‘correct’ definitiorZof. These corrections, presumably, come from D-branes. There
are natural D-branes in the topological string context. Namely, for any Lagrangian submdnifolki (where X is viewed
as symplectic manifold), one can define the relative analogue of Gromov-Witten theory, i.e., stable maps of Riemann surfaces
with boundaries, which land oh. Moreover,L. may have several components, each component may have multiplicities and so
on. In the most naive approach one would combine the effects of closed strings and open strings as follows:

ZiX:tshlA) =ZaXstemW o Y7 exp(—%/s)/\@(h) (3)
14

(e ACH3(X,Z)

whereNy(h) =) 7 /\/M)‘azh—2 counts stable maps of (possibly disconnected) Riemann surfaces (hence the total genus can
be arbitrary), with boundaries, which land on the Lagrangian submanilglds=1, ..., k;, which represent the homology
cycle£. The homology cycles must belong to a Lagrangian (with respect to the intersection pairing) subl&f@(zﬁji).l If

these Lagrangian submanifolds are not simply-connected, then one modifies the definition of the Wjmbleysconsidering

the moduli spaces of the pai(&;, £;), whereL; is the rank mult{;) vector bundle or; with flat unitary connection. The

stable mapX, 0X) is weighted with the weight TP expgﬁ’az A whereA is the pullback of the flat connection. The result it

then somehow averaged over the moduli space of the Lagrangian submanifolds with unitary flat bundles over them. The logic
of this construction is largely motivated by the corresponding one oB @ide.

1 The reason for taking only ‘half’ of all possible 3-cycles is the electro-magnetic duality of the effective four-dimensional sugra.
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We should learn from this discussion that although perturbaivstring only knows about the (complexified) symplec-
tic structure ofX, via t-dependence, the nonperturbative corrections bring in extra structure, the 3sfarhich turns out
(upon complexification again) to be related to 130)-form of the complex face of the Calabi—Yau manifatd there is a
corresponding terfin the target space theory action

2
Starget= /5 + kTr(A dA + §A3). 4)

2.2. B story

Mirror symmetry relates typ@ string onX to type B topological string onXY—another Calabi—Yau manifold. All the
features of the typ@\ string described above should be equally presenBfatring as well, order by order ia. Indeed,
mirror symmetry is the equivalence of sigma models before their coupling to the two-dimensional gravity, and also holds in the
presence of worldsheet boundaries.

2.2.1. Kodaira—Spencer corner

In particular, there exists a definition of the closed typeartition function, and [4] suggests that it is given by some
field theory, i.e., instead of the integrals over the moduli spaces of Riemann surfaces one works with the integrals over the
moduli spaces of Riemann graphs. The classical, i.e., genus zero, definition of tiestyjpey free energy suggests an intimate
connection to the symplectic geometry, via the special geometry. The full partition function infiebeesections, so the story
involves some sort of quantization of the symplectic manifold, which gives rise to the special geometry, however no satisfactory
proposal about it has been put forward so far. Thkbrated CY manifolds a pair:(XV, £2), whereX" is a complex threefold,
Kxv ~ Oxv and £2 is nowhere vanishing holomorphi8, 0)-form. The moduli spaceﬁ of calibrated CY manifolds has
complex dimension % hi% = 1dim H3(XV, R). Moreover, one can choose local coordinates\drto be the periods of2.
These periods are not independent: choose some basiarud B cycles inHz(XV, Z): Alo A/ =0,A'0 B, = 8; BjoB; =0,

i=0,1....,r,r= h2*1(XV), whereo stands for the intersection index, and define:
ti=5£9, tb:}gﬂ. (5)
Al B;

Thent! are the local coordinates okl and locally onM there exists a holomorphic functiofy = Fo(X"; ¢) such that:

th= R (6)

This function, called prepotential, is the genus zero topolodicstring partition functior? The topologicaB string couples
naively only to the complex structure deformationsxof. However, it is well known that the worldsheet theory is anomalous,
and the choice of2 enters the definition of the path integral measure. The moduli sﬁid:ea cone over the moduli spagel

of complex structures af V. The rescaling of2 does not change the complex structureXof, so that the quotient by thig*
action givesM. This C*-action scales simultaneousl,yandz}'), which means tha¥g should be a homogeneous function of

degree 2. This 2 is related to the fact that the anomalous dependetzeverreferred to earlier i22-2% on the genug.*
The full topological string partition function includes also the higher genus amplitudes:

0
Zg(XVit.h)y=expy  h* 2 Fo(XV1r) )
g=0

2 To arrive at the coupling (4) we note that in the presence of the boundary condition correspondinigetscalar fermionsy# in the
worldsheet sigma model have zero modes corresponding to the motion ialdfte zero-observabley,, ...m,, Y™Ml... ™ saturates these
zero modes ifp = dimL (so, in particular, in the more general setup for the t¢peopological string one gets a similar coupling for the
% dim X-forms). The zero-observable inserted at the center of the disk b§égkdown to the compact subgrodf(1). The one-point function
is non-vanishing, since the volume &f1) is finite.

3 More precisely, its third derivative (in the special coordinatés the three-point function on a sphere of the zero-observa&?les xmiej
of B model, corresponding to the Beltrami differentials.

4 The fields of the sigma model part of tBestring arex’, &', 7, 6;, ¥.,, so the unbalanced arg 2ero modes of the 1-fornt’, one zero
mode ofx’ and one of; . Sinced andy are fermions, their measure transformsas 28, while the one of the bosons gives another factor
of 2.
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For smallz the partition function behaves asF @’ + which is a quasiclassical expression for a wave function, sifige
thanks to (6), is a generating function of a Lagrangian submanifoitin #3(X Y, R). The wave function, then, corresponds to
a state in the Hilbert space obtained by quantizingdowever the Planck constant in this ‘quantizationfs not#. Moreover,

[4] has shown, thaZ g cannot be viewed as a holomorphic functionrofinstead, the naive decoupling ofdependence
is replaced by a certain linear partial differential equationZgn called the holomorphic anomaly equation [4], which was
interpreted in [7] as an equation, expressing the dependence of the wave function, obtained by the quantiZatontio¢
choice of holomorphic polarizatioh.

Note that one has a lot of freedom in parameterizﬁg The A-periods of$2 provide local holomorphic coordinates, but
they may be not the most useful ones. The definition of these coordinates required a choice of theAg(SIS inbut, since
H3(XV,R) = H3(XV,Z) ® R this choice, made for some particul&, can be uniquely extended to all nearby CY’s, and
also globally up to monodromy ifip(2r + 2, Z). In the holomorphic coordinateshe prepotentialFy makes its most natural
appearance, but it could be that it is not the most natural object to look at, especially in view of the holomorphic anomaly. Take,
for example, the real part a2, & = Res2, and parameteriz.é?? by the cohomology clasg of @. In other words, let us pass
from 1; parameterization top;, ') parameterizationp; = fAi D,q = 5£B,~ @. Clearly, from (5) we can expresp, g) viat, t:

1 _ . 1/0Fy 8Fo
==t +1), =2 — |. 8
Pi 2(l+l) q 2(3[,‘ + ali> 8
We claim that the transformatidi, 7) — (p, q) is generated by the generating function, which turns out to be quite natural from
the point of view of six dimensional topological gravity. In order to see that, introduce one more nofatiop; + «/—1§;,
i=0,1,...,r,and consider the following function of:

1 _
:2«/—_1X[ A L2. (©)]

In the effective four-dimensional supergravity obtained by compactifying Tystring on CY XYV gives the exponential of

the Kahler potential. We note in passing that tipeg) coordinates on\ are analogous to the Penner coordindtesn the
combinatorial moduli space of Riemann surfaces, which are not holomorphic, but are quite useful [8]. Thus their six-dimensional
analogues are also natural to consider. We can easily nélaierq:

vy fafa-fafa)-o(s 50 i) - n)

1 — oH
H=—"—=(Fo—-Fo), 2¢/= (10)
V-1 asj
Thus,V is the Legendre transform of with respect te5 and it is more natural to view’ as a function ofp andg, not as a
function of p andé.

2.2.2. Hitchin’s approach

There exists an interesting variational problem, which proditcéisectly as a function op andg [9]. We present a slightly
reformulated version of his construction (it was found independently in [10]). In what follows we shall call this H@&msince
we shall also have to look at the higher-dimensional versions of that theory. The fidlidsthEory are the closed three-form
@ on XV and a traceless vector-valued one-fafii.e., a section oEnd(T X", TXV), in other words, a Higgs field acting on
the (real!) tangent bundle t&§". The one-formy/ is further constrained, which is implemented by yet another field, a six-form
¢, which enters the functional linearly. Here is the functional:

o= [ @ A @ +ie(Trs2+0)= [ e @ @0, (1)
XV XV
provided that the constraints
JLit=-6 J'=0 (12)

are imposed. Finally, the real variable is @otbut a two-formB, which enters as follows: fix = [®] € H3(XV, R). We shall
denote by the same letter the de Rham representativei@., a closed 3-form. Then we write:

®=¢+dB, BeA’T*XV. (13)

5 There is some confusion, however, as to whetherZtgswhich has such an interpretation, or its square.
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The claim of Hitchin's is that by minimizing with respect toB one getsV, where2 = @, + +/—1i;, s, 1*2 =-1, and
x means that we take the values®fand J at the critical point ofS. We note in passing that the Lagrangian, analogous to
(11), can be written in two dimensions, where one replazdy a closed 1-form. In this case one gets Polyakov’s formulation
of the sigma model coupled to two-dimensional gravity, where, however, the two-dimensional metric appears only through
the complex structurd: 78 = ﬁgﬁyeay. Minimizing with respect ta/ is not very sensible unless one considers not one,
but at least two closed one-forngs (target space should be at least two-dimensional, for the classical Polyakov string to be
equivalent to the Nambu string). Such a generalization is also possible in six-dimensional context [10]. Note, however, that
unlike two dimensional case, one can only consider “flat tensorial target spaces with céhdtalit”: S¢ p = [ GogP* A
LyPP + B PY A @B where the index: runs from 1 tod, the dimension of the tensorial target space, &nahdB are the
constant metric and the antisymmetric tensor respect@\/ely.

In a senseH6-theory exhibits T-duality, just like two-dimensional sigma model on a cirdtmwever, it maps quadratic
constraint T/2 = —6 into the nonlinear one: T2 = —6. At any rate H6 provides an interesting off-shell extension of the
prepotential.

2.2.3. Kodaira—Spencer theory
We do not know whether this is a ‘correct’ off-shell extension, i.e., if it reproduces the higher genus amgijuges 1. It
has been argued in [4] that these amplitudes can be calculated using the Feynmann rules of the so-called Kodaira—Spencer (KS
theory of gravity, which is a cubic field theory, whose propagating field(l &) two-form onX"V. In this sense KS theory is
similar toH6 theory, although in the latter the propagating fiBlds just a two-form. Both theories are background dependent:
in KS case one has to fix the reference complex structure and an elenféftik V); in H6 theory one has to fig. We refer
to [10] for the suggestion for the construction of the map between the K&l érideories, although neither [10] nor we suggest
that any of these formulations are the suitable nonperturbative formulations of thB tgpelogical string. We stress thiit
theory, if at all, is related to the ‘square’ of the topologiBastring, since it isFg — F which is the Legendre transform &f,
not the prepotential itself. The same Legendre transform occurred in the recent discussion of black hole entropy [11].

2.2.4. Nonperturbative corrections

Neither KS nor Hitchin’s functionals know about the nonperturbative corrections coming from D-branes in tBestyipg.
The latter correspond to the coherent sheaveX ¥nand the simplest ones are the ideal sheaves of points and holomorphic
curves onX". The actual counting problem which their consideration leads to will be described in the Donaldson-Thomas
section. Here we shall simply mention that their enumeration brings extra parameters the partition function ofBhetriyyoe
must depend on: the two-forme HZ(XV, C), which couples to the worldvolumes of the D-strings, the Poincare dualsof ch
of the corresponding sheaves:

Z5(XVst,5,h1A) = Zp(XV;1) x > exp(%/)um) / 1 (14)

LEACH®EN\XV,2Z) XV [M)\]Vir

whereM; is the moduli space of (stable?) coherent shedves XV, with the Chern character ¢h) = A, and A is some
Lagrangian sublattiéin H€e" and[M,] is the virtual fundamental cycle.

2.2.5. Donaldson-Thomas corner

The Donaldson—Thomas (DT) theory is the mathematical version of the physical ‘integrating out the D-branes’ procedure.
The theory is not yet constructed, but some partial results are already available, especially in the rank one case. We consider
Calabi-Yau threefold .2 Just as topological string of typ allows generalizations to non-CY spaces, the DT theory also has
a non-CY version, however we shall not discuss it here. Bjppen strings couple t, 1)-connectionsA, which correspond
to the O-closed boundary operators i#%2 = 0 [12], the naive guess would be that we should look for the solutions of

6 Ford = 2 such theories are closely related to the theoriegog) five-branes irl I B string theory.

7 The implementation of the T-duality is quite interesting in view of applications to the black hole entropy counting [11]. One relaxes the
constraint thatp is closed, and adds a terfn® A @ to the action, whered is the closed three-form, with fixed cohomology class. Field
theoretically it is more natural (and, as we explain below, necessary after coupling to the gauge fields) to as$drhe HA(XV, 7).

8 The most studied, so far, example, corresponds to

A=(1eH’XY,2)) @00 HYXY,Z2)® H8 (X", 2).

9 We choose here another letter for the CY space, since depending on the ¢ontaxtstand forx or for XV in the discussions above.



266 N. Nekrasov / C. R. Physique 6 (2005) 261-269

the equations”%2 = 0 modulo (complexified) gauge transformations. This is the same thing as solving holomorphic Chern—
Simons (hCS) equations of motion. However, deformation-theoretically this is not a very well-posed problem. inbasd,

three functional degrees of freedofi®2 = 0 imposes three equations, and we have one gauge invariance. Therefore, the
virtual dimension of the space of solutions is minus infinity. This problem can be, however, cured, by introducing the adjoint
Higgs field which is a(0, 3)-form with values in the endomorphisms of the bundle whéracts. The equationg®2 =0

are replaced by the so-called Donaldson—Uhlenbeck—Yau equations:

ngzégw, FLL Ak Ak =[o, 7] (15)

where we have also partly fixed the gauge, leaving only the unitary gauge transformations. This partial gauge fixing is the
physical implementation of the stability condition. It explicitly depends on the Kahler forifthe equations (15) no longer
follow from the hCS action. Instead, they describe the localization locus of the (partially) topologically twiste@ six-
dimensional gauge theory, which lives on the Euclidean D5-brane wrapping a six-fold inside a CY fourfold. If sixfold itself is
a CY threefold, therw is a scalar, and moreover on the solutions of @5yanishes, formally reducing us to the original hCS
problem. However, the presence ®f is important in evaluating the determinants of the fluctuations around the solutions to
(15) and, ultimately, in construction of the virtual fundamental cyclMgf

The hCS theory has the Lagrangian, derived inBtegring context in [12]:

/.Q/\Tr<AdA+§A3>. (16)
X\/

If we follow the previous philosophy and couple tBemodel toB model, then we should replace (16) by:

/qb/\Tr<AdA+§A3)=f¢ACS(A)+BATr(FAF)- (7

The theory with the action (16) makes almost no sense, since the exponential of the action (16) is not gauge invariant. Indeed,
its gauge invariance requires integrality[6] € H3(X, C) but it is impossible to achieve for compact non-singular CY. The
action (17), on the other hand, is perfectly sensible, since the requirement of integrality BP] is quite a reasonable one.
Moreover, this requirement feciselythe condition on the complex moduli of CY to be the solutiomtifactor equationsWe

see therefore that the topological strings know something about the black holes, constructed by wrapping D-branes on various
cycles in the CY. Perhaps this remark would clarify some of the mysteries uncovered in [11].

The last term in (17) coupleB to the second Chern class of the bundle. In general we should consider not just bundles and
connections, but the complexes of bundles, with connections and maps (bi-fundamental matter) between them. The notion of
connection on the object in derived category gets complicated but the Chern character and its component are still simple.

In fact, even if the complex of bundles corresponds to the ideal sheaf of a curve or of a collection of curves and points, which
are the objects of study in the DT theory, the second Chern class has a simple meaning. It is the Poincare dual to the cycles,
represented by the curves. The coupling (17) describes, then, the couplingBafitid to these curves. We thus learn that the
B-field of H6 theory plays the role of the Kahler form for the D-strings of the corresponding&ytppological string!

2.2.6. DT theory and quantum space—time foam

The discovery of [13] was the realization that the counting of ideal sheaves [14], which is performed by the DT theory can
be viewed as the Kahler gravity path integral, where one sums over fluctuating topologies of the six-dimensional space—time.
In this interpretation, the ‘curvature” which is used to represent the Chern classes of the sheaves, is viewed as the (discrete)
deformation of the Kahler formk = kg + 7 F. We should stress that the results of [13] do not imply the discreteness of the
fundamental description of Kahler gravity. We do not know what is the correct Lagrangian of that theory, nor what are its
fundamental degrees of freedom. However, the localization technique can be applied to this theory, and the fixed points of the
symmetry group action (the symmetry in question was the torus action, which was the isometry of the background toric CY,
and acted on the space of Kahler metrics which asymptote the background one) corresponded to the blowups of the original CY
along the ideals of the torus invariant curves. The visible part of the Kahler gravity action is the volume of the space:

1

As explained in [15] the equality of the DT and GW partition functions is the particular case of more general phenomenon—
S-duality which relates andB topological strings on the same CY manifold, while inverting the string cougling the case
of toric CY’s the KS contribution to thB-partition function is trivial, as the D-brane contribution to thepartition function.
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2.3. Donaldson-Witten corner

Z-theory also knows about four-dimensional gauge theory. Fix a gauge grotipen one can define a partition function:

oo
\2
Z(a,e1,62,q) = ZP®(a, &1, £2, q) x E q%an Tremm, 6))(expla), €1, e2) 19)
n=0

whereM,, (G) denotes the moduli space of framed holomorpfig-bundlesP overCP2 =C2uU CP%O, which are trivial on
CPL, together with the choice of the trivialization:

Pept ~CP%, x Ge.

The number: is the second Chern clasg(P) of the bundles, exp € T—the maximal torus o0& ¢, (e°1, €®2) € C* x C*—the
maximal torus oSy (C)—the complexification of the of group of isometriesRt ~ C2, and finallyC[X] denotes the space

of holomorphic functions oiX (for the classical gauge groups from the B, C, D seria one can think of the polynomials in
the ADHM data). The grouc x SQ; acts oM, (G) by changing the trivialization at infinity and by automorphism€Eet,
preserving infinity. Finally, thezPe'tis the perturbative (from the gauge theory point of view) piece, which can be found in
[16]. The trace in (19) arises in the counting of the BPS states in the five-dimensional gauge theory compactified on a circle
[17]. This gauge theory can be engineered [18] by compactifiMrtheory on local Calabi—Yau manifol® ¢, which is the

A, D, E singularity fibered ovep! (for non-simply lacedG one also twists by the automorphisms of the Dynkin diagrams
of the correspondingt, D, E ‘covering’ groups). The correspondence between physditdheory compactification and the
low-energy physics of the resulting four-dimensional gauge theory implies that the Zdometion should be equal to the
Gromov—Witten partition function oK ;, wherea and logg) correspond to the Kahler moduli &fg [19]. The parameters

€1, &2 are trickier to identify. In the simplest specialization, whan= —eo = #, the latter is identified with the string coupling
constant. However, general case is harder to interpret. Presumably it corresponds to the equivariane@Vatiant DT)
theory of X .

3. Towards Z-theory

In our discussions of GW, KS, DT corners dftheory we arrived at the picture where the complete(d) topological string
partition function depends on bothandt variables, or ands variables. It is plain to identify them with thfall moduli of
CY metric onY. Nonperturbative topological string cares about both the calibrated complex and symplectic aspects of CY
geometry. We are not saying that the exact CY metric is what the string couples to. Rather, itasitiegical CY geometry
that the topological string cares about. One way to make the unification between the Kahler and calibrated complex Fhoduli of
is to consider the manifol& = ¥ x S!. Its third cohomology splits aB2(Y) @ H3(Y). In this way our moduli are nothing but
the moduli of three-forms in seven-dimensional theory. Moreover, the Lagrangian branes and topAlsgiiteys are nothing
but the associative cycles in tiig-manifold Z.

3.1. Hitchin theory in seven dimensions: Polyakov formulation

Hitchin has proposed [9] a seven dimensional thebty)( analogous té16 which classifiegz2-holonomy metrics or£ in
terms of the closed three-forms @h We present here its Polyakov-like formulation. The fields ofHiffetheory are: the metric
hi;j and a closed three-ford; j;. The Lagrangian is:

SH7=/(hifcich/\c+«/E) (20)
zZ

whereC; = C;jx dy/ Adyk. Again, the dynamical field is nat but B, such that = o +dB, ando = [C] € H3(Z, R) is fixed.

The theory (20) org = S! x Y on Sl-invariant fields reduces to the sum of the Kahler gravity andt&eheory (although the
constraint T2 = —6 is replaced by Det = —1, and one has to integrate out the dilaton and the KK vector field). This makes
the theory (20) a suggestive candidate for the correct theory. However, this trivial on-shell verification is not sufficient for our
purposes. Note that there exists a T-dual version of (20) which is non-polynomial in the propagating three-form.
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3.2. Unification

We should not forget about the Chern—Simons theory of 3-forms in seven dimensions. After all, it is this theory which
explains in a most natural way the holomorphic anomaly equation [7,10]. We propose the following unification of €% and
theories, which we believe has a good chance to be quantizable:

Sunity = Z/ Vh (Tr(f{zb, C+ §E3> + 1) (1)

whereC = Z?,:o C2p+1)> C2p+1) = Ciigigy, v1y2 ... y'20+1); /¥ are the Dirac matrices, which obey
vyl +ylyt=2n 1
and the trace in (21) is taken in the spin representation. By varying with resp@@)twe get equations on the gauge field

5(1), similar to (15). What is left is the sum of th&d C Chern—Simons action ardi7-action (20). The action (21) has a gauge
invariance:

@B+C)>eBp+C)ed

WhereE; 2‘220 §(2p), E(zp) = Bi1i2«~-i2p+17/[i1yi2 ... yi2p]‘ so that one should tal@ to. contai.n all for.ms, whilel reversing.
the statistics of even ones, as they would correspond to the ghosts. It would be obviously interesting to derive the action (21)
by:

(i) integrating out free fields (like free fermions in 3d), which might be related to the gravitino of phiitiatory;
(i) from some index density in eight dimensions, where we generalize Dirac opermuﬁ, e.g., some sort of heat kernel
expansion:

1

/dt Lim Try9e—ﬁ(y88f+7p+t5)2;
B—0

0

(iii) from some sort of topological open membrane theory [20].

It might be also related to the recent studies of flux compactifications and generalized CY manifolds [21].

However, we cannot say we are satisfied with the action (21) neither. It involves the metaied integrating it out seems
as difficult, as it is in four dimensions. We better use the lesson of [13] and replace the physical metric by the gauge fields. We
know in the caseZ = S x Y thatthe quantum foam picture is defined (and completed) quantum mechanically by summing over
holomorphic curves, which are the worldsheets of D-strings with Dfinstantons bound to them. Lifted to seven-dimensions
this summation becomes the summation over associative cycles. These are cycles for which the volume form, obtained from
the induced metric, coincides with the restriction of the three fernwhich should solve the equations of motion of (20). But
we can also think about these cycles as of the instantons in seven dimensional gauge theory, since the coupling (17) lifts to
[ C ATrF A F. The theory could be defined along the lines of [22], using the three-€grwhich does not have to solve (20),
thus suggesting an off-shell extension. Perhaps the gauge field is nothing but the comApgnemm we have to include higher
Chern—Simons terms in the action (21). It is also possible that the compc@@m@m should be viewed as BV anti-fields,
and should be gauge-fixed. Obviously, all this deserves further investigation.

As one of the indications of the naturalness of the seven-dimensional theory we give here the formula for the partition
function of this theory in the2-background oS! x R®, which is a generalization of the equivariant MacMahon function [14]:

> (1-¢%(q19243)" Y 2 [(l—q“qﬁ)]
Z = 22
4 aﬂl 0" (o207 D L] (1-q%qd) @2

a=1

whereq1, g2, g3 are the equivariant parameters, apd= q(qlqzqg)l/z, q= —&h . The partition function is the (conjectural)

answer for the sum over 3d partitions with the trigonometric analogue of the equivariant vertex measure.

We note finally that the seven-dimensional theory is not the final word. The Chern—Simons action (21) clearly suggests
eight-dimensional Donaldson-like theory, whose boundary action would be (21). Egs. (15), due to the exira éilsld are
most naturally interpreted in the eight dimensional terms. Moreover, (22) exhibits most symmetries when written in terms of
four equivariant parametergy = (g1g2g3) 2.
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