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Abstract

Vortex methods are competitive for simulating incompressible unsteady flows, because they have negligible disper
and good energy conservation. The various methods are presented, including the recent developments: particle red
diffusion, relaxation (by projection), efficient solvers (fast multipole method, vortex-in-cell method, hybrid method) and p
computer implementations. Examples relating to wing/aircraft trailing wake vortices are presented: 2-D and 3-D, invi
viscous, direct numerical simulation and large eddy simulation. We consider wake roll-ups, vortex tube dynamics, 3-D
ities and the complexity/turbulence they produce. A vortex system in ground effects is also presented.To cite this article: G.
Winckelmans et al., C. R. Physique 6 (2005).
 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Les méthodes vortex et leur application à la simulation des sillages tourbillonnaires.Les méthodes vortex sont compé
tives pour la simulation d’écoulements incompressibles et instationnaires, car elles ont peu de dispersion et de bonnes
de conservation de l’énergie. Les diverses méthodes sont présentées, incluant les développements récents : redist
particules, diffusion, relaxation (par projection), solveurs efficaces (méthode multipole rapide, méthode particules-gr
thode hybride) et implémentation sur ordinateurs parallèles. Des examples sont présentés concernant l’application a
tourbillonnaires d’ailes/avions : 2-D et 3-D, non-visqueux et visqueux, simulation directe et simulation des grandes
On considère des enroulements, de la dynamique de tubes tourbillon, des instabilités 3-D et la complexité/turbulenc
produisent. Un système de tourbillons en effet de sol est aussi présenté.Pour citer cet article : G. Winckelmans et al., C. R.
Physique 6 (2005).
 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction

This paper presents vortex methods and their application to the simulation of wing/aircraft trailing wake vortices
methods are Lagrangian methods used to simulate unsteady convection-dominated problems. Since they are Lagra
have negligible dispersion error. They also have good energy conservation properties. These two qualities make them
tools for the simulation of convection dominated flows: direct numerical simulations (DNS) and large-eddy simulations
Recent and global references on vortex methods can be found in [1,2,35].

We define the velocityu, thematerial derivativeDf
Dt

�= ∂f
∂t

+ (∇f ) ·u and theconservative derivativeDf
Dt

�= ∂f
∂t

+∇ · (f u).

They are related byDf
Dt

= Df
Dt

+ f ∇ · u. The conservation of mass isDρ
Dt

= 0 or, equivalently,Dρ
Dt

= −ρ∇ · u. This leads to

the propertyρ Df
Dt

= D
Dt

(ρf ). Consideringf (x, t) integrated over a small material volumeV (t) and using Leibnitz theorem
one obtains

d

dt

∫
V (t)

f dx =
∫

V (t)

∂f

∂t
dx +

∫
S(t)

f u · ndx =
∫

V (t)

(
∂f

∂t
+ ∇ · (f u)

)
dx =

∫
V (t)

Df

Dt
dx (1)

Lagrangian methods follow the evolution of quantities integrated over material volumes. The physical fieldf is discretized
usingparticles. Eachp particle represents a small material volumeVp . Thestrengthof each particle represents the integral

f over the material volume:αp = ∫
Vp

f dx
�= fpVp . Theposition(centroid) of each material volume is denoted byxp . Each

material volume is carried by the local velocity field:up = u(xp(t), t). Its strength evolves according to the discretized vers

of Eq. (1). Its volume evolves according to the conservation of mass:d
dt

(ρV )p = 0 and thus 1
Vp

dVp

dt
= − 1

ρp

dρp

dt
= (∇ · u)p . In

summary, one obtains:

d

dt
xp = up,

d

dt
(fpVp) =

(Df

Dt

)
p

Vp,
d

dt
Vp = (∇ · u)pVp (2)

This defines the method. It is thus a method which is simply the Lagrangian expression of the conservation equation co
We here focus on the methods used to solve the vorticity formulation of the Navier–Stokes equations for incomp

(∇ · u = 0) and viscous flows of Newtonian fluids. The equation for the evolution of the vorticity,ω = ∇ × u, is obtained by
taking the curl of the momentum equation:

Dω

Dt
− ν∇2ω = (∇u) · ω ≡ (∇u)T · ω ≡ S· ω = ∇ · (uω) (3)

whereν is the kinematic viscosity,∇2ω stands for∇ · (∇ω) (a notation used throughout) andS= 1
2(∇u + (∇u)T) is the strain

rate tensor. The forms of the stretching term are equivalent because of the identity((∇a) − (∇a)T) · b = (∇ × a) × b.
Recalling the evolution equation for a differential material element,D

Dt
δl = (∇u) · δl, one concludes that, in 3-D invisci

flows, avortex line(line everywhere tangent to the local vorticity) moves as a material line; consequently, avortex tube(tube
made of an ensemble of vortex lines) moves as a material tube: this property forms the basis of themethod of vortex filaments.

The velocity is obtained asu = ∇ × ψ + up , with up a potential velocity (e.g., a uniform free stream velocity) andψ the
streamfunction related toω by a Poisson equation:∇2ψ = −ω.

In 2-D flows, the vorticity only has one component (perpendicular to the velocity field), hence no vorticity stre
ω = ωez with ω = ∂v

∂x
− ∂u

∂y
. The streamfunction also has one component:ψ = ψez, u = ∂ψ

∂y
, v = − ∂ψ

∂x
, also leading to

∇2ψ = −ω. The vorticity equation reduces to

Dω

Dt
= ν∇2ω (4)

The streamfunction (and thus the velocity) are obtained using either a Green’s function approach (Biot–Savart, asfast
multipole method) or a fast Poisson solver on a grid (as in thevortex-in-cell method, VIC). With the Green’s function approac
one has (3-D and 2-D respectively):

ψ(x) = 1

4π

∫
1

|x − x′|ω(x′)dx′, ψ(x) = 1

2π

∫
log

(
L

|x − x′|
)

ω(x′)dx′ (5)

with L any reference length (ψ defined up to a constant). The induced velocity is then:

u(x) = − 1

4π

∫
(x − x′)
|x − x′|3 × ω(x′)dx′, u(x) = − 1

2π

∫
(x − x′)
|x − x′|2 × (

ω(x′)ez

)
dx′ (6)

There are also fundamental invariants and/or diagnostics for 2-D and 3-D unbounded flows: see [3] (and also [1
context of vortex methods).
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2. 2-D vortex methods

The 2-Dmethod of regularized vortex particles(also calledvortex blobs) is first considered (the singular method being
very practical, see [1,2]). One associates to each particle an areaSp and acirculation Γp , the integral ofω over the materia

surface:Γp = ∫
Sp

ωdS
�= ωpSp . The method reads

d

dt
xp = up,

d

dt
Γp = (

ν∇2ω
)
p
Sp (7)

The induced velocity field is determined by using a regularized Biot–Savart integral. The simplest is to use radially sy
regularization functions:

uσ (x) = − 1

2π

∑
p

gσ (|x − xp|)
|x − xp|2 (x − xp) × (Γpez) (8)

with σ the regularization length andgσ (r)
�= g( r

σ ) the regularization function, withg(ρ) → 1 for ρ
�= r

σ large andg(ρ) ∝ ρ2

for ρ small. The self-induced velocity isuθ (r) = Γ
2π

g(r/σ )
r . The corresponding streamfunction is then obtained as

ψσ (x) = − 1

2π

∑
p

Gσ

(|x − xp|)Γp (9)

with Gσ (r)
�= G( r

σ ) and g(ρ)

ρ2 = 1
ρ

dG
dρ

(ρ). This streamfunction also corresponds to the solution of∇2ψσ = −ωσ with

ωσ (x) = ζσ ∗ ωδ =
∑
p

ζσ
(|x − xp|)Γp (10)

whereζσ (|x|) �= 1
2πσ2 ζ( r

σ ) andζ(ρ) = 1
ρ

d
dρ

(
ρ dG

dρ
(ρ)

)
. On also obtainsζ(ρ) = 1

ρ
dg
dρ

(ρ) and thusg(ρ) = ∫ ρ
0 ζ(s)s ds. The

streamfunction and the velocity field are thus those induced by the particles considered asvortex blobs, the blob function being
ζσ (r) with σ the characteristic size. The normalization,

∫
ζσ (|x|)dx = 1, leads to

∫ ∞
0 ζ(ρ)ρ dρ = 1 (consistent withg → 1 as

ρ → ∞). The inviscid version of the method is thus

d

dt
xp = − 1

2π

∑
q

gσ (|xp − xq |)
|xp − xq |2 (xp − xq) × (Γpez) (11)

It conserves the impulseI = ∑
p xp × (Γpez) and the angular impulseA = −1

2
∑

p |xp|2Γp . It also conserves the energy,

E = 1

2

∑
p

Γpψσ (xp) = − 1

4π

∑
p,q

ΓpGσ

(|xp − xq |)Γq (12)

The viscous version of the method is obtained when one adds a diffusion scheme, such as the PSE (see later and
The methods converge for regular vorticity fields as the number of particles is increased provided that the cores of

blobs maintain overlapping (definingS
�= h2 for the fluid area of each particle, one requires thatσ/h � 1) and thatparticle

redistribution schemesare used (see later).
In general, a function is said to be of orderr (here ‘order’ refers to spatial truncation error) when it satisfies the mom

properties
∫

x
p1
1 x

p2
2 ζσ (x)dx = 0 if 1 � p1 + p2 < r and

∫ |x|r |ζσ (x)|dx < ∞. Order higher thanr = 2 calls for functions

that are not strictly positive. For radially symmetric functions, these become
∫ ∞
0 ζ(ρ)ρ1+s dρ = 0 for s even and 2� s < r ,

and
∫ ∞
0 |ζ(ρ)|ρ1+r dρ < ∞ (see, e.g., [4] for a review list of functions, and Table 1 for usual ones). Thelow order algebraic

function hasr = 0: it can only be used for global vortex modelling, as it does not converge for detailed field discretiz
For detailed studies, we typically user = 2 functions: thehigh order algebraicfunction or theGaussianfunction. Ther = 4
functions are not strictly positive; in principle, they lead to a 4th order method (we have no experience in using them).

The vortex method can also be used withσ different for each particle (see also [32] and later for the method with

uniform spatial resolution,Sp
�= h2

p , but that varies slowly in space). One then uses the symmetrized version (replaceσ2 by

σ2
pq

�= 1
2(σ2

p + σ2
q ) in the dynamics of Eq. (11)), which ensures the conservation of impulse, angular impulse and ene

viscous flows, one uses the symmetrized PSE scheme (see later).
The 2-D method, when combined with particle redistribution and with efficient velocity evaluation (see later) has

range of applicability: inviscid and viscous flows. It is comparable to most 2-D Eulerian methods of quality used t
convection–diffusion problems, eventually with source terms.
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Table 1
Examples of 2-D regularization functions

Function g(ρ) G(ρ) ζ(ρ) r

Low order algebraic ρ2

ρ2+1
1
2 log(ρ2 + 1) 2

(ρ2+1)2
0

High order algebraic ρ2(ρ2+2)

(ρ2+1)2
1
2 [log(ρ2 + 1) + ρ2

ρ2+1
] 4

(ρ2+1)3
2

Gaussian 1− e−ρ2/2 1
2 [log(

ρ2

2 ) + E1(
ρ2

2 )] e−ρ2/2 2

Super-Gaussian 1− (1− ρ2

2 )e−ρ2/2 1
2 [log(

ρ2

2 ) + E1(
ρ2

2 ) − e−ρ2/2] (2− ρ2

2 )e−ρ2/2 4

Fig. 1. Example of roll-up of a thin vortex sheet corresponding to an airfoil with elliptical loading. Vorticity field atτ = 0.10.

An illustrative example, obtained using the inviscid version of the method, is presented in Fig. 1. This correspond
2-D roll-up of a thin vortex sheet emitted by an airfoil. Its circulation per unit length isγ (y) = −dΓ

dy
(y) with Γ (y) = Γ0[1 −

y2/(b/2)2]1/2 (case of an airfoil of spanb and with elliptical loading). Here, the singular vortex sheet was first regulariz
order to produce a vorticity field,

ωa(x) = 1

πa2

b/2∫
−b/2

exp

(
−|x − yey |2

a2

)
γ (y)dy (13)

We here useda/b = 2.5× 10−3, thus still a very thin vortex sheet. The vorticity field was then discretized using particle
on multiple layers across the sheet, leading to a total of about 16 000 particles. The vortex method with Gaussian regu
function was used (usingσ = h), with the fast multipole method (see below) and with particle redistribution (see later)
every 10 time steps. At the end of the simulation (τ � t/t0 ≈ 0.2 wheret0 � 2πb2

0/Γ0), we had about 105 particles. It is seen
that the method is able to capture fine structure dynamics: here Kelvin–Helmholtz instabilities developing on the vort
as it rolls up.

3. 3-D vortex methods

The 3-D methods are presented: themethod of regularized vortex filamentsand themethod of regularized vortex particles.
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3.1. Vortex filaments

In 3-D inviscid flows, vortex lines move as material lines: this constitutes the basis for themethod of vortex filaments.
Each filamentp corresponds to a vortex tube of circulationΓp : the strength associated to that filament. The method mu
regularized as singular filaments have a logarithmically infinite self-induced velocity everywhere their curvature is nonz
filaments using radially symmetric regularization functions, one has

uσ (x) = − 1

4π

∑
p

Γp

∫
Cp

gσ (|x − xp|)
|x − x|3 (x − xp) × dxp (14)

where the regularization functiongσ (r)
�= g( r

σ ) is such thatg(ρ) → 1 forρ large andg(ρ) ∝ ρ3 for ρ small. The correspondin
streamfunction is obtained as

ψσ (x) = 1

4π

∑
p

Γp

∫
Cp

Gσ

(|x − xp|)dxp (15)

with Gσ (r)
�= 1

σ G( r
σ ) and g(ρ)

ρ3 = − 1
ρ

dG
dρ

(ρ). This streamfunction also corresponds to the solution of∇2ψσ = −ωσ with

ωσ (x) =
∑
p

Γp

∫
Cp

ζσ
(|x − xp|)dxp (16)

whereζσ (|x|) �= 1
4πσ3 ζ( r

σ ) and−4ζ(ρ) = 1
ρ2

d
dρ

(ρ2 dG
dρ

(ρ)). One also obtainsζ(ρ) = 1
ρ2

dg
dρ

(ρ) and thusg(ρ) = ∫ ρ
0 ζ(s)s2 ds.

The normalization,
∫

ζσ (|x|)dx = 1, leads to
∫ ∞
0 ζ(ρ)ρ2 dρ = 1. The vorticity and streamfunction,ωσ andψσ , are divergence

free because the filaments are closed (or periodic); the velocityuσ is divergence free because it is the curl ofψσ . The method
then consists in convecting all points on all filaments with their local velocity:∂

∂t
xp(ξ) = uσ (xp(ξ)). It conserves the tota

vorticity � = 0, the impulseI and the angular impulseA:

I = 1

2

∑
p

Γp

∫
Cp

xp × dxp, A = 1

3

∑
p

Γp

∫
Cp

xp × (xp × dxp) (17)

It also conserves the energy,

E = 1

4π

∑
p,q

ΓpΓq

∫
Cp

∫
Cq

G
(|xp − xp|)dxp · dxq (18)

One typically uses parametric splines to numerically represent the filaments. The regularized method converges fo
vorticity fields when the number of filaments is increased, provided that the overlapping condition is satisfied. The regul
function has normalization

∫
ζσ (x)dx = 1. It is of orderr when it satisfies the moment properties

∫
x
p1
1 x

p2
2 x

p3
3 ζσ (x)dx = 0

for 1 � p1 + p2 + p3 < r , and
∫ |x|r |ζσ (x)|dx < ∞. For radially symmetric functions, these become

∫ ∞
0 ζ(ρ)ρ2+s dρ = 0

for s even and 2� s < r , and
∫ ∞
0 |ζ(ρ)|ρ2+r dρ < ∞. Order higher thanr = 2 calls for functions that are not strictly positiv

See, e.g., [4] for a review list of typical functions and Table 2 for usual ones. Thelow order algebraicfunction hasr = 0: it
can only be used for global vortex tube modelling (as done in the examples below), as it does not converge for deta
discretizations (using many filaments per vortex tube). For detailed studies, we typically use filaments withr = 2 functions: the
high order algebraicfunction or theGaussianfunction. The vortex filament method can also be used withσ different for each
filament, provided that the method be symmetrized by replacingσ2 by σ2

pq = 1
2(σ2

p + σ2
q ) [5]: this ensures the conservation

impulse, angular impulse and energy.
Different choices ofgσ regularization function can be scaled with respect to each other (by changingσ ) so as to have the

samelong wavelength dynamics: one then considers the dispersion relation (self-induced rotational velocityΩ) of bending
perturbations on a line vortex (Kelvin’s lowest order mode) for long wavelength perturbations (kσ small), see [6,7]. Kelvin’s
long wave dispersion relation, derived for the top-hat vortex of radiusa, is:

Ω = ± Γ

4π
k2

[
log

(
ka

2

)
+

(
γ − 1

2

)
+ 1

4

]
(19)

whereγ = 0.5772. . . is the Euler constant. With the vortex filament method, one obtains

Ω = ± Γ
k2

[
log

(
kσ

)
+

(
γ − 1

)
+ C

]
(20)
4π 2 2
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Table 2
Examples of 3-D regularization functions

Function g(ρ) G(ρ) ζ(ρ) r

Low order algebraic ρ3

(ρ2+1)3/2
1

(ρ2+1)1/2
3

(ρ2+1)5/2 0

High order algebraic ρ3(ρ2+5/2)

(ρ2+1)5/2
(ρ2+3/2)

(ρ2+1)3/2
15/2

(ρ2+1)7/2 2

Gaussian erf( ρ

21/2 ) − ρ( 2
π )1/2e−ρ2/2 1

ρ erf( ρ

21/2 ) ( 2
π )1/2e−ρ2/2 2

Fig. 2. Crow instability in a two-vortex system computed using the vortex filament method. Times shown areτ = 22.4 and 23.7 (just before
viscous reconnection would occur).

with C = 1 for the low order algebraic function,C = 1/2 for the high order algebraic function, andC = 1.058 for the Gaussian
function: this provides the necessary relative scalings ofσ to have the same dynamics.

An example of application of the method is shown in Fig. 2, for the case of a two-vortex system undergoing th
instability. The problem is periodic inx and a periodic version of the filament method is used. The period isLx/b0 = 17.1
(twice the theoretical most unstable wavelength). As the instability only involves bending of the vortex tubes, each vor

can be represented by one vortex filament; here a low order algebraic distribution,ω(r) = Γ
2π

2σ2

(r2+σ2)2 with σ/b0 = 0.091; thus

we use filaments withgσ (r)

r3 = r2

(r2+σ2)3/2 . We use parametric cubic splines (x(i), y(i) andz(i)) with 640 points per filament

the point to point spacing is thush/b0 = 2.66× 10−2 (i.e.,h/σ = 0.294). The filaments were initially perturbed using rand
displacement (maximum amplitude ofε/b0 ≈ 1× 10−8). As usual, the times shown are expressed usingτ � t/t0 with t0 = b0

V0

whereV0 = Γ0
2πb0

is the vortex system descent velocity. The growth rate of the unstable Crow mode, evaluated from F
σCt0 ≈ 0.77.

Notice that the filament method was here also ‘filtered’. Indeed, askσ is increased, the dispersion relation of filame
fails to follow Kelvin’s lowest order bending mode (whereΩ monotonically increases askσ increases), see [6,7]: it goes ba
down and eventually crosses the axis, thus leading to a non-rotating bending mode (Ω = 0) whenkσ is of order unity (for the
low-order algebraic,kσ ≈ 1.12). If nothing is done, this spurious mode will pollute the simulation (and eventually make it
up): filtering is necessary. Here, we used a discrete filter acting on the splines representation of the filaments. Defining
stencil-3 operatorP acting onfi (herex(i), y(i) andz(i)),

P ∗ fi � −1

4
[fi+1 − 2fi + fi−1] (21)

and iterating itm times,

Pm ∗ fi � P ∗P ∗ · · · ∗P︸ ︷︷ ︸
m times

∗fi (22)

the filtered functionf (m) (filter of orderm) is

i
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Fig. 3. Evolution of the modal displacement amplitude‖x̂‖2 in a two-vortex system, for modeskb0 = 0.737, 1.473, and 2.210 which correspo
to the Crow mode (kC ) and its first two harmonics respectively.

f
(m)
i

�Fm ∗ fi = fi −Pm ∗ fi (23)

In Fourier space, the transfer function of this filter is[1− (sin2( kh
2 ))m]. If we apply the filteringn times,

Fn
m ∗ fi =Fm ∗Fm ∗ · · · ∗Fm︸ ︷︷ ︸

n times

∗fi (24)

this gives, as transfer function,[1 − (sin2( kh
2 ))m]n. We here usedm = 32 andn = 2, and applied every two times steps: t

damping then starts for modes atkh/π ≈ 0.1 (thus herekb0 ≈ 12); those withkh/π > 0.4 (thus herekb0 > 47) are essentially
completely damped.

Another example is shown in Fig. 4 for the case of medium wavelength instabilities in a counter-rotating four-vortex
This case, although a bit academic (as not easily achievable on a real aircraft), offers the possibility of fast growing ins
(the so-called ‘Omega’ loops) as shown in [8–10], and thus provides potential for rapid changes in flow topology and
eration of small scale structures and turbulence through the strong interaction between unequal-strength opposite sig
(see also later for LES simulations done using the VIC method). Initially, we haveΓ2/Γ1 = −0.3, b2/b1 = 0.3 (spacing ratio),
σ1/b1 = 0.075 andσ2/σ1 = 2/3. Each vortex has the low-order algebraic distribution. We also define theequivalent two-vortex
system(same half-plane global circulation and same linear impulse) byΓ0 = Γ1 + Γ2 andb0 = (Γ1b1 + Γ2b2)/Γ0. The simu-
lation extent corresponds to one wavelength of the Crow instability for the equivalent two-vortex system (Lx/b0 = 8.53). The
filaments were initially perturbed using a small random displacement (maximum amplitude of 10−7b1). The time evolution of
the perturbation amplitude of the unstable modes is also shown in Fig. 5. It is seen that the medium wave instability als
an amplifier of the Crow instability (see also [8]).

Clearly, the method of vortex filaments constitutes a simple and useful investigation tool for global vortex tube dy
Yet, it is limited to essentially inviscid studies (core growth by diffusion can be captured by varyingσ ). It does not allow for
the reconnection of vortex tubes: something that can only happen by strong viscous interactions. Ad hocmethods of filamen
surgeryhave also been developed by some authors to artificially reconnect filaments of opposite sign and same stren
remove problematic parts of filaments. We do not follow such approaches. Instead, we use the viscous version of t
particle method, as presented in the next sections.

3.2. Vortex particles

We now consider the 3-D method of regularized vortex particles. One then associates to each vortical fluid element

V and a vectorstrengthα , which is the integral ofω over the material volume:α = ∫
ω dV

�= ω V . The inviscid version
p p p Vp
p p
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Fig. 4. Example of medium wavelength instabilities in a four-vortex system computed using the vortex filament method. Times shownτ = 0
and 0.88.

Fig. 5. Evolution of the modal perturbation amplitude‖x̂′‖2 in a four-vortex system, forkMb1 = 5.09, 2kM and kCb1 = 0.567 (Crow);
σMt0 = 16.4 (in 0.07� τ � 0.49).

of the method can be written:

d

dt
xp = up,

d

dt
αp = (∇u)p · αp (25)

The viscous version amounts to adding the diffusion term in the evolution equation forαp (see later). The methods converge
the number of particles is increased, provided the core overlapping condition is satisfied and that particle redistribution
It then allows for accurate long-time simulations of flows with regular vorticity field. Assuming

ω̃σ (x) =
∑
p

ζσ
(|x − xp|)αp (26)

one obtains

ψ̃σ (x) = 1

4π

∑
p

Gσ

(|x − xp|)αp, uσ (x) = − 1

4π

∑
p

gσ (|x − xp|)
|x − xp|3 (x − xp) × αp (27)

The method suffers from the fact thatω̃σ is not exactly equal to∇ × uσ , and thus that the particle fields,ω̃σ and ψ̃σ

are not generally divergence free. It appears, from experience in simulations, that the method is naturally well-be
least when the simulation is well-resolved and when particle redistribution is used. Yet, for simulations covering a lo
and/or in under-resolved simulations, one eventually needs to re-enforce that the particle field remains a good represe
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ωσ = ∇ × uσ : relaxation schemesare thus required. The simplest relaxation scheme consists in resetting the particle st
to the field:αnew

p = ωσ (xp)h3. This procedure is easy but quite diffusive.
In the VIC method (see later), an efficient and non-diffusive projection scheme is used instead. It is as follows:

evaluates the discrete vorticity divergence on the grid, using finite differences acting on the redistributed particle
∇h · α; one then solves a Poisson equation on the grid:∇2

h
F = ∇h · α; the particles are then reset using:αnew = α − ∇hF ,

which ensures that the particle field is divergence free.

4. Viscous diffusion and LES

We already mentioned the viscous schemes to be used with particle method: for DNS, for LES, and even for RANS.
present the scheme known as theparticle strength exchange(PSE), see [11–13]. We develop it in 3-D; the 2-D case is obta
following the same procedure. In 3-D, one considers kernels such that

∫
x
p1
1 x

p2
2 x

p3
3 ησ (x)dx = 0 for 1� p1 +p2 +p3 < 2+ r ,

except that
∫

xixj ησ (x)dx = δij σ2 (and thus
∫ |x|2ησ (x)dx = 3σ2), and with

∫ |x|2+r |ησ (x)|dx < ∞. In the case of radially

symmetric kernels,ησ (|x|) �= 1
4πσ3 η(

|x|
σ ), the condition are

∫ ∞
0 η(ρ)ρ4+s dρ = 0 for s even and 2� s < r ,

∫ ∞
0 η(ρ)ρ4 dρ = 3,

and
∫ ∞
0 |η(ρ)|ρ4+r dρ < ∞. The following integral operator

(∇2f )σ (x) ≈ 2

σ2

∫ (
f (x′) − f (x)

)
ησ (x′ − x)dx′ (28)

then provides an orderσ r approximation of the Laplacian. One can obtain orderr kernels by usingησ (x) = − x·(∇ζσ (x))

(|x|2/σ2)
, with

ζ an orderr regularization (strictly positive kernels corresponding tor = 2). In the case of radially symmetric kernels, th
givesη(ρ) = − 1

ρ
dζ
dρ

(ρ) (as
∫ ∞
0 ζ(ρ)ρ2 dρ = 1 indeed implies that

∫ ∞
0 η(ρ)ρ4 dρ = 3). In the particular case of the Gaussia

ζ(ρ) = ( 2
π )1/2 exp(−ρ2/2), one obtains thatη(ρ) = ζ(ρ).

To evaluate the integral operator, one simply performs a quadrature using the particles:

ν(∇2f )σ (xp) = 2ν

σ2

∑
q∈Pp

(fq − fp)ησ

(|xq − xp|)Vq

(
d

dt
αp

)
ν

= 2ν

σ2

∑
q∈Pp

(αqVp − αpVq)ησ

(|xq − xp|) (29)

with αp
�= fpVp the particle strengths andPp the ensemble of particles close enough top that the interaction kernel i

significant. Diffusion is thus done by particle strength exchange amongst neighbor particles. The scheme is conserva
should):

∑
p αp is conserved. It can also be developed for non-uniform diffusion, as required in LES and RANS. One

has, for the 3-D vortex method,

d

dt
αp = (∇u)p · αp + 1

σ2

∑
q∈Pp

(
ν(xq) + ν(xp)

)
(αqVp − αpVq)ησ

(|xq − xp|) (30)

and, for the 2-D vortex method,

d

dt
Γp = 1

σ2

∑
q∈Pp

(
ν(xq) + ν(xp)

)
(ΓqSp − ΓpSq)ησ

(|xq − xp|) (31)

The 2-D and 3-D viscous methods also require that the particles remain fairly uniformly spaced as the simulation proc
thus also particle redistribution. Regions of low vorticity also need to be able to diffuse towards regions of even lower v
Hence, particles must be present where needed; this is also a task performed by the redistribution step.

The viscous vortex particle methods can be used to solve any convection-diffusion equations (eventually also wit
terms, as for RANS). In the case of LES, a subgrid-scale (sgs) model is used to dissipate energy at the smallest resol
For instance, one can use an effective viscosity sgs model (e.g., the Smagorinsky model). Such model can also be
with a hyper-viscosity model (easily obtained by applying recursively the PSE scheme) so as to form a mixed model.

There is also the modeling procedure proposed by [14] (see also [1,2]) and originally developed to compensate for t
errors in 2-D vortex methods: it amounts to further correcting the particle strengths using a PSE-like version of the s
tensor-diffusivity model(TDM):

d

dt
Γp = 1

σ2

∑ [
2ν + (

uσ (xq) − uσ (xp)
) · (xq − xp)

]
(ΓqSp − ΓpSq)ησ

(|xq − xp|) (32)

q∈Pp
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To avoid problems related to negative diffusion effects, clipping is also used: by retaining only the interactions with[2ν +
(uσ (xq) − uσ (xp))) · (xq − xp)] � 0. This scheme significantly improves the behavior of the vortex method at the fine s
It can also be used as sgs model for LES: one then puts aC constant in front of the clipped TDM part: use[2ν + C(uσ (xq) −
uσ (xp)) · (xq − xp)].

As to quasi-inviscid simulations(quasi-Euler), we here mean simulations without viscosity and without sgs viscosity-
model. Such simulations are used to model flows in the limit of very high Reynolds number. In 3-D, some sgs hyper-v
term is nevertheless required, as the small dissipation produced by the particle redistribution operation is not sufficien

As an illustration of the 2-D viscous vortex particle method, we present an example of roll-up of a near wake, starti
wind tunnel experimental data (five-hole probe and PIV data) on a generic configuration consisting of a fuselage and
wing (theSWIMconfiguration, see [15]). The comparison between experimental measurements and simulations are p
in Figs. 6, 7 and 8. We first used diffusion based on a uniformeffective turbulence viscosity, νt (thus a very simplified RANS
approach) set according to the scaling proposed by Owen [16] (see also [17]):

νt

ν
= 1

β

√
Γ0

ν
⇐⇒ Γ0

νt
= β

√
Γ0

ν
⇐⇒ Ret = β

√
Re (33)

The factorβ was set to 8 as calibrated on one SWIM data set, on the criterion that the time of merging of the co-
vortices be comparable to that in the experiments; it was then showed to be appropriate for the other SWIM data sets
for data sets related to other projects and at higher Reynolds numbers (not shown). With the SWIM data set, this led
Ret = 4 × 103. The vortex method was run at high resolution, (usingh = b/400 with b the wingspan), using the Gaussi
regularization function (withσ = h), and with particle redistribution done every 10 time steps. One globally observes a
agreement for the evolution of the roll-up process; even the details of the filamentation can be compared.

It is important to stress that the merging process is here astablemerging: as opposed to theunstablecase correspondin
to the merging of vortices that are further apart, and that can happens through 3-D short wave instabilities, thei
tion and the turbulence they generate. The case of stable merging can indeed satisfactorily be captured using 2-
The case of 3-D unstable merging calls for using 3-D LES (see later). Of course, RANS with the assumption of
turbulence viscosity constitutes an oversimplification: one captures properly much of the physics and the global
but the vortex cores are too diffused. RANS models that take into account the spatial variability are eventually

Fig. 6. Initial vorticity field atx/b = 1.25 for configuration 1, from experimental measurement (SWIM, five-holes probes) cleaned
simulation.
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Fig. 7. Vorticity field atx/b = 5 for configuration 1. Top: obtained from five-hole probes velocity measurements; middle: simulation u
uniform effective viscosity; bottom: simulation using the clipped TDM.

those are also required to model the enhanced mixing across the centerline due to the turbulence created by th
wake.

As another example, we also considered a simulation using instead the clipped TDM model and withC = 2 (also cali-
brated for obtaining the proper time of stable merging). This model performs quite well: it can be shown to produce ne
diffusion in regions with pure rotation (i.e., within the vortex core); yet it produces sufficient diffusion to capture th
bulent interactions between the vortices and thus the merging. The agreement with the experimental data is s
better than for the case with uniform effective viscosity. We also expect that the clipped TDM model will constit
interesting sgs model for 3-D LES, because of the negligible diffusion in regions with pure rotation; this remains to
vestigated.

5. Particle redistribution

Previously, we have often mentioned the need forparticle redistribution. Without it, Lagrangian methods fast loose th
accuracy as the simulation proceeds, because the condition of distribution uniformity, that is required for overlap of the
regularization functions, does not remain satisfied. The commonly used redistribution schemes are presented (see
one makes use of a regular redistribution lattice of sizeh; the old set of particles is replaced by a new set, the new particles b
on the lattice. First consider the 1-D problem. DenotingU the distance (normalized byh) between the old particle and a ne
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Fig. 8. Vorticity field atx/b = 10.25 for configuration 1. Top: obtained from five-hole probes velocity measurements; middle: simulation
a uniform effective viscosity; bottom: simulation using the clipped TDM.

one, the fraction of the old particle strength that is attributed to a new particle is denotedΛr(U) (r meaning that it conserve
the moments up to orderr : from

∑
p αp up to

∑
p xr

pαp). The zero and second order schemes are:

Λ0(U) =
{

1 if U < 1
2

0 otherwise
Λ2(U) =




1− U2 if 0 � U < 1
2

1
2(1− U)(2− U) if 1

2 � U < 3
2

0 otherwise

(34)

Both schemes are discontinuous:Λ0(U) at 1
2; Λ2(U) at 1

2 and 3
2. The first and third order schemes are:

Λ1(U) =
{

1− U if 0 � U � 1
0 otherwise

Λ3(U) =




1
2(1− U2)(2− U) if 0 � U � 1
1
6(1− U)(2− U)(3− U) if 1 � U � 2

0 otherwise

(35)

Both schemes are continuous, which leads to better numerical results (less high frequency noise after redistribution)
worth mentioning another popular scheme: theM ′

4 scheme,

M ′
4(U) =




1− 5
2U2 + 3

2U3 if 0 � U � 1
1
2(1− U)(2− U)2 if 1 � U � 2 (36)
0 otherwise
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It is continuous and so is its first derivative. It has width 4 and is of second order.
In multiple dimensions, the redistribution schemes are obtained using products of 1D schemes:Λr(U,V ) = Λr(U)Λr(V )

in 2D, Λr(U,V,W) = Λr(U)Λr(V )Λr(W) in 3D. TheΛ1(U) scheme is what was commonly used in the first vortex-in-
(VIC) methods; it should be avoided as it is quite dissipative. Nowadays, theΛ3(U) or theM ′

4 schemes are most often use
including for VIC; they are much less dissipative (hyper-viscosity behavior).

The redistribution lattice needs not be uniform; it can stretch, as long as the stretching rate remains moderate. Th
useful, as it allows to tailor the spatial resolution of simulations. The above redistributions schemes are then applied w
uniform index space (this does not conserve exactly the moments; yet, with moderate stretching rate, the behavior of th
is still acceptable, as redistribution is a local operator). The same goes for diffusion: the symmetrized PSE,

d

dt
αp = 2ν

∑
q∈Pp

1

σ2
pq

(αqVp − αpVq)ησpq (xp − xq) (37)

still yields a second order scheme, provided that the localσ variations are small (this is the case since particles are regu
redistributed on a lattice with moderate stretching, and theirσ is set proportional toh of the local lattice), see [18].

6. Efficient velocity evaluation: fast multipole method and vortex-in-cell method

The Green’s function (i.e., Biot and Savart) direct evaluation of the velocity (and, in 3-D, its gradient) induced byN vortex
elements, atM locations requiresO(MN) operations. This precludes large-scale simulations. Fast methods have been
oped, both in 2-D and in 3-D, that have an operation count ofO(M logN) (or evenO(N) depending on the details of th
algorithm), see, e.g., [19–21]. The basic idea of these methods is to decompose the element population spatially int
of particles and build a hierarchy of clusters (tree: quad-tree in 2-D, oct-tree in 3-D)—smaller neighboring clusters combin
form a cluster of the next size up in the hierarchy and so on.

Each cluster is represented by its multipole expansion, expressed with respect to an expansion center,xc (e.g., use the
‘centroid’: xc = (

∑
p xp|αp|)/(∑p |αp|)) [22]. In 3-D, this gives

4πψσ (x) =
∫

Gσ

(|x − x′|)ω(x′)dx′

= Gσ

(|x − xc|
)
M (0) − ∂iGσ

(|x − xc|
)
M (1)

i
+ 1

2
∂i∂jGσ

(|x − xc|
)
M (2)

ij
− · · · (38)

where M (0) = ∫
ω(x′)dx′, M (1)

i
= ∫

(x′ − xc)iω(x′)dx′, M (2)
ij

= ∫
(x′ − xc)i (x′ − xc)jω(x′)dx′, etc. are the monopole

dipole, quadrupole moments of the distribution. With particles, one obtainsM (0) = ∑
p αp , M (1)

i
= ∑

p(xp − xc)iαp ,

M (2)
ij

= ∑
p(xp − xc)iαp(xp − xc)j , etc, where the sum runs over the particles of the cluster. For the singular k

G(r) = 1/r , one obtains

4πψ(x) = 1

|x − xc|M
(0) + 1

|x − xc|2 eiM
(1)
i

+ 1

2

3

|x − xc|3
(

eiej − 1

3
δij

)
M (2)

ij
+ · · · (39)

The expansion of any regular kernel (e.g.,Gσ (r) = 1/(r2 + σ2)1/2 as used in [21], or any other one) is also easily obtain
The multipole expansion of a cluster can then be used to obtain the fields (streamfunction, velocity (by differentiating
expansion), velocity derivatives (by differentiating twice)) at any point outside the smallest ball of radiusb containing all the
cluster particles and centered atxc. The absolute error,e|u|, made on the velocity evaluated at a distanced > b can be bound
tightly for multipole expansions of any function and of any order (see [21]). In 3-D, one typically uses expansions withp = 2
(monopole+ dipole+ quadrupole terms). The followingtight error boundsare then obtained:

e|ψ | � ebound
|ψ | = B0

4π(d − b)

(
B2

B0b2

)(
b

d

)3

e|u| � ebound|u| = B0

4π(d − b)2

[
4

(
B2

B0b2

)(
b

d

)3
− 3

(
B2

B0b2

)2(
b

d

)4]
(40)

whereB0 = ∑
p |αp| and B2 = ∑

p |xp − xc|2|αp| are cluster properties. For each cluster, this equation determinesdcrit

corresponding to a prescribed tolerance,etol|u|: a cluster property. The multipole expansion of a cluster contributes to the ve
at an evaluation point if the distanced of the point toxc is greater thandcrit (and, when using expansion of the singular ker
for problems with regularized particles, if the point is outside of the region influenced by the regularization:d − b � nσ where
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n depends on the regularization function). Otherwise, the cluster is not used and the test is applied recursively to
childrenclusters within that cluster. If a smallest size cluster has been reached and the error criterion is still not satis
then proceeds with direct evaluation of the velocity induced by the regularized particles in that smallest cluster. A good
of the final error for the velocity evaluated at one point is the square root of the sum of the error bounds squared for all m
used to compute the velocity at that point. In 3-D, one typically ends up with a mean actual error bound equal to thre
times the prescribedetol|u|: a comforting result. Fast 3-D tree-codes have also been developed so as to run on massively
computers with distributed memory: theparallel fast multipole method(PFMM). Computations using many processors h
been carried out, with a very good parallel performance, see, e.g., [21,22].

An efficient alternative to using fast multipole methods (FMM) is to use grid-based Poisson solvers. Efficient solve
the Fishpack software) have anO(M logM) computational cost (M being the number of grid points), and the constant in fron
much smaller than that associated with the bestO(N logN) FMM. Such approach then calls for a hybrid particle-grid meth
the so-calledvortex-in-cell method(VIC). It was first introduced by [23], and then further used and developed by others (s
and references therein, and also [24,25,30,34]). At each time step, the VIC method uses projection of the particle
onto the grid, and the projection of the grid-solved velocity (and its gradient in 3-D) back onto the particles. These a
achieved using the high redistributions schemes as interpolation schemes (e.g.,M ′

4).
Note that VIC still retains the main advantage of the vortex method: as the particles are still convected in a Lagrang

the method still has negligible dispersion error. Moreover, since there is a grid, the diffusion term (DNS, LES or RAN
be evaluated using the grid (i.e., no need to use a PSE scheme). The grid-evaluated diffusion term is interpolated b
particles using the same interpolation scheme as that used for the velocities.

Of course, as∇2ψ = −ω is solved on a grid, one must use a large domain so as to be able to provide approximate an
boundary conditions onψ on the sides of the computational grid. Alternatively, one could assume that the problem is pe
In either cases, the approximation of an open-domain flow requires that the computational grid be quite large.

An efficient alternative has recently been developed within our group: use the VIC methodology, but with the exact b
conditions obtained using the fast multipole method (FMM). This combination VIC-FMM is very efficient: a compact VIC
enclosing tightly the non-zero vorticity field can be used, while the boundary condition is still enforced exactly.

Furthermore, the method can also easily be parallelized, using the domain decomposition method: each process
its own subdomain (local solution of the Poisson equation using the grid-solver); the parallel fast multipole method (
code, which has a global view of the whole field, is used to obtain the exact boundary conditions on each subdomai
that all is done without iteration between the subdomains: the VIC-PFMM combination amounts to an efficient para
Poisson solver (one without any iteration).

As example of application, the case of medium wavelength instabilities in a four-vortex system is again conside
Fig. 9. The initial perturbation was done such that the centerlines of the vortices were displaced, perpendicular to the lon
x-axis, using a small-amplitude sine wave. In order to determine the wavelength of the most unstable mode, a parame
was done using the vortex filament code: it was determined thatkb1 = 6.39 (or equivalently thatλ/b1 = 0.983) had the fastes
growing behavior. The problem is periodic inx (with Lx/b1 = 0.983) but not iny andz. The discretization ish/Lx = 1/64.
A M ′

4 redistribution is done every time step. It is a quasi-inviscid simulation, and we use a hyper-viscosity sgs model (o
by iterating twice a grid-evaluated Laplacian):

Dω

Dt
= (∇u) · ω − C

t0

(
h2∇2

h

)2
ω (41)

with C = 6.8 (i.e., Ch4/t0 = 2.5 × 10−8). The simulation was run using the VIC-PFMM combination on 4 processors
x-periodic version of the PFMM was used to obtain the boundary conditions on each VIC subdomain). The total VIC gr
from 64× 127× 65 to 64× 305× 178 (3.5 millions), and the number of particles from 0.36 to 1.8 millions. The results are als
usefully compared to those obtained using a reference spectral method (here with high order,k8, hyperviscosity sgs model):
is seen, in Figs. 10 and 11, that the instabilities, their growth, and the non-linear interactions (including the energy de
very well captured by the present method. Note that a DNS case, atRe= Γ1/ν = 5000, was also performed: it is present
in [2].

To further illustrate the capability of the parallel method, a case where the simulation extends over one Crow wa
of the equivalent two-vortex system was also done:Lx/b1 = 11.1 (i.e., Lx/b0 = 8.53). Here, a small level random initia
perturbation (max magnitude 10−5b1) was applied. The simulation ran 5800 time steps in 65 hours on 48 processors. Th
grid grew from 720× 128× 64 to 720× 310× 312 (70 millions) and the number of vortex particles from 3.3 to 18 millio
The 3-D field energy evolution is shown in Fig. 12: again, this compares well with that obtained using the reference
method. The vorticity field is shown in Fig. 13: this too compares well with the spectral results. The VIC-PFMM comb
is clearly able to accurately and efficiently simulate very complex and large scale flows.

Finally, a four-vortex system with co-rotating vortices is considered, see Fig. 14. This is a case with unstable me
the co-rotating vortices, thus requiring 3-D LES. The parameters areΓ /Γ = 0.4, b /b = 0.5, σ /b = 0.05,σ /b = 0.025,
2 1 2 1 1 1 2 1
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Fig. 9. Evolution of the four vortex system as obtained using the VIC-PFMM code. Iso-surfaces of vorticity modulus shown are|ω|b2
1/Γ1 = 10.0

(high opacity) and 2.0 (low opacity). Times areτ = 0.0, 0.61, 0.79 and 1.05.

Lx/b1 = 1, h/Lx = 1/100. It ran for 2500 time steps on 8 processors; the grid grew from 100× 173× 73 to 100× 181× 181
(3.3 million) and the number of particles from 0.75 to 1.1 million.

7. Cases with solid boundaries

Nowadays, vortex methods are also used efficiently to simulate unsteady flows with solid boundaries. One then
evaluate, at each time step, the vorticity flux emitted at each point on the solid surface, in order to satisfy the no-slip c
after the vorticity has been convected and diffused [26–28]. For general geometries, this flux is obtained as the solu
integral equation, itself discretized using panels. The vortex method is thus combined with aboundary element method(BEM).
This flux is emitted using a PSE-like scheme [27,28]; it ends up providing an update of the nearby vortex particles.

In the first step, one convects the particles with the local velocity and updates their strength according to the PSE (e
modified near the boundary, so as to have a zero flux of tangential vorticity (and a zero normal vorticity in 3-D), as in [18,
is however not fully necessary, see [30]). After this step, there is a spurious slip velocity,δuslip, seen at the boundary. The vort
sheet,δγ , necessary to cancel this slip velocity is then computed using BEM. The boundary is discretized usingM boundary
elements (i.e.,vortex sheet panels), each of size O(h) (with h the typical distance between particles near the boundary) and
of unknown strength. For each panel on the body, the mean slip velocity underneath that panel is taken as the averag
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Fig. 10. Evolution of the modal energyEkx for the base flow modekx = 0, the perturbed modekx = kp and its first harmonickx = 2kp :
VIC-PFMM method (solid) and spectral method (dash). The modal energy is normalized using the initial unperturbed base-flow fie
E0 .

Fig. 11. Evolution of kinetic energy for the VIC-PFMM method (solid) and the spectral method (dash): energy of 3-D field,E, and energy of
longitudinally-averaged (2-D) field,̃E.

panel, of the velocity induced by the freestream and all vortex particles (considered as point vortices, to ensure that all v
outside of the boundary), see [27,18,29,33]. Once the slip velocity has been evaluated for all panels, obtaining the pane
so as to cancel this slip velocity amounts to solving an integral equation: thus a linear system of the formAδγ = b whereA is
full, since, in addition to inducing a tangential velocity underneath themselves (equal toδγ

2 ), the panels induce a velocity o
one another). The velocity induced by allM panels on allM panels, which corresponds to the operationAδγ , is thus also an
M-body problem: it can also be evaluated efficiently using the FMM. Thus, the system is solved using an iterative meth
FMM used at each iteration. Such fast BEM method allows for large numbers of panels (easily 104 to 105 in 3-D, as in [29]).

The total flux to be emitted into the flow, for the other substep of the diffusion process, is then given byν ∂ω
∂n

= δγ
δt . This

flux must be emitted during a timeδt . In effect, the vortex sheetδγ must be distributed to neighbor particles by discretiz
the Green’s integral for the inhomogeneous Neumann problem corresponding to the diffusion equation, [26,27,18,29
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Fig. 12. Four vortex system over a long domain. Evolution of the kinetic energy: VIC-PFMM method (solid) and spectral method (d

obtained formulas amount to an update of the particles near the panel, so as to absorb this flux; at the end,δγ is completely
distributed to the nearby particles.

Instead of the pure fast multipole method, the VIC method with body fitted grid can also be used [31,25]. Yet
method is the combination of VIC and immersed boundaries techniques, see [25,30]: the VIC grid then crosses the bod
arbitrarily and the Poisson equation is solved everywhere (inside and outside); the vorticity flux is obtained by so
integral equation for the required singularities, and discretized using the grid points nearest to the surface.

As an illustration, we here show an example of application for wake vortices in ground effects (IGE), see Fig. 15
ground is here taken flat, there is no need to solve a boundary integral equation for the panels strengths: by symmetry
directly obtained from the slip velocity evaluated at the wall. The problem is here periodic inx, and of extendLx = b0. Initially,
the vortices are low order algebraic vortices (withσ/b0 = 0.05) and are placed at heightb0. The discretization ish/Lx = 1/64.
The simulation is a DNS atRe= Γ0/ν = 5000. It was run using the VIC-PFMM on 4 processors. The VIC grid grew f
64× 340× 92 to 64× 390× 130 (3.2 million) and the number of particles from 0.20 to 1.6 million. We see that short-wav
instabilities develop on the secondary vortices produced at the ground. This results in a complex flow that will enh
demise of the primary vortices. Longer extent simulations, also at high Reynolds number and using LES, are ongoing

8. Conclusions

This paper was aimed at presenting the Lagrangian vortex methods (mainly particle methods) for solving incom
unsteady flows, including the recent developments: particle redistribution schemes, diffusion schemes, relaxation (p
schemes, efficient velocity solvers (fast multipole method, vortex-in-cell method, combined method) and the efficien
mentations on parallel computers.

The emphasis was on their application to the simulation of wing/aircraft trailing wake vortices. Various illustrative ex
were considered and detailed: in 2-D and in 3-D, for quasi-inviscid simulations and for viscous flow simulations (usin
and LES approaches; also a simplified RANS approach).

The main conclusion is that the modern particle methods are able to efficiently and accurately treat all types of
convection-diffusion equations (also with source terms). They should be considered as mature and competitive numer
ods: methods that can be used for a wide variety of investigations: DNS, LES and unsteady RANS. The main adva
Lagrangian methods is the fact that they have negligible dispersion error: they convect very well. This feature is still re
the vortex-in-cell method, as the convection step is still Lagrangian.

In the field of trailing wake vortices, the methods have already been used with success for detailed studies: wak
global vortex tube dynamics, 3-D instabilities in vortex systems (also their saturation and the complex interactions/recon
of vortex elements), the generated turbulence and the decay of the vortex system. The method is now also being
investigations of vortices interacting with the ground.



484 G. Winckelmans et al. / C. R. Physique 6 (2005) 467–486
Fig. 13. Evolution of the four vortex system over a long domain. Iso-surfaces of vorticity modulus shown are|ω|b2
1/Γ1 = 10.0 (high opacity)

and 2.0 (low opacity). Times areτ = 0.0, 0.52, 1.06, 1.16 and 1.58.
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Fig. 14. Evolution of a co-rotating four vortex system. Iso-surfaces of vorticity modulus shown are|ω|b2
1/Γ1 = 25.0 (high opacity) and 5.0

(low opacity). Times areτ = 0.30, 0.61, 0.91 and 1.21.

Fig. 15. Example of wake vortices in ground effects. Iso-surfaces of vorticity modulus shown are|ω|b2
0/Γ0 = 10.0 (high opacity) and 1.0 (low

opacity). Times areτ = 0.0, 1.6, 3.2 and 4.0
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