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Abstract

The representation analysis of magnetic structures (group theory) considers generally the groupGk (symmetry elements o
the space groupG which keep unchanged the propagation vectork). There exists a certain confusion about the way and
usefulness of introducing time inversion, the operation which reverses the directions of the magnetic moments. We s
that we can define two ‘time inversion’ operators, one which is linear and one which is antilinear. While introducing th
operator does not bring any new piece of information, introducing the antilinear operator brings more details on the
magnetic structures. Because of this antilinearity, the corepresentations have to be used instead of the usual repre
The corepresentation theory had been introduced by Wigner for the operator ‘time inversion in quantum mechanics’,
which, in quantum mechanics, must be antilinear. Finally we show that, for magnetic structures, using an antilinear
instead of a linear operator, is connected with the reality of the magnetic moments.To cite this article: J. Schweizer, C. R.
Physique 6 (2005).
 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

L’analyse des structures magnétiques en représentations irréductibles (théorie des groupes) s’effectue en général
rant le groupeGk (groupe des éléments de symétrie du groupe d’espaceG qui laissent le vecteur de propagationk inchangé).
Une certaine confusion existe quant à la façon et à l’utilité d’y introduire le renversement du temps, opération qui ren
moments magnétiques. Nous montrons qu’il est possible de définir deux opérateurs « renversement du temps », un lin
antilinéaire, et que si l’introduction de l’opérateur linéaire n’apporte pas d’information nouvelle, ce n’est pas le cas d
rateur antilinéaire qui donne plus de précisions sur les structures magnétiques possibles. A cause de son caractère
cet opérateur impose l’utilisation de la théorie des coreprésentations introduites par Wigner pour l’opérateur « renvers
temps en mécanique quantique », opérateur qui, pour la mécanique quantique, ne peut être qu’antilinéaire. Enfin n
trons que, pour les structures magnétiques, le fait de pouvoir utiliser un opérateur antilinéaire est lié à la réalité des
magnétiques de la structure.Pour citer cet article : J. Schweizer, C. R. Physique 6 (2005).
 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction

In a crystalline material, the magnetic moments are submitted to exchange interactions, with an energyU0 which, developped
into series at the second order, can be written as:

U0 =
∑
ll ′

∑
jj ′

∑
αβ

Jll ′jj ′αβmljαml′j ′β (1)

where themljα represent the components of the magnetic momentsmlj , l andl′ labelling the crystal cells,j andj ′ the magnetic
atoms in the cell, andα andβ the axesx, y or z, and where theJll ′jj ′αβ are the exchange interactions between the compon
of the magnetic atoms. At higher temperatures, in the paramagnetic state, there is no long range order of the magnetic
but only magnetic fluctuations, which represent a certain tendency to short range order. When cooling down the ma
range of these fluctuations increases and, below a characteristic temperature, one of them transforms into a long ra
a magnetic structure has been established. Such a structure can be described in terms of propagation vectorsk and Fourier
componentsmk

j
(one Fourier vectormk

j
per atomj in the unit cell):

mlj =
∑

k

mk
j e−ikl (2)

where the sum concerns the different propagation vectorsk which generate the structure.1

With the expression ofmlj given by (2), the magnetic energy becomes

U0 =
∑

k

∑
jj ′

∑
αβ

Jjj ′αβ(k)mk
jα

(
mk

j ′β
)∗ (3)

whereJjj ′αβ(k) is the Fourier transform ofJll ′jj ′αβ and can be defined as:

Jjj ′αβ(k) =
∑

l

Jll ′jj ′αβ e−ik(l−l′). (4)

In practice, the propagation vectork is determined from neutron diffraction by indexing the magnetic diagramme. T
the magnetic structure can be determined by comparing the intensities of the magnetic reflections to those which are
from the possible arrangements of the magnetic moments in the unit cell. The number of these possible arrangeme
considerably reduced when restricting to those which are compatible with the symmetry of the crystal [1,2]. In particula
the magnetic order establishes from the paramagnetic state through a second order phase transition, it is very fruitfu
the Landau theory for phase transitions [3] to the groupG of the symmetry elements of the crystal. These symmetry elem
act on the basis vectorsmk

jα
= mk

jα
eα which are the vectorial components of themk

j
vectors along the 3 axes of the cryst

the vectorseα being unitary.
The Landau approach classifies the magnetic fluctuations according to the symmetry of the different irreducible re

tions of the little groupGk (the group of vectork). Actually, it states that, in order to keep the magnetic energy (3) inva
under all the symmetry operations ofGk , the magnetic structures must be built from basis vectorsmki

ν belonging only to one
irreducible representationτν of Gk .

This little groupGk is composed of the symmetry elements of the space groupG of the paramagnetic crystal which lea
the propagation vectork unchanged. However, all the authors consider as relevant to add to these spatial symmetry ele
purely magnetic invariance which reverses all the magnetic moments and which is generally called invariance by time i
However, when the time comes to put this concept into practice in the representation analysis, a certain confusion
literature about the way to introduce it, and about the usefulness of this introduction.

In this article, we shall explain that it is possible to define two ‘time inversion’ operators, a linear2 operatorR and an
antilinear operatorΘ , both reversing the sign of the magnetic momentsmlj . We shall show that introducing the antiline
operatorΘ in the representation analysis is much more fruitful than introducing operatorR. We shall explain that with such a
antilinear operator it is necessary to employ the Wigner’s corepresentations instead of the usual representations of gro
and we shall give the recipe to do this. Finally, we shall discuss the physics which is behind the success of the antilin
inversion operator in the magnetic structure analysis.

1 A structure is mono-k or multi-k according to the number of equivalent propagation vectorsk which generate it. However, even in monok

structures, fork vectors such askl �= nπ , a vector−k is associated to the vectork with m−k = (mk)∗, in such a way that the magnetic momen
given by expansion (2) are real.

2 A linear operatorL is such that, when applied on an observables, it obeysL(as) = aL(s) while an antilinear operatorA impliesA(as) =
a∗A(s).



J. Schweizer / C. R. Physique 6 (2005) 375–384 377

ndau and
magnetic
given by

in the
t such an

ersion
the

s used the
example
here
ssible
in solids

rs,
outlined

agnetic
t the time
s is

ated by a

the third
erator:

the

res, the
tic
2. Two possible definitions for the time inversion operator

The necessity to add the time inversion to the spatial symmetry operators has been stated for a long time. As La
Lifshits [3] explained, this operator reverses the direction of the electric currents, and then reverses the signs of the
moments which are axial vectors. However, when applied to the Fourier decomposition of the magnetic moments as
formula (2), there are two possibilities to define a ‘time inversion’ operator:

– a linear operatorR such that

Rmlj = −mlj = −
∑

k

mk
j e−ikl ; (5)

– and an antilinear operatorΘ such that

Θmlj = −mlj = −
∑

k

(
mk

j

)∗ e+ikl . (6)

Both operators reverse the magnetic moments and leave the magnetic energyU0, as given by formula (3), unchanged.
The linear operatorR is the operator usually chosen to deal with the Shubnikov groups. It has been introduced

representation analysis of the magnetic structures by Izyumov et al. [4,5], and these authors have concluded tha
introduction does not bring anything new in the prediction of possible magnetic structures.

The antilinear operatorΘ has been defined by Wigner [6]. He has shown that, in quantum mechanics, the time inv
operator acting on the wave functions must be antilinear(Θa|Ψ 〉 = a∗Θ|Ψ 〉), and he has developped a generalisation of
representation theory (the theory of corepresentations), valid for antilinear operators. As early as 1971, Bertaut [7] ha
antilinear operatorΘ to represent the time inversion in the representation analysis of magnetic structures. He gave an
where the symmetry of the little groupGk is too low to connect all the magnetic positions of a magnetic site, but w
the introduction of the antilinear operatorΘ permitted to connect all these atoms, reducing that way the number of po
magnetic structures. One year later, Bradley and Cracknell [8] published a complete mathematical theory of symmetry
where the corepresentations resulting from the presence of the antilinear operatorΘ are thoroughly analyzed. Other autho
as, for example, Rossat Mignod [9], have followed Bertaut’s procedure, but without applying the rigorous treatment
by [8]. It is the purpose of this article to do this and to show how useful it is.

3. Conjugation and chirality

A part of the confusion which exists about the use of the time inversion in the representation analysis of the m
structures is due to the presence in literature of the two operators, linear and antilinear. One reads sometimes tha
inversion changesk in −k, but does not conjugate the Fourier componentsmk

j
because they are not quantum objects. Thi

not a right procedure as it would define a third ‘time inversion’ operatorT which would transformmk
j

e−ikl in −mk
j

e+ikl , an
operator which would be neither linear nor antilinear.

To illustrate the differences between these operators, let us look at their action on an helix. A simple helix is gener
Fourier componentmk

j
= U + iV, with U andV noncollinear

mlj = mk
j e−ikl + (

mk
j

)∗ e+ikl = 2[U coskl + V sinkl ]. (7)

The actions of operatorsR andΘ on such an helix are:

Rmlj = −[
mk

j e−ikl + (
mk

j

)∗ e+ikl ] = −2[U coskl + V sinkl ], (8)

Θmlj = −[(
mk

j

)∗ e+ikl + mk
j e−ikl ] = −2[U coskl + V sinkl ] (9)

that are two helices, with all the moments reversed, but with the same chirality. On the other hand, the action of
operatorT would change the helix into an helix of the opposed chirality, which is not expected from a time inversion op

T mlj = −[
mk

j e+ikl + (
mk

j

)∗ e−ikl ] = −2[U coskl − V sinkl ]. (10)

Furthermore, it is easy to see that, while the magnetic energyU0, as defined by formulae (3) and (4), is invariant under
application ofR andΘ , it is not invariant under the application ofT , the two points being closely connected.

To conclude with the choice of a ‘time inversion operator’ in the representation analysis of the magnetic structu
first point to consider is not the quantum or not quantum of the vectorsmk , but whether or not it keeps invariant the magne
j
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energy, which is the case of both operatorsR andΘ . And then, one has to ask how useful it is to introduce it in the represent
analysis.

For the linear operatorR, Refs. [4] and [5] have already investigated its impact in the representation analysis and sho
it does not bring any new element of information. Each irreducible representationτν of the little groupGk splits, with the time
inversion operator, into two new irreducible representationsτ+

ν andτ−
ν : theτ+

ν representation being unable to yield a magne
structure, and theτ−

ν representation giving exactly the same magnetic structure as representationτν , without the time inversion
For the antilinear operatorΘ , the usual group theory cannot be applied and we shall see in the next section how to h

group containing both linear and antilinear operators.

4. The magnetic little groupMk = GΘ
k

In the paramagnetic state, the magnetic groupM is now composed of all the elements of the space groupG and also of all
the elements ofG associated withΘ . The construction of the magnetic little groupMk is thoroughly explained by Bradley an
Cracknell [8]. It consists of all the spatial operators which keepk and all the spatial operators which reversek, these last one
being associated withΘ .

Practically, we can have 3 different cases:

(i) There is no symmetry operator in the groupG which reverses the vectork (−k does not belong to the star{k}). We have
then:

Mk = GΘ
k = Gk (Fedorov group). (11)

(ii) −k is equivalent tok, which means that eitherk = 0 or k = −k + K , whereK is a reciprocal lattice vector. This leads to

Mk = GΘ
k + ΘGk (grey group), (12)

which, compared toGk , doubles the number of operators.
(iii) −k belongs to the star{k} but is not equivalent tok. There exists inG an elementh0 which reversesk and, associate

to Θ , it constitutes the reversing elementa0:

a0 = Θh0 = h0Θ and (13)

Mk = GΘ
k = Gk + a0Gk (black and white group). (14)

Here also, compared toGk , the number of operators is doubled.
In the following, we shall treat together grey groups and black and white groups, writingMk = Gk + a0Gk for both of

them, witha0 = Θ for grey groups anda0 = Θh0 for black and white groups.
As the time reversal operatorΘ is not a linear but an antilinear operator, it is not possible to use the theory of represen

as it stands. One is obliged to use the theory of corepresentations.

5. The Wigner corepresentations of the magnetic little groupMk

The theory of corepresentations has been developped by Wigner [6] for groups including both linear operatorhi and
antilinear operatorsaj . The main difference between representations (Γ ) and corepresentations (cΓ ) concerns the rules o
multiplication of the matrices representing the operators. Whereas, for usual representations, they are:

Γ (hi)Γ (hj ) = Γ (hihj ) (15)

for the corepresentations, the matrices representing the linear operatorshi and the antilinear operatorsaj multiply in the
following way:

cΓ (hi)cΓ (hj ) = cΓ (hihj ), (16)

cΓ (hi)cΓ (aj ) = cΓ (hiaj ), (17)

cΓ (ai)cΓ
∗(hj ) = cΓ (aihj ), (18)

cΓ (ai)cΓ
∗(aj ) = cΓ (aiaj ). (19)

The magnetic little groupGΘ
k = Gk +a0Gk contains both linear operatorshi and antilinear operatorsaj = a0hj . The basis

vectors on which operatorsh anda apply are all the Fourier componentsmk and(mk )∗ = m−k :
i j jα jα jα
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– hi transforms a vectormk
jα

in a sum of vectorsmk
j ′β and a vector(mk

jα
)∗ in a sum of vectors(mk

j ′β)∗;

– ai transforms a vectormk
jα

in a sum of vectors(mk
j ′β)∗ and a vector(mk

jα
)∗ in a sum of vectorsmk

j ′β .

The number of basis vectors on which the operators act is then twice larger forGΘ
k than forGk . However, when it happen

that the magnetic corepresentation and the irreducible corepresentations are real, we can choose basis vectors wh
and this restrict their number by a factor two.

The way to construct the irreducible corepresentationscτν of the magnetic little groupGΘ
k from the irreducible represen

tationsτν of the little groupGk is explained in [6,8,10]. There are 3 different cases according to the value taken by th∑
aj

χ(a2
j
), sum over all the antilinear operatorsaj , noticing that the operatorsa2

j
are of typeh, which means linear operator

Let us note that this criterion is often called reality criterion because it is used to know whether the irreducible represe
of the little groupsGk are real, pseudoreal or complex.

Case (a):
∑

aj
χ(a2

j
) = g, whereg is the order of the little groupGk .

From the irreducible representationτν , one can build 2 irreducible corepresentationscτ+
ν andcτ−

ν , in a way which is similar
to the procedure followed with the operatorR:

cτ+
ν (hi) = τν(hi), cτ+

ν (aj ) = τν
(
aj a−1

0

)
β, (20)

cτ−
ν (hi) = τν(hi), cτ−

ν (aj ) = −τν
(
aj a−1

0

)
β. (21)

As aj a−1
0 is a linear operator (of typeh), τν(aj a−1

0 ) is well defined.β is an auxiliary matrix and such matrices are tabula
in Ref. [10].

In the case of wave functions, as well as in the general case of complex basis vectors, the two irreducible corepre
cτ+

ν andcτ−
ν , are equivalent and the corresponding magnetic structures are the same. This is illustrated later, for the

sentationscτ+
1 andcτ−

1 of the second example. However, if it is possible, as in the third example, to restrict the basis ve

mki
ν to real vectors only, and the two irreducible corepresentations may be no longer equivalent.
Case (b):

∑
aj

χ(a2
j
) = −g.

The irreducible representationτν is transformed in an irreducible corepresentation with an order which is twice larger

cτν(hi) =
(

τν(hi) 0
0 τν(hi)

)
, cτν(aj ) =

(
0 −τν(aj a−1

0 )β

τν(aj a−1
0 )β 0

)
(22)

also with an auxiliary matrixβ tabulated in [10].
Case (c):

∑
aj

χ(a2
j
) = 0.

In this case, it exists another irreducible representation ofGk : τ̄ν distinct fromτν (τ̄ν = τν′ , with ν′ �= ν), such as:

τ̄ν (hi) = τν′(hi) = [
τν

(
a−1

0 hia0
)]∗

. (23)

These two representations,τν and τν′ of the little groupGk , are joined together by the time inversion operator, to give
irreducible corepresentationτν+ν′ of the magnetic little groupGΘ

k , with an order which is, here also, twice larger.

cτν+ν′(hi) =
(

τν(hi) 0
0 τν′(hi)

)
, cτν+ν′(aj ) =

(
0 τν(aj a0)

τν′(aj a−1
0 ) 0

)
. (24)

The situation where the magnetic group is equivalent to the Fedorov group (Mk = GΘ
k = Gk), when there is no symmetr

operator in the groupG which reverses the vectork, implies also, in a trivial way, the relation
∑

aj
χ(a2

j
) = 0, as the magneti

little group contains no antilinear operators of typeaj . The vector−k, although it does not belong to the star{k}, is associated
to vectork by the time inversion: there is no additional degeneracy inside the groupGk , but an extra degeneracy exists whi
associates, with the same magnetic energy, the Fourier componentsm−k

j
andmk

j
, as already mentioned above:

mlj = mk
j e−ikl + (

mk
j

)∗ eikl . (25)

This degeneracy is labelled (x) [8].
In practice, for all little groupsGk , that is for the 230 space groups and all the possible symmetries of the propa

vectork, Bradley and Cracknell [8] on the one hand and Kovalev [10] on the other hand indicate whetherGk belongs to case
(a), (b), (c) or (x). Furthermore, Kovalev gives also the auxiliary matrixβ when it is different from unitary.



380 J. Schweizer / C. R. Physique 6 (2005) 375–384

entation

is
basis
gives
tic
ts.
n:

e 3 basis

patial

supposed
the little

able 2.
s

6. The usefulness of introducing the time inversion symmetry

In the following examples, we shall show that the introduction of the antilinear time inversion invariance in the repres
analysis may bring more specifications to the possible magnetic structures than the spatial symmetries alone.

6.1. 1st example: a triangular structure in an acentric trigonal group (Fedorov magnetic little group, degeneracy (x))

Let us consider one magnetic atom at the origin of the cell of space group P3 (space group no 143), with a propagation
vectork = (1/3,1/3,0). The space group contains 3 symmetry elements:h1(x, y, z), h3(−y, x − y, z) andh5(−x + y,−x, z)

according to Kovalev’s notations [10]. As there is no vector−k in the star{k} (acentric structure), the magnetic little group
the Fedorov group (degeneracy x): vectorsm−k andmk are associated together by the time inversion, but the search for
vectors inMk = GΘ

k = Gk does not imply the operatorΘ and is therefore done with the ordinary representations. Table 1
the action of the 3 operatorsh1, h3 andh5 of the magnetic little groupMk = Gk on the vectorial components of the magne
moment of the unique magnetic atom of the cell, as well as the character of the representationΓ based on these componen
Table 2 reproduces the irreducible representations as listed in [8] or [10]. According to the usual rules of decompositio

Γ = τ1 + τ2 + τ3.

The application of the projection operators on the 3 subspaces spanned by 3 irreducible representations yields th
vectors:

for τ1 mk
1 = mk

z ,

for τ2 mk
2 = mk

x + i
√

3(mk
x + 2mk

y) = U + iV,

for τ3 mk
3 = mk

x − i
√

3(mk
x + 2mk

y) = U − iV

the two vectorsU andV being orthogonal.
Coming back to the magnetic momentsml in all the crystal, using Eq. (27), there are 3 structures compatible with the s

and time inversion symmetries:

for τ1, a modulated structureml = 2mk
z coskl ,

for τ2, an helicoidal (here triangular structure)ml = 2[U coskl + V sinkl ],
for τ3, an helicoidal (here triangular) structure, but with an opposed chiralityml = 2[U coskl − V sinkl ].

These three structures, and particularly the two helices, corresponding to different irreducible representations, are not
to have the same magnetic energy. In this case of degeneracy (x), the time inversion plays its role, but not inside
groupGk . It allows us to combinemk andm−k in retrieving the magnetic momentsml even when−k is not in the star{k}.

6.2. 2nd example: a triangular structure in a centric trigonal group (black and white magnetic little group, cases (a) and (c))

We consider now the same magnetic atom at the origin of the cell but in the space group P3̄ (space group no 147), with
the same propagation vectork = (1/3,1/3,0). The space group contains now 6 symmetry elements: as beforeh1(x, y, z),
h3(−y, x − y, z) andh5(−x + y,−x, z), but also the 3 operators resulting from the inversion:h13(−x,−y,−z), h15(y,−x +
y,−z) andh17(x − y, x,−z). Here, the structure is centric:−k belongs to the star{k}. The little groupGk is restricted to the
3 operatorsh1, h3 andh5 as in the former case for the acentric structure. Its irreducible representations are given in T
However, when including the time inversion, the magnetic little groupMk = GΘ

k = Gk + a0Gk is black and white. It contain

Table 1
Space group P3: action of the operators ofGk=(1/3,1/3,0) on

the componentsmk
α

h1 h3 h5

mk
x mk

y −mk
x − mk

y

mk
y −mk

x − mk
y mk

x

mk
z mk

z mk
z

χ 3 0 0

Table 2
Space group P3: irreducible representations of the little group
Gk=(1/3,1/3,0), ε = exp(2π i/3)

h1 h3 h5

τ1 1 1 1
τ2 1 ε ε2

τ3 1 ε2 ε
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Table 3
Space group P̄3: action of the operators ofGk=(1/3,1/3,0) on the componentsmk

α

h1 h3 h5 Θh13 Θh15 Θh17

mk
x mk

y −mk
x − mk

y −m−k
x −m−k

y m−k
x + m−k

y

mk
y −mk

x − mk
y mk

x −m−k
y m−k

x + m−k
y −m−k

x

mk
z mk

z mk
z −m−k

z −m−k
z −m−k

z

m−k
x m−k

y −m−k
x − m−k

y −mk
x −mk

y mk
x + mk

y

m−k
y −m−k

x − m−k
y m−k

x −mk
y mk

x + mk
y −mk

x

m−k
z m−k

z m−k
z −mk

z −mk
z −mk

z

χ 6 0 0 0 0 0

Table 4
Space group P̄3: irreducible corepresentations of the little groupGk=(1/3,1/3,0), ε = exp(2π i/3)

h1 h3 h5 Θh13 Θh15 Θh17

cτ+
1 1 1 1 1 1 1

cτ−
1 1 1 1 −1 −1 −1

cτ2+3

(
1 0
0 1

) (
ε 0
0 ε2

) (
ε2 0
0 ε

) (
0 1
1 0

) (
0 ε

ε2 0

) (
0 ε2

ε 0

)

now 6 elements, with the reversing elementa0 = Θh13. Table 3 shows the action of its 6 elementsh1, h3, h5, Θh13, Θh15 and
Θh17 on the magnetic Fourier componentsmk

α and(mk
α)∗, as well as the character of the corepresentationcΓ based on thes

components. Table 4 reproduces the irreducible corepresentations as indicated in [8] or [10]:τ1 being of type (a) gives two
irreducible corepresentationscτ+

1 andcτ−
1 , τ2 andτ3 being of type (c), join together to give the irreducible corepresenta

cτ2+3. The decomposition of corepresentationcΓ into irreducible corepresentations is the following:

cΓ = cτ+
1 + cτ−

1 + 2cτ2+3.

In the space of complex vectorsmk
α and (mk

α)∗, the application of the projection operators on the 3 subspaces spann
3 irreducible representations yields the 3 basis vectors:

• for cτ+
1 mk

1+ = mk
z + (mk

z )∗,

• for cτ−
1 mk

1− = mk
z − (mk

z )∗,

• for cτ2+3 mk1
2+3 = mk

x + i
√

3(mk
x + 2mk

y) = U + iV,

mk2
2+3 = mk

x − i
√

3(mk
x + 2mk

y) = U − iV,

mk3
2+3 = (mk1

2+3)∗ = m−k
x − i

√
3(m−k

x + 2m−k
y ),

mk4
2+3 = (mk2

2+3)∗ = m−k
x + i

√
3(m−k

x + 2m−k
y ),

cτ+
1 andcτ−

1 give two solutions which just differ by a coefficient i, and which provide the same modulated magnetic st

alongOz. Corepresentationcτ2+3 gives two basis vectors formk and two for(mk)∗ Each pair contains the 2 chiralitiesU− iV
andU + iV in the basal plane. As in the first example, both helices are compatible with the symmetries. But in this
case, the two helices (here triangles) correspond to the same irreducible corepresentation: they have the same energy
mixed in the crystal. The pairmk3

2+3 = (mk1
2+3)∗ andmk4

2+3 = (mk2
2+3)∗ which appears as basis vectors gives the same mag

structure as the pairmk1
2+3,mk2

2+3. This reflects that, as a consequence of the time inversion, when looking at basis v
corresponding tok, we find also their conjugates which are the basis vectors corresponding to−k.

Let us note that, in this example, the procedure followed by Lyubarskii [11] which associates to a nonreal represenτν
its conjugateτ∗

ν , to create a ‘physically irreducible representation’τν + τ∗
ν , would give the same result as does the irreduc

corepresentationcτ2+3. However, the rigorous treatment proposed here is more general as it can be applied in all th
even when the spatial operatorsh of the little group do not connect all the positions of the magnetic site.
i
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6.3. 3rd example: CeAl2, a modulation in a centric cubic group (black and white magnetic little group, case a with real
corepresentations)

CeAl2 is a face centred cubic compound, centric space group Fd3m, with 2 Ce atoms in the unit cell:(0,0,0) and
(1/4,1/4,1/4). Neutron diffraction experiments [12] have shown that the propagation vector isk = (1/2 − δ,1/2 + δ,1/2).
From the 48 operators which are in the groupG, only 2 of them keep the vectork unchanged and form the littl
groupGk : h1(x, y, z) andh13(1/4− y,1/4− x,1/4− z).

We first apply the representation theory, without the time inversion symmetry. The action of the 2 operators on the
nentsmk

jα
is represented in Table 5. The magnetic representationΓ is of order 6. Its characters are also reported in Tabl

The irreducible representations of the little groupGk , as displayed in Refs. [8,10] are reported in Table 6. The represent
Γ is reduced into irreducible representations as following:

Γ = 3τ1 + 3τ2.

The basis vectors for these irreducible representations are obtained with the help of the projection operators, which

• For representationτ1, a structure based on the 3 following basis vectors:



mk1
1 = mk

1x
− mk

2y
,

mk2
1 = mk

1y
− mk

2x
,

mk3
1 = mk

1z
− mk

2z

which corresponds to an antiferromagnetic structure with the following relations between the components:



mk
2y

= −mk
1x

,

mk
2x

= −mk
1y

,

mk
2z

= −mk
1z

.

• For representationτ2, a structure based on the 3 following basis vectors:



mk1
2 = mk

1x
+ mk

2y
,

mk2
2 = mk

1y
+ mk

2x
,

mk3
2 = mk

1z
+ mk

2z

which corresponds to a ferromagnetic structure with



mk
2y

= mk
1x

,

mk
2x

= mk
1y

,

mk
2z

= mk
1z

.

Table 5
Action of the operators ofGk on the components
mk

jα
of CeAl2

h1 h13

mk
1x

−mk
2y

mk
1y

−mk
2x

mk
1z

−mk
2z

mk
2x

−mk
1y

mk
2y

−mk
1x

mk
2z

−mk
1z

χ 6 0

Table 6
Irreducible representations of the little groupGk of CeAl2

h1 h13

τ1 1 1
τ2 1 −1
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Table 7
Irreducible corepresentations of the magnetic little groupGΘ

k of CeAl2

h1 h13 Θh25 Θh37

cτ+
1 1 1 1 1

cτ−
1 1 1 −1 −1

cτ+
2 1 −1 1 −1

cτ−
2 1 −1 −1 1

Table 8
Action of the operators ofGΘ

k on the real componentsmk
jα

= (mk
jα

)∗ of CeAl2

h1 h13 Θh25 Θh37

mk
1x

−mk
2y

−mk
2x

mk
1y

mk
1y

−mk
2x

−mk
2y

mk
1x

mk
1z

−mk
2z

−mk
2z

mk
1z

mk
2x

−mk
1y

−mk
1x

mk
2y

mk
2y

−mk
1x

−mk
1y

mk
2x

mk
2z

−mk
1z

−mk
1z

mk
2z

χ 6 0 0 2

For both cases, there are 3 parameters to be determined from the experiment:mk
1x

, mk
1y

andmk
1z

. Actually, what was found in
refining the neutron data [12–14] is that the structure is antiferromagnetic as expected from representationτ1, with a componen
mk

1z
which is different from the two others, but with the unpredicted equality:mk

1x
= mk

1y
.

We shall now introduce the time inversionΘ in the representation analysis. The magnetic little group is black and w
GΘ

k = Gk +a0Gk , with the reversing elementa0 = Θh25 whereh25 is the inversion operator(−x,−y,−z). With this magnetic

little group,
∑

aj
χ(a2

j
) = 2, which means thatGΘ

k corresponds to case (a). There are 4 irreducible corepresentations of o
which are all real. They are reported in Table 7.

With the componentsmk
jα

andm−k
jα

, the magnetic corepresentationΓ would be of order 12. However, as this corepresen
tion is real and we have to decompose it into irreducible corepresentations which are also real, we can restrict our inv
to real basis vectors and state:

mk
jα = m−k

jα
.

The action of the operators of the little groupGΘ
k = Gk + a0Gk on such real basis vectorsmk

jα
are reported in Table 8, a

well as the characters of the magnetic corepresentationcΓ which is now of order 6. The decomposition of this corepresenta
into the irreducible corepresentations becomes:

cΓ = 2cτ+
1 + cτ−

1 + cτ+
2 + 2cτ−

2 .

The basis vectors for each irreducible corepresentation are obtained with the projection operators, which gives:

• For representationcτ+
1 a structure based on the 2 following basis vectors:

mk1
1+ = (

mk
1x−mk

2y

) + (
mk

1y − mk
2x

)
, mk2

1+ = mk
1z − mk

2z.

• For representationcτ−
1 a structure based on only one basis vectors:

mk
1− = (

mk
1x − mk

2y

) − (
mk

1y − mk
2x

)
.

• For representationcτ+
2 a structure based also on one basis vectors:

mk
2+ = (

mk
1x + mk

2y

) − (
mk

1y + mk
2x

)
.

• For representationcτ−
2 a structure based on the 2 following basis vectors:

mk1
2− = (

mk
1x + mk

2y

) + (
mk

1y + mk
2x

)
, mk2

2− = mk
1z + mk

2z.
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The magnetic structure, as deduced from the experiment, corresponds to corepresentationcτ+
1 . It is antiferromagnetic with

the following relations:


mk
2y

= −mk
1x

,

mk
2x

= −mk
1y

,

mk
2z

= −mk
1z

and also withmk
1y

= mk
1x

.
Introducing the fact that basis vectors can be chosen real has brought a new constraint to the representation an

it results that corepresentationscτ+
1 andcτ−

1 are no more equivalent (as well as corepresentationscτ+
2 andcτ−

2 ). Relation

mk
1y

= mk
1x

is a consequence of this nonequivalence. It is exactly what was found experimentally, but it was not expec
theory without taking into account the time inversion in the representation analysis.

7. Conclusion: invariance by conjugation and reality of the magnetic moments are the key points

The antilinear time inversion operatorΘ , as it has been defined here in formula (6), consists in a change of sign
conjugation of the Fourier development of the magnetic moments. While the change of sign does not bring any new inf
in the representation analysis of the magnetic structures, the conjugation is the fruitful operation as it obliges to use th
corepresentations which associate the operators which keepsk and those which reversek. Exactly the same results could ha
been obtained if, instead of the ‘time inversion’ operatorΘ , we would have used the operator ‘conjugation’K . It is obviously
an antilinear operator which keep invariant the magnetic energyU0 and which requires also the use of the group theory alg
developed by Wigner for the time inversion of the wave functions in quantum mechanics. The physical reason of the in
of the magnetic energy under the action of the ‘conjugation’ operator is that the magnetic moments themselves are
underK because they are real vectorial quantities. We join here the ideas developed by Lyubarskii [11] when he p
‘physically irreducible representations’, associating a non real representation to its conjugate. However, our procedur
general as it associates, from the beginning,k and−k in the corepresentations.

To summarize, we can say that, whether operatorΘ or operatorK is considered, we have shown that introducing such
antilinear operator in the representation (corepresentation) analysis of the magnetic structures brings new pieces o
tion and is all the more important since the symmetry of the system is low. Nowadays, for applications in solid state
corepresentations are tabulated in text books and within the reach of everyone. It would then be a pity to neglect an e
information which may be important.
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