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Abstract

We present the evidence for the existence of the topological string analogue of M-theory, which we callZ-theory. The corners
of Z-theory moduli space correspond to the Donaldson–Thomas theory, Kodaira–Spencer theory, Gromov–Witten th
Donaldson–Witten theory. We discuss the relations ofZ-theory with Hitchin’s gravities in six and seven dimensions, and m
our own proposal, involving spinor generalization of Chern–Simons theory of three-forms.To cite this article: N. Nekrasov,
C. R. Physique 6 (2005).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

À la recherche de la théorie m perdue. Nous présentons des arguments pour l’existence d’une théorie M topologiqu
nous appellerons théorieZ, analogue à celle pour la théorie des cordes. Les limites de l’espace des modules de la thZ
correspondent à la théorie de Donaldson–Thomas, la théorie de Kodaira–Spencer, la théorie de Gromov–Witten, et
de Donaldson–Witten. Nous discutons les relations entre la théorieZ et celles de gravité d’Hitchin en dimensions six et se
et nous donnes une formulation personelle, en termes de généralisation spinorielles de la théorie de Chern–Simo
trois-forme.Pour citer cet article : N. Nekrasov, C. R. Physique 6 (2005).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction

The past ten years of string theory development have taught us that string theory is a wrong name for the fundamen
of quantum gravity. We know that the theory has a moduli space of vacua, that this moduli space has some singula
we know that the expansion near different singularities look like different string theories, or like eleven-dimensional su
ity [1]. In the context of topological strings the situation used to be different, but recent advances in this field suggest th
picture. In the past few months a few striking conjectures have been put forward concerning the strong-weak dualities
topological strings ofA andB types on the same Calabi–Yau three-foldX. The conjectures relate the perturbative typeA string
calculations to the D-braneB type calculations, and vice versa. So far most of the known checks of this S-duality conj
involved onlyB-type branes.
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Strong-weak coupling duality in the physical superstring follows from the existence of some higher-dimensional
such that its compactification on tori gives rise to the dual theories. The purpose of this lecture is to draw a similar p
what we called at various occasions (M)athematical M-theory,m, or f-theory. Some people call it topological M-theory [2,3
Since for us the main object is a certain partition function, which we denote byZ, in this article we shall call the missing theo
theZ-theory.

The simplest idea would be that the physicalM-theory, whatever it is, is related toZ-theory, just like physical string
are related to the topological strings [4,5,23]. This may well be true, but two warning signs are in order: this relation
not explain the relation between the topological gauge theory onR4 and the topological string on local Calabi–Yau manifo
within Z-theory; to actually engineer the relation between theN = 1 theories in four dimensions (which is what one gets
compactifyingM-theory onZ7) and the topological strings one has to use CY compactifications with fluxes (which could
principle related toG2-compactifications, but this makes the whole construction less pretty) [6].

2. Evidence for Z-theory

In this section we describe briefly the topological string theory and the topological gauge theory computations whic
spond to various degenerations ofZ-theory.

2.1. A story

2.1.1. Gromov–Witten corner
Consider closedA type topological string on Calabi–Yau threefoldX. Let k denote the (complexified) Kahler form ofX,

andt = [k] ∈ H2(X,C). The partition function is defined as a formal series in the string coupling constanth̄:

ZA(X, t; h̄)GW = exp
∞∑

g=0

h̄2g−2Fg(X; t) (1)

where

Fg(X; t) =
∑

β∈H2(X;Z)

exp

(
−

∫
β

t

)
Ng(β) (2)

andNg(β) is the ‘number’ of genusg stable holomorphic maps toX which land in the homology classβ. The word ‘number’
here can be defined more precisely using the virtual fundamental cycles but we shall not do that.

2.1.2. Lagrangian branes
By definition, (1), the partition function, is perturbative inh̄. The relation to physical superstring [4] suggests that th

are nonperturbative corrections to the ‘correct’ definition ofZA. These corrections, presumably, come from D-branes. T
are natural D-branes in the topological string context. Namely, for any Lagrangian submanifoldL ⊂ X (whereX is viewed
as symplectic manifold), one can define the relative analogue of Gromov–Witten theory, i.e., stable maps of Riemann
with boundaries, which land onL. Moreover,L may have several components, each component may have multiplicities a
on. In the most naive approach one would combine the effects of closed strings and open strings as follows:

Z?
A(X; t, s; h̄|Λ) = ZA(X; t; h̄)GW ×

∑
�∈Λ⊂H3(X,Z)

exp

(
− 1

h̄

∫
�

s

)
N�(h̄) (3)

whereN�(h̄) = ∑
h∈Z N�,hh̄2h−2 counts stable maps of (possibly disconnected) Riemann surfaces (hence the total ge

be arbitrary), with boundaries, which land on the Lagrangian submanifoldsLi , i = 1, . . . , k�, which represent the homolog
cycle�. The homology cycles must belong to a Lagrangian (with respect to the intersection pairing) sublattice inH3(X,Z).1 If
these Lagrangian submanifolds are not simply-connected, then one modifies the definition of the numbersN�,h by considering
the moduli spaces of the pairs(Li,Li ), whereLi is the rank mult(Li ) vector bundle onLi with flat unitary connection. The
stable map(�, ∂�) is weighted with the weight TrP exp

∮
∂� A whereA is the pullback of the flat connection. The resul

then somehow averaged over the moduli space of the Lagrangian submanifolds with unitary flat bundles over them.
of this construction is largely motivated by the corresponding one on theB side.

1 The reason for taking only ‘half’ of all possible 3-cycles is the electro-magnetic duality of the effective four-dimensional sugra.
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We should learn from this discussion that although perturbativeA string only knows about the (complexified) symple
tic structure ofX, via t-dependence, the nonperturbative corrections bring in extra structure, the 3-forms, which turns out
(upon complexification again) to be related to the(3,0)-form of the complex face of the Calabi–Yau manifoldX; there is a
corresponding term2 in the target space theory action

Starget=
∫
L

s + k Tr

(
AdA + 2

3
A3

)
. (4)

2.2. B story

Mirror symmetry relates typeA string onX to typeB topological string onX∨—another Calabi–Yau manifold. All th
features of the typeA string described above should be equally present forB string as well, order by order in̄h. Indeed,
mirror symmetry is the equivalence of sigma models before their coupling to the two-dimensional gravity, and also hol
presence of worldsheet boundaries.

2.2.1. Kodaira–Spencer corner
In particular, there exists a definition of the closed typeB partition function, and [4] suggests that it is given by so

field theory, i.e., instead of the integrals over the moduli spaces of Riemann surfaces one works with the integrals
moduli spaces of Riemann graphs. The classical, i.e., genus zero, definition of the typeB string free energy suggests an intima
connection to the symplectic geometry, via the special geometry. The full partition function involvesh̄-corrections, so the stor
involves some sort of quantization of the symplectic manifold, which gives rise to the special geometry, however no sat
proposal about it has been put forward so far. Thecalibrated CY manifoldis a pair:(X∨,Ω), whereX∨ is a complex threefold
KX∨ ≈ OX∨ andΩ is nowhere vanishing holomorphic(3,0)-form. The moduli spacẽM of calibrated CY manifolds ha

complex dimension 1+ h
2,1
X∨ = 1

2 dimH3(X∨,R). Moreover, one can choose local coordinates oñM to be the periods ofΩ .

These periods are not independent: choose some basis ofA andB cycles inH3(X∨,Z): Ai ◦Aj = 0,Ai ◦Bj = δi
j
, Bj ◦Bi = 0,

i = 0,1, . . . , r , r = h2,1(X∨), where◦ stands for the intersection index, and define:

ti =
∮
Ai

Ω, tiD =
∮
Bi

Ω. (5)

Thent i are the local coordinates oñM and locally onM̃ there exists a holomorphic functionF0 =F0(X∨; t) such that:

t iD = ∂F0

∂ti
. (6)

This function, called prepotential, is the genus zero topologicalB string partition function.3 The topologicalB string couples
naively only to the complex structure deformations ofX∨. However, it is well known that the worldsheet theory is anomalo
and the choice ofΩ enters the definition of the path integral measure. The moduli spaceM̃ is a cone over the moduli spaceM
of complex structures ofX∨. The rescaling ofΩ does not change the complex structure ofX∨, so that the quotient by thisC∗
action givesM. This C∗-action scales simultaneouslyti andt i

D
, which means thatF0 should be a homogeneous function

degree 2. This 2 is related to the fact that the anomalous dependence onΩ we referred to earlier isΩ2−2g on the genusg.4

The full topological string partition function includes also the higher genus amplitudes:

ZB(X∨; t, h̄) = exp
∞∑

g=0

h̄2−2gFg(X∨; t) (7)

2 To arrive at the coupling (4) we note that in the presence of the boundary condition corresponding toL the scalar fermionsψµ in the
worldsheet sigma model have zero modes corresponding to the motion alongL. The zero-observableωm1···mp ψm1 · · ·ψmp saturates thes
zero modes ifp = dimL (so, in particular, in the more general setup for the typeA topological string one gets a similar coupling for t
1
2 dimX-forms). The zero-observable inserted at the center of the disk breaksSL2 down to the compact subgroupU(1). The one-point function
is non-vanishing, since the volume ofU(1) is finite.

3 More precisely, its third derivative (in the special coordinatest i ) is the three-point function on a sphere of the zero-observablesµ
j

ī
(x, x̄)ηī θj

of B model, corresponding to the Beltrami differentials.
4 The fields of the sigma model part of theB string are:xi , x̄ī , ηī , θi ,ψ

i
α , so the unbalanced are 2g zero modes of the 1-formψi , one zero

mode ofxi and one ofθi . Sinceθ andψ are fermions, their measure transforms asΩ1−2g , while the one of the bosonsxi gives another facto
of Ω .
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For smallh̄ the partition function behaves as: eF0/h̄
2+··· which is a quasiclassical expression for a wave function, sinceF0,

thanks to (6), is a generating function of a Lagrangian submanifold inV = H3(X∨,R). The wave function, then, corresponds
a state in the Hilbert space obtained by quantizingV . However the Planck constant in this ‘quantization’ ish̄2, not h̄. Moreover,
[4] has shown, thatZB cannot be viewed as a holomorphic function oft . Instead, the naive decoupling oft̄ dependence
is replaced by a certain linear partial differential equation onZB , called the holomorphic anomaly equation [4], which w
interpreted in [7] as an equation, expressing the dependence of the wave function, obtained by the quantization ofV , on the
choice of holomorphic polarization.5

Note that one has a lot of freedom in parameterizing̃M. TheA-periods ofΩ provide local holomorphic coordinates, b
they may be not the most useful ones. The definition of these coordinates required a choice of the basis inH3(X∨) but, since
H3(X∨,R) = H3(X∨,Z) ⊗ R this choice, made for some particularX∨, can be uniquely extended to all nearby CY’s, a
also globally up to monodromy inSp(2r + 2,Z). In the holomorphic coordinatest the prepotentialF0 makes its most natura
appearance, but it could be that it is not the most natural object to look at, especially in view of the holomorphic anoma
for example, the real part ofΩ , Φ = ReΩ , and parameterizẽM by the cohomology classϕ of Φ. In other words, let us pas
from ti parameterization to(pi, q

i) parameterization:pi = ∮
Ai Φ,qi = ∮

Bi
Φ. Clearly, from (5) we can express(p, q) via t, t̄ :

pi = 1

2
(ti + t̄i ), qi = 1

2

(
∂F0

∂ti
+ ∂F0

∂t̄i

)
. (8)

We claim that the transformation(t, t̄ ) 	→ (p, q) is generated by the generating function, which turns out to be quite natural
the point of view of six dimensional topological gravity. In order to see that, introduce one more notation:ti = pi + √−1ξi ,
i = 0,1, . . . , r , and consider the following function oñM:

V = 1

2
√−1

∫
X∨

Ω ∧ Ω. (9)

In the effective four-dimensional supergravity obtained by compactifying TypeII string on CYX∨V gives the exponential o
the Kahler potential. We note in passing that the(p, q) coordinates oñM are analogous to the Penner coordinates�i on the
combinatorial moduli space of Riemann surfaces, which are not holomorphic, but are quite useful [8]. Thus their six-dim
analogues are also natural to consider. We can easily relateV to F0:

2
√−1V =

∑
j

( ∮
Aj

Ω

∮
Bj

Ω −
∮
Aj

Ω

∮
Bj

Ω

)
=

∑
j

(
tj

∂F0

∂t̄j
− t̄j

∂F0

∂tj

)
= 2

√−1

(
2
∑
j

qj ξj − H

)
,

H = 1√−1
(F0 −F0), 2qj = ∂H

∂ξj
. (10)

Thus,V is the Legendre transform ofV with respect toξ and it is more natural to viewV as a function ofp andq, not as a
function ofp andξ .

2.2.2. Hitchin’s approach
There exists an interesting variational problem, which producesV directly as a function ofp andq [9]. We present a slightly

reformulated version of his construction (it was found independently in [10]). In what follows we shall call this theoryH6, since
we shall also have to look at the higher-dimensional versions of that theory. The fields ofH6 theory are the closed three-for
Φ on X∨ and a traceless vector-valued one-formJ , i.e., a section ofEnd(T X∨, T X∨), in other words, a Higgs field acting o
the (real!) tangent bundle toX∨. The one-formJ is further constrained, which is implemented by yet another field, a six-f
ε, which enters the functional linearly. Here is the functional:

SH6 =
∫

X∨
Φ ∧ ιJ Φ + iε(TrJ2 + 6) =

∫
X∨

Φ[abcJ
m
d Φef ]m(d6x)abcdef , (11)

provided that the constraints

Jb
a J a

b = −6, J a
a = 0 (12)

are imposed. Finally, the real variable is notΦ, but a two-formB, which enters as follows: fixϕ = [Φ] ∈ H3(X∨,R). We shall
denote by the same letter the de Rham representative ofϕ, i.e., a closed 3-form. Then we write:

Φ = ϕ + dB, B ∈ Λ2T ∗X∨. (13)

5 There is some confusion, however, as to whether it isZ which has such an interpretation, or its square.
B
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The claim of Hitchin’s is that by minimizingS with respect toB one getsV , whereΩ = Φ∗ + √−1ιJ∗Φ∗, J2∗ = −1, and
∗ means that we take the values ofΦ andJ at the critical point ofS. We note in passing that the Lagrangian, analogou
(11), can be written in two dimensions, where one replacesΦ by a closed 1-form. In this case one gets Polyakov’s formula
of the sigma model coupled to two-dimensional gravity, where, however, the two-dimensional metric appears only

the complex structureJ : J
β
α = √

ggβγ εαγ . Minimizing with respect toJ is not very sensible unless one considers not o
but at least two closed one-formsΦi (target space should be at least two-dimensional, for the classical Polyakov string
equivalent to the Nambu string). Such a generalization is also possible in six-dimensional context [10]. Note, howe
unlike two dimensional case, one can only consider “flat tensorial target spaces with constantB-field”: SG,B = ∫

GαβΦα ∧
ιJ Φβ + BαβΦα ∧ Φβ where the indexα runs from 1 tod , the dimension of the tensorial target space, andG andB are the

constant metric and the antisymmetric tensor respectively.6

In a sense,H6-theory exhibits T-duality, just like two-dimensional sigma model on a circle.7 However, it maps quadrati
constraint TrJ2 = −6 into the nonlinear one: TrJ−2 = −6. At any rate,H6 provides an interesting off-shell extension of t
prepotential.

2.2.3. Kodaira–Spencer theory
We do not know whether this is a ‘correct’ off-shell extension, i.e., if it reproduces the higher genus amplitudesFg , g � 1. It

has been argued in [4] that these amplitudes can be calculated using the Feynmann rules of the so-called Kodaira–Sp
theory of gravity, which is a cubic field theory, whose propagating field is a(1,1) two-form onX∨. In this sense KS theory i
similar toH6 theory, although in the latter the propagating fieldB is just a two-form. Both theories are background depend
in KS case one has to fix the reference complex structure and an element inH2,1(X∨); in H6 theory one has to fixϕ. We refer
to [10] for the suggestion for the construction of the map between the KS andH6 theories, although neither [10] nor we sugg
that any of these formulations are the suitable nonperturbative formulations of the typeB topological string. We stress thatH6
theory, if at all, is related to the ‘square’ of the topologicalB string, since it isF0 −F0 which is the Legendre transform ofH ,
not the prepotential itself. The same Legendre transform occurred in the recent discussion of black hole entropy [11].

2.2.4. Nonperturbative corrections
Neither KS nor Hitchin’s functionals know about the nonperturbative corrections coming from D-branes in the typeB string.

The latter correspond to the coherent sheaves onX∨, and the simplest ones are the ideal sheaves of points and holomo
curves onX∨. The actual counting problem which their consideration leads to will be described in the Donaldson–T
section. Here we shall simply mention that their enumeration brings extra parameters the partition function of the typeB string
must depend on: the two-forms ∈ H2(X∨,C), which couples to the worldvolumes of the D-strings, the Poincare duals o2
of the corresponding sheaves:

Z?
B(X∨; t, s, h̄|Λ) = ZB(X∨; t) ×

∑
λ∈Λ⊂Heven(X∨,Z)

exp

(
1

h̄

∫
X∨

λ ∧ s

) ∫
[Mλ]vir

1 (14)

whereMλ is the moduli space of (stable?) coherent sheavesI on X∨, with the Chern character ch(I) = λ, andΛ is some
Lagrangian sublattice8 in Heven, and[Mλ] is the virtual fundamental cycle.

2.2.5. Donaldson–Thomas corner
The Donaldson–Thomas (DT) theory is the mathematical version of the physical ‘integrating out the D-branes’ pro

The theory is not yet constructed, but some partial results are already available, especially in the rank one case. W
Calabi–Yau threefoldY .9 Just as topological string of typeA allows generalizations to non-CY spaces, the DT theory also
a non-CY version, however we shall not discuss it here. TypeB open strings couple to(0,1)-connectionsĀ, which correspond
to the Q-closed boundary operators iffF0,2 = 0 [12], the naive guess would be that we should look for the solution

6 For d = 2 such theories are closely related to the theories on(p, q) five-branes inIIB string theory.
7 The implementation of the T-duality is quite interesting in view of applications to the black hole entropy counting [11]. One rela

constraint thatΦ is closed, and adds a term
∫

Φ ∧ Φ̃ to the action, wherẽΦ is the closed three-form, with fixed cohomology class. Fi
theoretically it is more natural (and, as we explain below, necessary after coupling to the gauge fields) to assume that[Φ̃] ∈ H3(X∨,Z).

8 The most studied, so far, example, corresponds to

Λ = (
1 ∈ H0(X∨,Z)

) ⊕ 0⊕ H4(X∨,Z) ⊕ H6(X∨,Z).

9 We choose here another letter for the CY space, since depending on the contextY may stand forX or for X∨ in the discussions above.
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the equationsF0,2 = 0 modulo (complexified) gauge transformations. This is the same thing as solving holomorphic C
Simons (hCS) equations of motion. However, deformation-theoretically this is not a very well-posed problem. IndeedĀ has
three functional degrees of freedom,F0,2 = 0 imposes three equations, and we have one gauge invariance. Therefo
virtual dimension of the space of solutions is minus infinity. This problem can be, however, cured, by introducing the
Higgs field� which is a(0,3)-form with values in the endomorphisms of the bundle whereĀ acts. The equationsF0,2 = 0
are replaced by the so-called Donaldson–Uhlenbeck–Yau equations:

F
0,2
Ā

= ∂̄
†
Ā

�, F 1,1 ∧ k ∧ k = [�,�̄ ] (15)

where we have also partly fixed the gauge, leaving only the unitary gauge transformations. This partial gauge fixin
physical implementation of the stability condition. It explicitly depends on the Kahler formk. The equations (15) no longe
follow from the hCS action. Instead, they describe the localization locus of the (partially) topologically twistedN = 2 six-
dimensional gauge theory, which lives on the Euclidean D5-brane wrapping a six-fold inside a CY fourfold. If sixfold i
a CY threefold, then� is a scalar, and moreover on the solutions of (15)� vanishes, formally reducing us to the original hC
problem. However, the presence of� is important in evaluating the determinants of the fluctuations around the solutio
(15) and, ultimately, in construction of the virtual fundamental cycle ofMλ.

The hCS theory has the Lagrangian, derived in theB string context in [12]:∫
X∨

Ω ∧ Tr

(
AdA + 2

3
A3

)
. (16)

If we follow the previous philosophy and couple theB model toB model, then we should replace (16) by:∫
X∨

Φ ∧ Tr

(
AdA + 2

3
A3

)
=

∫
X∨

ϕ ∧ CS(A) + B ∧ Tr(F ∧ F). (17)

The theory with the action (16) makes almost no sense, since the exponential of the action (16) is not gauge invarian
its gauge invariance requires integrality of[Ω] ∈ H3(X,C) but it is impossible to achieve for compact non-singular CY. T
action (17), on the other hand, is perfectly sensible, since the requirement of integrality ofϕ = [Φ] is quite a reasonable on
Moreover, this requirement ispreciselythe condition on the complex moduli of CY to be the solution ofattractor equations. We
see therefore that the topological strings know something about the black holes, constructed by wrapping D-branes o
cycles in the CY. Perhaps this remark would clarify some of the mysteries uncovered in [11].

The last term in (17) couplesB to the second Chern class of the bundle. In general we should consider not just bund
connections, but the complexes of bundles, with connections and maps (bi-fundamental matter) between them. The
connection on the object in derived category gets complicated but the Chern character and its component are still sim

In fact, even if the complex of bundles corresponds to the ideal sheaf of a curve or of a collection of curves and poin
are the objects of study in the DT theory, the second Chern class has a simple meaning. It is the Poincare dual to t
represented by the curves. The coupling (17) describes, then, the coupling of theB-field to these curves. We thus learn that
B-field of H6 theory plays the role of the Kahler form for the D-strings of the corresponding typeB topological string!

2.2.6. DT theory and quantum space–time foam
The discovery of [13] was the realization that the counting of ideal sheaves [14], which is performed by the DT the

be viewed as the Kahler gravity path integral, where one sums over fluctuating topologies of the six-dimensional spa
In this interpretation, the ‘curvature’F which is used to represent the Chern classes of the sheaves, is viewed as the (d
deformation of the Kahler form:k = k0 + h̄F . We should stress that the results of [13] do not imply the discreteness o
fundamental description of Kahler gravity. We do not know what is the correct Lagrangian of that theory, nor what
fundamental degrees of freedom. However, the localization technique can be applied to this theory, and the fixed poi
symmetry group action (the symmetry in question was the torus action, which was the isometry of the background t
and acted on the space of Kahler metrics which asymptote the background one) corresponded to the blowups of the o
along the ideals of the torus invariant curves. The visible part of the Kahler gravity action is the volume of the space:

SKahler= 1

6h̄2

∫
k ∧ k ∧ k = S0 +

∫
k0 ∧ ch2 +h̄

∫
ch3 . (18)

As explained in [15] the equality of the DT and GW partition functions is the particular case of more general phenom
S-duality which relatesA andB topological strings on the same CY manifold, while inverting the string couplingh̄. In the case
of toric CY’s the KS contribution to theB-partition function is trivial, as the D-brane contribution to theA-partition function.
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2.3. Donaldson–Witten corner

Z-theory also knows about four-dimensional gauge theory. Fix a gauge groupG. Then one can define a partition function

Z(a, ε1, ε2, q) = Zpert(a, ε1, ε2, q) ×
∞∑

n=0

q2h∨
Gn TrC[Mn(G)]

(
exp(a), eε1, eε2

)
(19)

whereMn(G) denotes the moduli space of framed holomorphicGC-bundlesP over CP2 = C2 ∪ CP1∞, which are trivial on
CP1∞, together with the choice of the trivialization:

PCP1∞
≈ CP1∞ × GC.

The numbern is the second Chern classc2(P) of the bundles, expa ∈ T—the maximal torus ofGC, (eε1, eε2) ∈ C∗ × C∗—the
maximal torus ofSO4(C)—the complexification of the of group of isometries ofR4 ≈ C2, and finallyC[X] denotes the spac
of holomorphic functions onX (for the classical gauge groups from theA,B,C,D seria one can think of the polynomials
the ADHM data). The groupGC ×SO4 acts onMn(G) by changing the trivialization at infinity and by automorphisms ofCP2,
preserving infinity. Finally, theZpert is the perturbative (from the gauge theory point of view) piece, which can be fou
[16]. The trace in (19) arises in the counting of the BPS states in the five-dimensional gauge theory compactified on
[17]. This gauge theory can be engineered [18] by compactifyingM-theory on local Calabi–Yau manifoldXG, which is the
A,D,E singularity fibered overP1 (for non-simply lacedG one also twists by the automorphisms of the Dynkin diagra
of the correspondingA,D,E ‘covering’ groups). The correspondence between physicalM-theory compactification and th
low-energy physics of the resulting four-dimensional gauge theory implies that the sameZ function should be equal to th
Gromov–Witten partition function ofXG, wherea and log(q) correspond to the Kahler moduli ofXG [19]. The parameter
ε1, ε2 are trickier to identify. In the simplest specialization, whenε1 = −ε2 = h̄, the latter is identified with the string couplin
constant. However, general case is harder to interpret. Presumably it corresponds to the equivariant GW (= equivariant DT)
theory ofXG.

3. Towards Z-theory

In our discussions of GW, KS, DT corners ofZ-theory we arrived at the picture where the complete(d) topological s
partition function depends on boths and t variables, ort ands variables. It is plain to identify them with thefull moduli of
CY metric onY . Nonperturbative topological string cares about both the calibrated complex and symplectic aspect
geometry. We are not saying that the exact CY metric is what the string couples to. Rather, it is thehomological CY geometr
that the topological string cares about. One way to make the unification between the Kahler and calibrated complex moY

is to consider the manifoldZ = Y × S1. Its third cohomology splits asH2(Y )⊕H3(Y ). In this way our moduli are nothing bu
the moduli of three-forms in seven-dimensional theory. Moreover, the Lagrangian branes and topologicalA strings are nothing
but the associative cycles in theG2-manifoldZ .

3.1. Hitchin theory in seven dimensions: Polyakov formulation

Hitchin has proposed [9] a seven dimensional theory (H7), analogous toH6 which classifiesG2-holonomy metrics onZ in
terms of the closed three-forms onZ . We present here its Polyakov-like formulation. The fields of theH7 theory are: the metric
hij and a closed three-formCijk . The Lagrangian is:

SH7 =
∫
Z

(
hijCi ∧ Cj ∧ C + √

h
)

(20)

whereCi = Cijk dyj ∧dyk . Again, the dynamical field is notC butB, such thatC = σ +dB, andσ = [C] ∈ H3(Z,R) is fixed.

The theory (20) onZ = S1 × Y on S1-invariant fields reduces to the sum of the Kahler gravity and theH6 theory (although the
constraint TrJ2 = −6 is replaced by DetJ = −1, and one has to integrate out the dilaton and the KK vector field). This m
the theory (20) a suggestive candidate for the correct theory. However, this trivial on-shell verification is not sufficient
purposes. Note that there exists a T-dual version of (20) which is non-polynomial in the propagating three-form.
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3.2. Unification

We should not forget about the Chern–Simons theory of 3-forms in seven dimensions. After all, it is this theory
explains in a most natural way the holomorphic anomaly equation [7,10]. We propose the following unification of CSH7
theories, which we believe has a good chance to be quantizable:

Sunify =
∫
Z

√
h

(
Tr

(
Ĉ

{
/D, Ĉ

} + 2

3
Ĉ3

)
+ 1

)
(21)

whereĈ = ∑3
p=0 Ĉ(2p+1), Ĉ(2p+1) = Ci1i2···i2p+1γ

[i1γ i2 . . . γ i2p+1]; γ i are the Dirac matrices, which obey

γ iγ j + γ j γ i = 2hij · 1

and the trace in (21) is taken in the spin representation. By varying with respect toĈ(5) we get equations on the gauge fie
Ĉ(1), similar to (15). What is left is the sum of theCdC Chern–Simons action andH7-action (20). The action (21) has a gau
invariance:(

/D + Ĉ
) 	→ e−B̂

(
/D + Ĉ

)
eB̂

whereB̂ = ∑3
p=0 B̂(2p), B̂(2p) = Bi1i2···i2p+1γ

[i1γ i2 · · ·γ i2p], so that one should takêC to contain all forms, while reversin
the statistics of even ones, as they would correspond to the ghosts. It would be obviously interesting to derive the ac
by:

(i) integrating out free fields (like free fermions in 3d), which might be related to the gravitino of physicalM-theory;
(ii) from some index density in eight dimensions, where we generalize Dirac operator to/D + Ĉ, e.g., some sort of heat kern

expansion:

1∫
0

dt Lim
β→0

Trγ 9 e−β(γ 8∂t+/D+tĈ)2;

(iii) from some sort of topological open membrane theory [20].

It might be also related to the recent studies of flux compactifications and generalized CY manifolds [21].
However, we cannot say we are satisfied with the action (21) neither. It involves the metrichij and integrating it out seem

as difficult, as it is in four dimensions. We better use the lesson of [13] and replace the physical metric by the gauge fi
know in the caseZ = S1×Y that the quantum foam picture is defined (and completed) quantum mechanically by summin
holomorphic curves, which are the worldsheets of D-strings with D(−1)-instantons bound to them. Lifted to seven-dimensi
this summation becomes the summation over associative cycles. These are cycles for which the volume form, obta
the induced metric, coincides with the restriction of the three formC, which should solve the equations of motion of (20). B
we can also think about these cycles as of the instantons in seven dimensional gauge theory, since the coupling (1∫

C ∧ TrF ∧ F . The theory could be defined along the lines of [22], using the three-formC, which does not have to solve (20
thus suggesting an off-shell extension. Perhaps the gauge field is nothing but the componentĈ(1), and we have to include highe
Chern–Simons terms in the action (21). It is also possible that the componentsĈ(5), Ĉ(7) should be viewed as BV anti-field
and should be gauge-fixed. Obviously, all this deserves further investigation.

As one of the indications of the naturalness of the seven-dimensional theory we give here the formula for the
function of this theory in theΩ-background onS1 × R6, which is a generalization of the equivariant MacMahon function [1

Z7d U(1) =
∞∏

a,b=1

(1− qa+(q1q2q3)b−1)

(1− qa−(q1q2q3)b−1)

3∏
α=1

[
(1− qa−qb

α)

(1− qa+qb
α)

]
(22)

whereq1, q2, q3 are the equivariant parameters, andq± = q(q1q2q3)1/2, q = −eih̄. The partition function is the (conjectura
answer for the sum over 3d partitions with the trigonometric analogue of the equivariant vertex measure.

We note finally that the seven-dimensional theory is not the final word. The Chern–Simons action (21) clearly s
eight-dimensional Donaldson-like theory, whose boundary action would be (21). Eqs. (15), due to the extra field� , also are
most naturally interpreted in the eight dimensional terms. Moreover, (22) exhibits most symmetries when written in t
four equivariant parameters,q = (q q q )−1.
4 1 2 3
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