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Abstract

This article describes some recent advances in the analytical theory of close encounters between small bodies and
This theory is based on the work of Öpik, and allows us to understand the main geometrical features of close encounte
to resonant returns, a very important phenomenon to be taken into account in the analysis of the dynamical evolution
crossing asteroids.To cite this article: G.B. Valsecchi, C. R. Physique 6 (2005).
 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Rencontres proches et collisions des asteroïdes geocroiseurs avec la Terre. Ce papier décrit les développements réce
de la théorie analytique des rencontres proches entre petits corps et la Terre. Cette théorie est basée sur celle
permet de comprendre la géometrie des rencontres proches amenant à des retours résonnants, ce qui est un phé
important, qui doit être tenu en compte dans l’analyse de l’évolution dynamique des asteroïdes géocroiseurs.Pour citer cet
article : G.B. Valsecchi, C. R. Physique 6 (2005).
 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction

The role of close encounters with the planets in the orbital evolution of small solar system bodies has been re
already at the end of the XVIIIth century by Lexell [1], in his study of the comet that is now known as comet D/Lexell.

Lexell was the first to understand that the lack of observations of that comet prior to 1770 was due to an orbita
caused by a close encounter with Jupiter in 1767, and predicted that a similar encounter would take place in 1779, a
put again the comet into an unobservable orbit. The separation in time between the two encounters corresponds alm
to one revolution of Jupiter and to two revolutions of the comet on the orbit it had between 1767 and 1779; thus, the
encounter of comet D/Lexell with Jupiter is the consequence of the fact that the first had put the comet into a nearly-
orbit, of period one half of that of the orbit of Jupiter. Using current terminology, the second encounter of D/Lexell with
is aresonant return [2].

E-mail address: giovanni@rm.iasf.cnr.it (G.B. Valsecchi).
1631-0705/$ – see front matter 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.
doi:10.1016/j.crhy.2004.12.014
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Le Verrier, working a few decades after Lexell, examined again the motion of the same comet [3–5]. He was inter
evaluating how well the available observations constrained the orbital elements of the comet, and found that it was no
to determine a unique orbit, since the constraints given by the observations were insufficient. He then expressed the
elements of D/Lexell as functions of a single unknown parameter, that he calledµ, using the observations to find the admissi
range of variation ofµ.

Le Verrier computed the effects of the 1767 and 1779 encounters with Jupiter on the orbit for various values ofµ, so as
to obtain a global view of all the possible outcomes – much like the systematic computations of virtual asteroids ca
nowadays. He established, among other things, that the comet could approach Jupiter extremely closely in 1779, a
less than three and a half radii of the planet from its centre; nevertheless, the comet could not become a satellite of J
even temporarily, for any allowed value ofµ. The range of post-1779 orbits included even the possibility for the comet to
the solar system on a hyperbolic orbit. The reason for this wide range of possible outcomes was the extreme sensitiv
subsequent evolution to the precise value adopted forµ. This sensitivity is a crucial part of the modern concept of chaos, an
fact Le Verrier’s computations probably represent the first instance of this concept in scientific literature.

Examining the set of elements adopted by Le Verrier, it easy to realize that the region allowed for his orbital solut
very small in all elements, except semimajor axis and eccentricity, and that the variation allowed for these two elemen
that the perihelion distance is constant. In fact, a comparison of Le Verrier’s elements with those adopted much later b
et al. [6] to simulate a meteor stream, ejected at the perihelion passage of 1770 by the comet, shows that in fact
allowed by Le Verrier for the parameterµ was mostly determined by the uncertainty in the magnitude of the velocity vec
the comet, amounting to±10 m/s at perihelion.

In the last few years the interest in the study of close planetary encounters has been revived by the analysis of the m
Near-Earth Asteroids (NEAs), that are being discovered at a much higher rate since 1998. This analysis is routinely c
by the specialized software robots running at the Universities of Pisa and Valladolid, and at the Jet Propulsion Laborato

Some geometrical understanding of the close encounters of NEAs with the Earth has been obtained by means of
extension of the well-known analytical theory of close encounters due to Öpik [10] (see also [11]). Hereafter, based on
discuss the main algorithms that allow us to understand the geometry of resonant returns.

2. Extended Öpik’s theory of close encounters

The model on which Öpik’s theory of close encounters is based is a simplified version of the restricted, c
3-dimensional 3-body problem. In fact, in the theory it is assumed that, far from the planet, the small body move
unperturbed heliocentric keplerian orbit.

The encounter with the planet is then modelled as an instantaneous transition from the incoming asymptote of
etocentric hyperbola to the outgoing one, taking place when the small body crosses the plane orthogonal to the sm
unperturbed velocity vector,U, containing the centre of the planet, calledb-plane.

In [12] the basic theory has been extended by adding suitable equations to take into account the nodal distance an
of passage of the small body at the node. However, this model does not take into account the secular variation of
distance, that has to be given as an additional input.

The equations of motion near the planet are defined in the reference frame(X,Y,Z), centred on the planet; theY -axis is in
the direction of motion of the planet, and the Sun is on the negativeX-axis. At timet0 the small body is at the node, and
coordinates are (X0, Y0, 0).

The magnitude of the velocity vectorU is

U =
√

3− 1

a
− 2

√
a(1− e2)cosi,

and its direction is defined by two angles,θ andφ, such that[
Ux

Uy

Uz

]
=

[
U sinθ sinφ

U cosθ
U sinθ cosφ

]
.

The anglesθ andφ can be computed from the orbital elements:

θ = arccos

√
a(1− e2)cosi − 1√

3− 1/a − 2
√

a(1− e2)cosi
,

φ = arctan
±

√
2− 1/a − a(1− e2)√ ;
± a(1− e2)sini
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the numerator in the expression ofφ is positive if the encounter takes place in the post-perihelion branch of the orbit o
NEA, and negative otherwise, while the denominator is positive if the encounter takes place at the ascending node of
and negative otherwise.

2.1. The pre-encounter state vector

The pre-encounter state vectorV, that completely describes the dynamical state of the small body, has components (U , θ , φ,
ξ , ζ , t0), where(ξ, ζ ) are the coordinates on theb-plane. Neglecting terms of the second order in the miss distance at the
the components of the vectorb extending from the planet to the intersection of the incoming asymptote with theb-plane, are

[
ξ

ζ

]
=


 cosφ

[ a(1− e2)

1± e cosω
− 1

]
ξ cosθ tanφ − sinθ

(
1+ ξ

cosφ

)
tan(Ω − λ⊕ − π/2± π/2)


 , (1)

where the upper sign applies at encounters at the ascending node, andλ⊕ is the longitude of the Earth at timet0. The orientations
of these two axes are such thatζ is anti-parallel to the projection of theY -axis on theb-plane, andξ is perpendicular to both
U and theY -axis. It can be shown that the local Minimum Orbital Intersection Distance (MOID, i.e. the minimum dis
between the orbit of the small body and that of the Earth) is given byξ , and that it is tied to the distance from the nodeX0 by
the simple expression [12]

ξ = X0 cosφ.

2.2. The post-encounter state vector

The close encounter can be seen as an operatorE that maps the pre-encounter state vector

V ≡ (U, θ,φ, ξ, ζ, t0)

into the post-encounter one

V′ ≡ (U ′, θ ′, φ′, ξ ′, ζ ′, t ′0)

so that

V′ = EV.

The components ofV′, as functions of those ofV, are

U ′ = U,

θ ′ = arccos

[
(b2 − c2)cosθ + 2cζ sinθ

b2 + c2

]

= arcsin

[√
[(b2 − c2)sinθ − 2cζ cosθ ]2 + 4c2ξ2

b2 + c2

]
,

φ′ = arccos

[ [(b2 − c2)sinθ − 2cζ cosθ ]cosφ + 2cξ sinφ√
[(b2 − c2)sinθ − 2cζ cosθ ]2 + 4c2ξ2

]

= arcsin

[ [(b2 − c2)sinθ − 2cζ cosθ ]sinφ − 2cξ cosφ√
[(b2 − c2)sinθ − 2cζ cosθ ]2 + 4c2ξ2

]
,

ξ ′ = (b2 + c2)ξ sinθ√
[(b2 − c2)sinθ − 2cζ cosθ ]2 + 4c2ξ2

,

ζ ′ = (b2 − c2)ζ sinθ − 2b2c cosθ√
[(b2 − c2)sinθ − 2cζ cosθ ]2 + 4c2ξ2

,

t ′0 = 2c[ξ sinφ(2ζ cosθ − ξ tanφ) − cosφ(ξ2 sin2 θ + ζ2)]
U sinθ{[(b2 − c2)sinθ − 2cζ cosθ ]cosφ + 2cξ sinφ} + t0,

with b = |b| andc = m/U2, wherem is the mass of the Earth.
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2.3. The propagation to the next encounter

After the first close approach, the motion until the next encounter is treated as a keplerian propagation, i.e. as an oP
that maps the post-encounter state vectorV′ in the pre-next-encounter one

V′′ ≡ (U ′′, θ ′′, φ′′, ξ ′′, ζ ′′, t ′′0 )

so that

V′′ = PV′.

The transformation is given by:

U ′′ = U ′,
θ ′′ = θ ′,
φ′′ = φ′,
ξ ′′ = ξ ′,
ζ ′′ = ζ ′ − [

mod(h · 2πa′3/2 + π,2π) − π
]
sinθ ′,

t ′′0 = t ′0 + h · 2πa′3/2
,

whereh is the number of revolutions of the NEA in its orbit and, to a good level of approximation, the post encounter sem
axis is given by

a′ = b2 + c2

(b2 + c2)(1− U2) − 2U [(b2 − c2)cosθ + 2cζ sinθ ] .

2.3.1. The MOID and its variation with time
A problem for this type of modelling, which is based on a purely keplerian propagation between encounters, is that

large short-period variations superimposed on a secular trend. In order to get the basic geometric features of the pr
can model the variation of the MOID using a simple linear secular trend:

ξ ′′ = ξ ′ + ξ̇ · h · 2πa′3/2
,

where the time derivative ofξ can be computed, e.g., using a value taken from a numerical integration or from a secular
of crossing orbits [13].

3. Close encounters and keyholes

In order to understand the structure of subsequent encounters between a small body and the Earth the concept ofkeyhole was
introduced by Chodas [14]. Akeyhole is a small region of theb-plane of a specific close encounter of an asteroid with the E
such that, if the asteroid passes through it, it will hit the planet or anyway have a very close encounter with it at a su
return.

We can think of the keyholes also as the regions on theb-plane such that, if the small body passes through one of them
put in an orbit of given period/semimajor axis. Putting things in this way, an interesting new result is that the locus of theb-plane
points leading to a final orbit of given semimajor axis is a circle, whose radius and coordinates of the centre are functi
of U , θ andθ ′.

3.1. The resonant circles

A given resonance corresponds to a certain value ofa′, i.e. of θ ′, saya′
0 andθ ′

0. Assume that the ratio of the periods
the small body and of the Earth isk/h. Then, following a first encounter, afterh heliocentric revolutions of the small bod
andk revolutions of the Earth, both the Earth and the small body will be back to the same position of the previous en
performing a resonant return.

The locus of the points leading to a resonant return can be calculated starting from the values ofa′ andθ ′ , given by
0 0
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a′
0 = (k/h)2/3,

cosθ ′
0 = 1− U2 − 1/a′

0
2U

but also, from the geometry of the deflection,

cosθ ′
0 = (b2 − c2)cosθ + 2cζ sinθ

b2 + c2
.

Sinceb2 = ξ2 + ζ2, we obtain [15]

ξ2 + ζ2 − 2Dζ + D2 − R2 = 0,

i.e., the equation of a circle of radius|R| centred in(0,D), with

R = c sinθ ′
0

cosθ ′
0 − cosθ

,

D = c sinθ

cosθ ′
0 − cosθ

.

3.2. The location of the keyholes

The region of incertitude of a NEA is the region in orbital elements’ space in which the NEA orbit is confined by stip
that the observational errors are within given bounds. It is in general modelled, under suitable assumptions [16], as an
in elements’ space. For epochs sufficiently separated in time from the observations, the ellipsoid becomes more
elongated, essentially along the axis corresponding to the mean anomaly. In fact, while small differences in the valuese, i, ω

andΩ , allowed by the observational record, will not change appreciably between the epoch of observations and that o
close planetary encounter, a small difference ina would lead to a secular spreading of the mean anomaly.

When there is a close encounter with the Earth, the intersection of this region with theb-plane is nearly parallel to theζ -axis,
with the ξ coordinate equal to the MOID. This can be understood by looking at the definitions ofξ andζ (Eq. (1)). In fact,
the spread in mean anomaly translates into a corresponding spread int0; thus, the longitude of the Earthλ⊕, appearing in (1),
varies for different locations within the confidence region. Sinceξ does not depend onλ⊕, only ζ is affected.

As a consequence, the possible locations of keyholes are the intersections with the appropriate resonantb-plane circle with
a straight line parallel to theζ -axis, atξ equal to the MOID.

Fig. 1 shows the arrangement of theb-plane circles corresponding to resonant returns to close encounter in 2040, 2044
for the August 2027 encounter with the Earth of asteroid 1999 AN10 [2]; these correspond, respectively, to the mean mo
resonances 7/13, 10/17, and 11/19. In the plot a straight line atξ = 6 terrestrial radii is also drawn, that represents a strin

Fig. 1. Circles corresponding to various mean motion resonances on theb-plane of the August 2027 encounter with the Earth of aste
1999AN10. Uppermost circle: 7/13 resonance, leading to an encounter in 2040; then, with the centres along theζ -axis, from top to bottom:
3/5, 10/17 and 11/19 resonances, leading to encounters in 2032, 2044, 2046, respectively. Distances are in Earth radii; the vertical lξ = 6
represents fictitious asteroids all with the same orbital parameters as 1999 AN10 and spaced in the time of encounter with the Earth.
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fictitious asteroids having the same orbit and MOID (and thus the sameξ ), and spaced in the timing of encounter with the Ea
(and thus different values ofζ ).

3.3. Shape and size of an impact keyhole

To compute the shape and size of an impact keyhole, we have to determine how the distance between two poi
b-plane of the current encounter varies, when considering their ‘images’ after propagation to theb-plane of the next encounte

3.3.1. The structure of the derivatives
Let us examine the structure of the derivatives ofξ ′′, ζ ′′ as functions ofξ , ζ in the case in whichc2 � b2, that is, for

a dynamical evolution dominated by small deflection encounters. This assumption is not too severe: for the encoun
asteroid 1997 XF11 with the Earth in 2028,c ≈ 1.4× 10−5, and the local MOID is 0.000 19 AU, so that at mostc/b ≈ 0.076,
c2/b2 ≈ 0.006; for the encounter of 1999 AN10 with the Earth in 2027,c ≈ 3.9× 10−6, and the local MOID is 0.000 25 AU
so that at mostc/b ≈ 0.016,c2/b2 ≈ 0.0003.

The partial derivatives have the form [12]

∂ξ ′′
∂ξ

= ∂ξ ′
∂ξ

,

∂ξ ′′
∂ζ

= ∂ξ ′
∂ζ

,

∂ζ ′′
∂ξ

= ∂ζ ′′
∂θ ′

∂θ ′
∂ξ

+ ∂ζ ′
∂ξ

,

∂ζ ′′
∂ζ

= ∂ζ ′′
∂θ ′

∂θ ′
∂ζ

+ ∂ζ ′
∂ζ

.

The matrix∂(ξ ′, ζ ′)/∂(ξ, ζ ), in turn, has the following structure[ ∂ξ ′
∂ξ

∂ξ ′
∂ζ

∂ζ ′
∂ξ

∂ζ ′
∂ζ

]
≈

[
1+O(c/b) O(c/b)

O(1) 1+O(c/b)

]
.

That is, in the approximations used, the encounter is described by a nearly-area-preserving operator. The partial der
ζ ′′ are

∂ζ ′′
∂ξ

= h · s(U ′, θ ′) · ∂ cosθ ′
∂ξ

+ ∂ζ ′
∂ξ

,

∂ζ ′′
∂ζ

= h · s(U ′, θ ′) · ∂ cosθ ′
∂ζ

+ ∂ζ ′
∂ζ

.

In each of them, the first term comes from the keplerian propagation, while the second comes from the first encounter
The terms describing the keplerian propagation grow linearly with time due to the presence ofh, and can become very larg

In the majority of cases, that is, for a dynamical evolution dominated by small deflection encounters, and excluding ta
encounters (sinθ �≈ 0), the divergence of nearby trajectories is expressed by these terms. Note that the divergence of n
bits between consecutive encounters is linear in time, and that sequences of encounters result in the multiplicative acc
of the divergence from each encounter, thus leading to exponential divergence and chaos, with maximum Lyapounov
proportional to encounter frequency.

Coming back to the shape and size of impact keyholes, we thus have that the ‘horizontal’ (i.e., alongξ ) distance on the
b-plane is essentially unchanged, while the ‘vertical’ one (alongζ ) is stretched by a large factor, that depends on the circ
stances of the encounter.

The geometric consequence of this is that the ‘pre-image’ of the Earth on theb-plane of the encounter preceding the collisi
is a thick arclet closely following the shape of the circle corresponding to the suitable orbital period. The thickness of th
is inversely proportional toh · s(U ′, θ ′) · ∂ cosθ ′/∂ζ .

3.3.2. Application: the case of 1997 XF11
The pre-images of the Earth, corresponding to the two possible keyholes for a collision at a resonant return in 2

shown in Fig. 2. Both keyholes span, inξ , roughly the diameter of the Earth augmented by the gravitational focusing; iζ a
great compression is noticeable. The compression alongζ is by a factor between 15 000 and 21 000 for the keyhole near
the Earth, and by a factor of about 124 for the other one, whose total area is thus much larger. Note that the compress
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Fig. 2. Keyholes, in theb-plane of the October 2028 encounter with the Earth of 1997 XF11, for collision at the resonant return in 2040; un
for the coordinates are Earth radii. Upper left: keyhole nearer to the Earth, with the latter shown to scale for comparison (the gra
focusing is here about 30%); upper right: keyhole farther from the Earth; lower left and lower right: enlargements of, respectively, the
far keyholes shown in the corresponding upper panels.

given here are different from those given in [12], where a similar computation was presented, in which a too high valξ

was used.
A numerical integration, done with the software described in [2] and [7], shows that nearby trajectories actually div

a factor 131 between 2028 and 2040: thus, the result obtained analytically by using the extended Öpik is well within
the numerical one, a quite satisfactory achievement, given the approximations involved.

4. Conclusions

In the long term, asteroid impacts represent a potential major threat to mankind. Currently, two independent orbit
tation centres routinely check the confidence regions, about the orbits of all NEAs, for Earth impact possibilities in
decades [7,8]. This has been made possible by the ability to set up numerical algorithms able to disentangle and a
cascade of returns to Earth encounter after the occurrence of a first close approach.

I have summarized the current status of the geometrical understanding of the problem of resonant returns, using
the analytical theory that has been developed in recent years along the lines first introduced by Öpik.
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