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Abstract

The representation analysis of magnetic structures (group theory) considers generally th&,g(symmetry elements of
the space grou which keep unchanged the propagation ve&prThere exists a certain confusion about the way and the
usefulness of introducing time inversion, the operation which reverses the directions of the magnetic moments. We show here
that we can define two ‘time inversion’ operators, one which is linear and one which is antilinear. While introducing the linear
operator does not bring any new piece of information, introducing the antilinear operator brings more details on the possible
magnetic structures. Because of this antilinearity, the corepresentations have to be used instead of the usual representation:
The corepresentation theory had been introduced by Wigner for the operator ‘time inversion in quantum mechanics’, operator
which, in quantum mechanics, must be antilinear. Finally we show that, for magnetic structures, using an antilinear operator
instead of a linear operator, is connected with the reality of the magnetic morfierdige this article: J. Schweizer, C. R.
Physique 6 (2005).
0 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.
Résumé

L'analyse des structures magnétiques en représentations irréductibles (théorie des groupes) s’effectue en général en conside
rant le groupesy (groupe des éléments de symétrie du groupe d'esagel laissent le vecteur de propagatioimchangé).
Une certaine confusion existe quant a la fagon et a I'utilité d'y introduire le renversement du temps, opération qui renverse les
moments magnétiques. Nous montrons qu'il est possible de définir deux opérateurs «renversement du temps », un linéaire et ur
antilinéaire, et que si l'introduction de I'opérateur linéaire n’apporte pas d’information nouvelle, ce n'est pas le cas de I'opé-
rateur antilinéaire qui donne plus de précisions sur les structures magnétiques possibles. A cause de son caractére antilinéair
cet opérateur impose I'utilisation de la théorie des coreprésentations introduites par Wigner pour I'opérateur « renversement du
temps en mécanique quantique », opérateur qui, pour la mécanique quantique, ne peut étre qu’'antilinéaire. Enfin nous mon-
trons que, pour les structures magnétiques, le fait de pouvoir utiliser un opérateur antilinéaire est lié a la réalité des moments
magnétiques de la structuour citer cet article: J. Schweizer, C. R. Physique 6 (2005).
0 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction

In a crystalline material, the magnetic moments are submitted to exchange interactions, with af/grérgh, developped
into series at the second order, can be written as:

Uo=2_2 > wjjapmijam jip @)
I jj" o

where then, ;, represent the components of the magnetic monmaptsl and!’ labelling the crystal cellsj and;j’ the magnetic
atoms in the cell, and andg the axes, y or z, and where thd) ;4 are the exchange interactions between the components
of the magnetic atoms. At higher temperatures, in the paramagnetic state, there is no long range order of the magnetic moments
but only magnetic fluctuations, which represent a certain tendency to short range order. When cooling down the material, the
range of these fluctuations increases and, below a characteristic temperature, one of them transforms into a long range order
a magnetic structure has been established. Such a structure can be described in terms of propagati&navectewarier
componentsnk (one Fourier vectom'j‘. per atomj in the unit cell):

ka —ikl (2)

where the sum concerns the different propagation ve&torkich generate the structute.
With the expression afh; given by (2), the magnetic energy becomes

Vo= ZZZJjj/awk)mEa (m',‘-f,s)* ©)

k jj of
whereJ;;/,5(K) is the Fourier transform afy ;g and can be defined as:
Jijap®) = Jrjjape 071, (4)

In practice, the propagation vectkris determined from neutron diffraction by indexing the magnetic diagramme. Then,
the magnetic structure can be determined by comparing the intensities of the magnetic reflections to those which are expectec
from the possible arrangements of the magnetic moments in the unit cell. The number of these possible arrangements can be
considerably reduced when restricting to those which are compatible with the symmetry of the crystal [1,2]. In particular, when
the magnetic order establishes from the paramagnetic state through a second order phase transition, it is very fruitful to apply
the Landau theory for phase transitions [3] to the graupf the symmetry elements of the crystal. These symmetry elements
act on the basis vectorﬂk = m';a ey which are the vectorial components of Im% vectors along the 3 axes of the crystal,
the vectors, being unltary '

The Landau approach classifies the magnetic fluctuations according to the symmetry of the different irreducible representa-
tions of the little groupGy (the group of vectok). Actually, it states that, in order to keep the magnetic energy (3) invariant
under all the symmetry operations 6%, the magnetic structures must be built from basis veotdﬁ‘sbelonglng only to one
irreducible representation, of Gi.

This little groupGy is composed of the symmetry elements of the space gébopthe paramagnetic crystal which leave
the propagation vectde unchanged. However, all the authors consider as relevant to add to these spatial symmetry elements a
purely magnetic invariance which reverses all the magnetic moments and which is generally called invariance by time inversion.
However, when the time comes to put this concept into practice in the representation analysis, a certain confusion exists in
literature about the way to introduce it, and about the usefulness of this introduction.

In this article, we shall explain that it is possible to define two ‘time inversion’ operators, aZ]inperatorR and an
antilinear operato®, both reversing the sign of the magnetic momenis. We shall show that introducing the antilinear
operator® in the representation analysis is much more fruitful than introducing opeRatdle shall explain that with such an
antilinear operator it is necessary to employ the Wigner’s corepresentations instead of the usual representations of group theory.
and we shall give the recipe to do this. Finally, we shall discuss the physics which is behind the success of the antilinear time
inversion operator in the magnetic structure analysis.

1 A structure is monde or multi-k according to the number of equivalent propagation vedtoshich generate it. However, even in moko-
structures, fok vectors such all # nr, a vector—k is associated to the vectomith m—K = (mk)* in such a way that the magnetic moments
given by expansion (2) are real.

2 Alinear operator. is such that, when applied on an observabli obeysL (as) = aL(s) while an antilinear operatot implies A(as) =
a*A(s).
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2. Two possible definitions for the time inversion operator

The necessity to add the time inversion to the spatial symmetry operators has been stated for a long time. As Landau and
Lifshits [3] explained, this operator reverses the direction of the electric currents, and then reverses the signs of the magnetic
moments which are axial vectors. However, when applied to the Fourier decomposition of the magnetic moments as given by
formula (2), there are two possibilities to define a ‘time inversion’ operator:

— alinear operatoR such that

k —ikl
Rm|j:—m|j:—ije ! ) (5)
k
— and an antilinear operatér such that
(~)m1j =—mlj =—Z(mlj‘.)*e+'kl. (6)
k

Both operators reverse the magnetic moments and leave the magnetic Egeagygiven by formula (3), unchanged.

The linear operatorR is the operator usually chosen to deal with the Shubnikov groups. It has been introduced in the
representation analysis of the magnetic structures by lzyumov et al. [4,5], and these authors have concluded that such an
introduction does not bring anything new in the prediction of possible magnetic structures.

The antilinear operato® has been defined by Wigner [6]. He has shown that, in quantum mechanics, the time inversion
operator acting on the wave functions must be antilinéx«|¥) = a*©|¥)), and he has developped a generalisation of the
representation theory (the theory of corepresentations), valid for antilinear operators. As early as 1971, Bertaut [7] has used the
antilinear operato® to represent the time inversion in the representation analysis of magnetic structures. He gave an example
where the symmetry of the little grou@y is too low to connect all the magnetic positions of a magnetic site, but where
the introduction of the antilinear operatér permitted to connect all these atoms, reducing that way the number of possible
magnetic structures. One year later, Bradley and Cracknell [8] published a complete mathematical theory of symmetry in solids
where the corepresentations resulting from the presence of the antilinear ogeraterthoroughly analyzed. Other authors,
as, for example, Rossat Mignod [9], have followed Bertaut's procedure, but without applying the rigorous treatment outlined
by [8]. It is the purpose of this article to do this and to show how useful it is.

3. Conjugation and chirality

A part of the confusion which exists about the use of the time inversion in the representation analysis of the magnetic
structures is due to the presence in literature of the two operators, linear and antilinear. One reads sometimes that the time
inversion changek in —k, but does not conjugate the Fourier componemﬁsbecause they are not quantum objects. This is

not a right procedure as it would define a third ‘time inversion’ operaterhich would transfornm‘]? e K jn —m‘;. etikl an
operator which would be neither linear nor antilinear.

To illustrate the differences between these operators, let us look at their action on an helix. A simple helix is generated by a
Fourier componemn'j = U +iV, with U andV noncollinear

k o—ikl

my; =m¥ e K 4 (mK)* e = 21U coskd + V sinkl]. 7

The actions of operato® and® on such an helix are:
Rmy; = ~[mK e 1 (mk)*ek] = —21U coskl + V sinki], ®)
om; = —[(m'j‘)* etikl 4 m‘; e‘ik'] = —2[U coskl + V sinkl] ©)

that are two helices, with all the moments reversed, but with the same chirality. On the other hand, the action of the third
operatorT would change the helix into an helix of the opposed chirality, which is not expected from a time inversion operator:
Tmy; =—[ ';e“k' + (m'f)* e K] = —2[Ucoskl — Vsinki]. (10)
Furthermore, it is easy to see that, while the magnetic enéggws defined by formulae (3) and (4), is invariant under the
application ofR and®, it is not invariant under the application &f, the two points being closely connected.
To conclude with the choice of a ‘time inversion operator’ in the representation analysis of the magnetic structures, the
first point to consider is not the quantum or not quantum of the veotﬂ?r,sbut whether or not it keeps invariant the magnetic
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energy, which is the case of both operatBrand®. And then, one has to ask how useful itis to introduce it in the representation
analysis.

For the linear operataR, Refs. [4] and [5] have already investigated its impact in the representation analysis and shown that
it does not bring any new element of information. Each irreducible representatifrthe little groupGy splits, with the time
inversion operator, into two new irreducible representatighendz,": ther," representation being unable to yield a magnetic
structure, and the,” representation giving exactly the same magnetic structure as represenjatigtiout the time inversion.

For the antilinear operat@?, the usual group theory cannot be applied and we shall see in the next section how to handle a
group containing both linear and antilinear operators.

4. The magnetic little group My = G®

In the paramagnetic state, the magnetic grafigs now composed of all the elements of the space g@wmd also of all
the elements of; associated witl®. The construction of the magnetic little groify is thoroughly explained by Bradley and
Cracknell [8]. It consists of all the spatial operators which kiegmd all the spatial operators which reveksehese last ones
being associated wit®.

Practically, we can have 3 different cases:

(i) There is no symmetry operator in the groGpwhich reverses the vectér(—k does not belong to the sték}). We have
then:

My = GE) =Gk (Fedorov group (12)
(i) —k is equivalent tdk, which means that eithér= 0 ork = —k + K, whereK is a reciprocal lattice vector. This leads to:
My =GP +©Gy  (grey group, (12)

which, compared t@, doubles the number of operators.
(iii) —k belongs to the stajk} but is not equivalent té&. There exists inG an elementg which reverse& and, associated
to O, it constitutes the reversing element

ag=O®hg=hg® and (13)
My =GP = Gy +agGy  (black and white group (14)

Here also, compared Gy, the number of operators is doubled.

In the following, we shall treat together grey groups and black and white groups, whiting Gy + agGy for both of
them, withag = ® for grey groups andg = ®@hg for black and white groups.

As the time reversal operatér is not a linear but an antilinear operator, it is not possible to use the theory of representations
as it stands. One is obliged to use the theory of corepresentations.

5. The Wigner corepresentations of the magnetic little groupMy

The theory of corepresentations has been developped by Wigner [6] for groups including both linear opgratats
antilinear operatorg ;. The main difference between representation$ &nd corepresentations() concerns the rules of
multiplication of the matrices representing the operators. Whereas, for usual representations, they are:

L'(h)T (hj)=T(hihj) (15)

for the corepresentations, the matrices representing the linear operatarsl the antilinear operators; multiply in the
following way:

el (hj)el (hj) =cI (hih)), (16)
el (h)el (aj) =cI (hia;), (17)
el (aj)el™(hj) =cI(a;h;), (18)
cF(a,-)cF*(aj):cF(a,-aj). (19)

The magnetic little group;k@ = G +apG contains both linear operatoks and antilinear operatots; = aph ;. The basis
—k.

vectors on which operatorg anda; apply are all the Fourier componemté;a and(m'j‘.a)* =m,:
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— h; transforms a vectcm';a in a sum of vectorsn®, , and a vecto(m'l‘.a)* in a sum of vectorsmk )*;

J'B
k
'8

k
J'B
— a; transforms a vectom']‘.a in a sum of vector$m']‘.,ﬁ)* and a vecto(m';a)* in a sum of vectorsn

The number of basis vectors on which the operators act is then twice Iargéf)fdinan forGy. However, when it happens
that the magnetic corepresentation and the irreducible corepresentations are real, we can choose basis vectors which are re:
and this restrict their number by a factor two.

The way to construct the irreducible corepresentatiapsof the magnetic little groum}f from the irreducible represen-
tationst, of the little groupGy is explained in [6,8,10]. There are 3 different cases according to the value taken by the sum
Zaj X(ajz.), sum over all the antilinear operatarg, noticing that the operatomjz. are of typeh, which means linear operators.

Let us note that this criterion is often called reality criterion because it is used to know whether the irreducible representations
of the little groupsG are real, pseudoreal or complex.

Case (a): Zaj X(ajz‘) = g, whereg is the order of the little grou.

From the irreducible representatiey, one can build 2 irreducible corepresentationg andczt,”, in a way which is similar
to the procedure followed with the operat®r

et () =), et (@) =w(ajag’)B, (20)
ct, (hi) = (hy), ety (@j)=—1 (a./aal),ﬁ. (21)
As ajaal is a linear operator (of typg), t, (ajaal) is well defined . is an auxiliary matrix and such matrices are tabulated

in Ref. [10].

In the case of wave functions, as well as in the general case of complex basis vectors, the two irreducible corepresentations
ct,m ander,, are equivalent and the corresponding magnetic structures are the same. This is illustrated later, for the corepre-
sentationsnfr andcrl’ of the second example. However, if it is possible, as in the third example, to restrict the basis vector set

mllj" to real vectors only, and the two irreducible corepresentations may be no longer equivalent.
Case(b): 3, x(a%)=—g.
The irreducible representatiap is transformed in an irreducible corepresentation with an order which is twice larger:

-1
v (h;) 0 0 —Tv(aja() )ﬂ)
hy="45" : D= 22
cty(hy) < 0 Tv(hi)) cty(aj) (rv(ajaal)ﬂ 0 (22)
also with an auxiliary matriys tabulated in [10].

Case (c): Zaj X (ajz.) =0.

In this case, it exists another irreducible representatiafof 7, distinct fromz, (7, = t,/, with v’ # v), such as:

%y (h) = 1,0 (i) = [t (ag thiag) ™. (23)

These two representations, and z,, of the little groupGy, are joined together by the time inversion operator, to give an
irreducible corepresentatiar ., of the magnetic little groupj;ﬁ), with an order which is, here also, twice larger.

N Ty (h;) 0 N 0 T,,(ajao)>
Ty () _< 0 mhi))’ o <aj>—<rv,(aja51) o ) @y

The situation where the magnetic group is equivalent to the Fedorov gMﬁup:(Gk@ = Gk), when there is no symmetry
operator in the grou which reverses the vectér implies also, in a trivial way, the relatioEaj X (ajz.) =0, as the magnetic
little group contains no antilinear operators of type The vector—k, although it does not belong to the gtd; is associated
to vectork by the time inversion: there is no additional degeneracy inside the gkguput an extra degeneracy exists which
associates, with the same magnetic energy, the Fourier compmn?htandm';, as already mentioned above:

= e (k) el (25)

This degeneracy is labelled (x) [8].

In practice, for all little groupGy, that is for the 230 space groups and all the possible symmetries of the propagation
vectork, Bradley and Cracknell [8] on the one hand and Kovalev [10] on the other hand indicate wigtbetongs to case
(a), (b), (c) or (x). Furthermore, Kovalev gives also the auxiliary mairixhen it is different from unitary.
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6. The usefulness of introducing the time inversion symmetry

In the following examples, we shall show that the introduction of the antilinear time inversion invariance in the representation
analysis may bring more specifications to the possible magnetic structures than the spatial symmetries alone.

6.1. 1st example: atriangular structurein an acentric trigonal group (Fedorov magnetic little group, degeneracy (X))

Let us consider one magnetic atom at the origin of the cell of space group P3 (space YieiB), with a propagation
vectork = (1/3,1/3, 0). The space group contains 3 symmetry eleméntée, v, z), h3(—y, x — v, z) andhs(—x + y, —x, z)
according to Kovalev’'s notations [10]. As there is no vectdrin the star{k} (acentric structure), the magnetic little group is
the Fedorov group (degeneracy x): vectorsk andmk are associated together by the time inversion, but the search for basis
vectors inM, = G = Gy does not imply the operata? and is therefore done with the ordinary representations. Table 1 gives
the action of the 3 operatotg, i3 andisg of the magnetic little groupf, = Gk on the vectorial components of the magnetic
moment of the unique magnetic atom of the cell, as well as the character of the represdntasised on these components.
Table 2 reproduces the irreducible representations as listed in [8] or [10]. According to the usual rules of decomposition:

I'=114+14+r13.

The application of the projection operators on the 3 subspaces spanned by 3 irreducible representations yields the 3 basis
vectors:

for rq m'{ = m'g,

for 7o m§ =mK +iv/3mk +2mk) =u +iv,

for zg m§ =mK —iv/3mK +2mk) =u —iv

the two vectord) andV being orthogonal.
Coming back to the magnetic momentgin all the crystal, using Eq. (27), there are 3 structures compatible with the spatial
and time inversion symmetries:

for 71, a modulated structumna; = 2m‘z< coskl,
for 15, an helicoidal (here triangular structura) = 2[U coskl + V sinkl],
for r3, an helicoidal (here triangular) structure, but with an opposed chimality: 2[U coskl — V sinkl].

These three structures, and particularly the two helices, corresponding to different irreducible representations, are not supposec
to have the same magnetic energy. In this case of degeneracy (x), the time inversion plays its role, but not inside the little
groupGy. It allows us to combinen® andm=K in retrieving the magnetic momenty even when-k is not in the stafk}.

6.2. 2nd example: atriangular structurein a centric trigonal group (black and white magnetic little group, cases (a) and (c))

We consider now the same magnetic atom at the origin of the cell but in the space @dspae grouph147), with
the same propagation vectkr= (1/3,1/3,0). The space group contains now 6 symmetry elements: as befarey, z),
h3(—y,x —y,z) andhs(—x + y, —x, z), but also the 3 operators resulting from the inversiory(—x, —y, —z), h15(y, —x +
y, —z) andhy7(x — y, x, —z). Here, the structure is centrie:k belongs to the stdik}. The little groupG is restricted to the
3 operatorsi1, h3 andhg as in the former case for the acentric structure. Its irreducible representations are given in Table 2.
However, when including the time inversion, the magnetic little grdfyp— GE) = Gy + apgGk is black and white. It contains

Table 1 Table 2
Space group P3: action of the operatorsigf—(1/3,1/3,0) ON Space group P3: irreducible representations of the little group
the componentm¥ Gk=(1/3,1/3,0), &€ = eXp(2i/3)

hq h3 hsg hy h3 hs

mk mK —mK_mk 71 1 1 1

k K _ K k ’ ™2 1 &2
my —m¥$ —m¥ m¥ s 1 o2 .
mk mk mk

=
w
o
o
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Table 3
Space group B action of the operators @y—(1/3,1/3,0) On the componentm"i
hq h3 hs ®h13 ®Oh1s Ohy7
mk mk —mk —mK —m;K —m; X my X +myK
m§ fm'; - m§ m)‘ﬁ fm;k m;k + m;k fm;k
m m m —m; ¥ —m; ¥ —m; ¥
m;k m;k fm;k - m;k fm'; fm'; m)‘ﬁ + mfé
m;k —m7k - m;k miK —m'; mk + m‘; —mk
mz_k mz_k m; ¥ —m'z‘ —mg —m'z‘
X 6 0 0 0 0 0
Table 4 )
Space group B irreducible corepresentations of the little graip—(1/3,1/3,0), &£ = exp(2i/3)
h1 h3 hs Ohi3 Ohis Ohi7
ety 1 1 1 1 1 1
278 1 1 1 -1 -1 -1
or 10 e 0 2 0 01 0 e 0 ¢?
2+3 01 0 &2 0 ¢ 10 2 0 e 0

now 6 elements, with the reversing elemegt= ®h43. Table 3 shows the action of its 6 elemehis i3, hs, ®h13, ®h15and
®h17 on the magnetic Fourier componem,lf, and(m‘(;)*, as well as the character of the corepresentatidrbased on these
components. Table 4 reproduces the irreducible corepresentations as indicated in [8] o1 [dlhg of type (a) gives two
irreducible corepresentatiorasfr andct;, 2 andtg being of type (c), join together to give the irreducible corepresentation
c124+3. The decomposition of corepresentatidn into irreducible corepresentations is the following:

+ —_
cl'=ct +cty + 21243

In the space of complex vectorsg and (mg)*, the application of the projection operators on the 3 subspaces spanned by
3irreducible representations yields the 3 basis vectors:

o forer; m'i+:m'z‘+(m‘z<)*,

o for ety mk_ =mk — mk)*,

o forcroy3 m'§+3=m +iv3mK +2mk) = U +iv,
m2 ;= mk—rf(m,'§+2m';): —iv,

mi3, = (m2+3)* —myk - iﬁ(m;k + 2m;")
mgiS = (m2+3)* =m; K +iv3m;K +2m7 %),

crl+ andct; give two solutions which just differ by a coefficient i, and which provide the same modulated magnetic structure

alongOz. Corepresentatiotiry, 3 gives two basis vectors fonk and two for(mK)* Each pair contains the 2 chiralities— iV

andU + iV in the basal plane. As in the first example, both helices are compatible with the symmetries. But in this centric
case, the two helices (here triangles) correspond to the same irreducible corepresentation: they have the same energy and can |
mixed in the crystal. The pam2+3 = (m2+3)* andm2+3 = (m2+3)* which appears as basis vectors gives the same magnetic

structure as the pam'él 3 m2 5+ This reflects that, as a consequence of the time inversion, when looking at basis vectors
corresponding t&, we find also their conjugates which are the basis vectors correspondirg to

Let us note that, in this example, the procedure followed by Lyubarskii [11] which associates to a nonreal represgntation
its conjugater’, to create a ‘physically irreducible representation4 ;f, would give the same result as does the irreducible
corepresentationry 3. However, the rigorous treatment proposed here is more general as it can be applied in all the cases,
even when the spatial operatdrsof the little group do not connect all the positions of the magnetic site.
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6.3. 3rd example: CeAl,, a modulation in a centric cubic group (black and white magnetic little group, case a with real
corepresentations)

CeAl, is a face centred cubic compound, centric space group Fd3m, with 2 Ce atoms in the uni®,&l) and
(1/4,1/4, 1/4). Neutron diffraction experiments [12] have shown that the propagation vedtoei€l/2 — §,1/2 + §,1/2).

From the 48 operators which are in the grogp only 2 of them keep the vectdk unchanged and form the little
groupGy: hi(x,y,z) andh13(1/4—y,1/4—x,1/4— 7).

We first apply the representation theory, without the time inversion symmetry. The action of the 2 operators on the compo-
nentsmk.a is represented in Table 5. The magnetic representdtids of order 6. Its characters are also reported in Table 5.
The irreducible representations of the little grotip, as displayed in Refs. [8,10] are reported in Table 6. The representation
I' is reduced into irreducible representations as following:

I' =371 + 31o.
The basis vectors for these irreducible representations are obtained with the help of the projection operators, which leads to:

e For representationy, a structure based on the 3 following basis vectors:

K1_ ok ok
mit=mf —m§ .
k2 _ Kk K
miZ=mf —m§
K3_ ok ok
mp™=my, —My,

which corresponds to an antiferromagnetic structure with the following relations between the components:

.k
My, = —My,,
kK __ k
Moy = =M1y
Kk __ k
Mo, = —My,

e For representatiom, a structure based on the 3 following basis vectors:

k1l _ -k k
my=mj, +m3,.
k2 _ -k k
my°=mj, +m3,.
k3 _ k k
m5” =my_+ms,

which corresponds to a ferromagnetic structure with

mb = mk .
mb, = mk
my, =mh,
Table 5 Table 6
Action of the operators of5x on the components Irreducible representations of the little groGp of CeAl,
m‘}‘.a of CeAlp Iy h13
hy h13 1 1 1
m|]<J _mléy 1) 1 -1
m¥ —m¥,
m¥, -mk
mS, —m,
mé, —m¥_
m§. —mf,

X 6 0
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Table 7
Irreducible corepresentations of the magnetic little grd&"b of CeAlp
hy h13 Ohos ©hzy
L+
ety 1 1 1 1
ety 1 1 -1 -1
+
€T, 1 -1 1 -1
Ty 1 -1 -1 1
Table 8
Action of the operators OGE) on the real componenm‘;a = (m';a)* of CeAlp
h h13 Ohos ©Ohzy
k k k k
ma, _mZy —My ml_v
k k k k
my, —m3, —m3, my,
k k k k
m, —m3, —m3, m3,
k k k k
m3, —my, —My, ms,
k k k k
m3, —-m7, —-m3, ms,
k k k k
ma, —my, —Mmy, ma.
X 6 0 0 2

For both cases, there are 3 parameters to be determined from the expeﬂ@emﬁy andmlj‘l. Actually, what was found in
refining the neutron data [12—14] is that the structure is antiferromagnetic as expected from represgntaitioa component
m¥, which is different from the two others, but with the unpredicted equality; = m]iy.
We shall now introduce the time inversi@ in the representation analysis. The magnetic little group is black and white:
GE) = Gk +agGk, With the reversing elementy = @ hog whereh s is the inversion operatdrx, —y, —z). With this magnetic
little group,zaj x(ajz) =2, which means thaﬁ?ﬁ) corresponds to case (a). There are 4 irreducible corepresentations of order 1,
which are all real. They are reported in Table 7.
With the componentm‘;.a andmjfo'f, the magnetic corepresentatidnwould be of order 12. However, as this corepresenta-
tion is real and we have to decompose it into irreducible corepresentations which are also real, we can restrict our investigation
to real basis vectors and state:

k —k

mjazmja.

The action of the operators of the little gro@;f = Gy + agGk on such real basis vectoms'}‘.a are reported in Table 8, as
well as the characters of the magnetic corepresentafibwhich is now of order 6. The decomposition of this corepresentation
into the irreducible corepresentations becomes:

cl = 2crf' +ery + C‘L’; + 2cr2_.

The basis vectors for each irreducible corepresentation are obtained with the projection operators, which gives:

e For representatiomfr a structure based on the 2 following basis vectors:

k1 k k k k k2 k k
myy = (mg,—m3,) + (Mg, —m3,).  mpf=mg —my.
e Forrepresentationr;” a structure based on only one basis vectors:

k k k k k
my- = (M3, —m3,) — (M7, —m3,).

e For representatiom;r a structure based also on one basis vectors:

k k k k k
M+ = (M7, +m3,) — (M1, +m3,).

e For representationr, a structure based on the 2 following basis vectors:

k k k k k k2 _ Kk k
mit = (mf, + m3,) + (Mg, +m3,). my= =myp, +mM3,.
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The magnetic structure, as deduced from the experiment, corresponds to corepresajfatlbis antiferromagnetic with
the following relations:

k _ _k
mZ)_ Mixs
k _ _ k
mzx— mly,
k _ _k
mzz— mlz

and also withn’iy =mk .
Introducing the fact that basis vectors can be chosen real has brought a new constraint to the representation analysis, anc

it results that corepresentatio:snszr andct; are no more equivalent (as well as corepresentaﬂm;fsand ¢, ). Relation

mi](_y = m‘ix is a consequence of this nonequivalence. It is exactly what was found experimentally, but it was not expected from

theory without taking into account the time inversion in the representation analysis.

7. Conclusion: invariance by conjugation and reality of the magnetic moments are the key points

The antilinear time inversion operatér, as it has been defined here in formula (6), consists in a change of sign and a
conjugation of the Fourier development of the magnetic moments. While the change of sign does not bring any new information
in the representation analysis of the magnetic structures, the conjugation is the fruitful operation as it obliges to use the Wigner
corepresentations which associate the operators which ke@pd those which reverde Exactly the same results could have
been obtained if, instead of the ‘time inversion’ operafgrwe would have used the operator ‘conjugatiah’ It is obviously
an antilinear operator which keep invariant the magnetic enggggnd which requires also the use of the group theory algebra
developed by Wigner for the time inversion of the wave functions in quantum mechanics. The physical reason of the invariance
of the magnetic energy under the action of the ‘conjugation’ operator is that the magnetic moments themselves are invariant
under K because they are real vectorial quantities. We join here the ideas developed by Lyubarskii [11] when he produced
‘physically irreducible representations’, associating a non real representation to its conjugate. However, our procedure is more
general as it associates, from the beginningnd—k in the corepresentations.

To summarize, we can say that, whether operétar operatork is considered, we have shown that introducing such an
antilinear operator in the representation (corepresentation) analysis of the magnetic structures brings new pieces of informa-
tion and is all the more important since the symmetry of the system is low. Nowadays, for applications in solid state, all the
corepresentations are tabulated in text books and within the reach of everyone. It would then be a pity to neglect an element of
information which may be important.
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