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Abstract

Vortex methods are competitive for simulating incompressible unsteady flows, because they have negligible dispersion error
and good energy conservation. The various methods are presented, including the recent developments: particle redistribution,
diffusion, relaxation (by projection), efficient solvers (fast multipole method, vortex-in-cell method, hybrid method) and parallel
computer implementations. Examples relating to wing/aircraft trailing wake vortices are presented: 2-D and 3-D, inviscid and
viscous, direct numerical simulation and large eddy simulation. We consider wake roll-ups, vortex tube dynamics, 3-D instabil-
ities and the complexity/turbulence they produce. A vortex system in ground effects is also preBewitthis article: G.
Winckelmanset al., C. R. Physique 6 (2005).
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Résumé

Les méthodes vortex et leur application a la simulation des sillages tourbillonnaires.es méthodes vortex sont compéti-
tives pour la simulation d’écoulements incompressibles et instationnaires, car elles ont peu de dispersion et de bonnes propriété:
de conservation de I'énergie. Les diverses méthodes sont présentées, incluant les développements récents : redistribution de
particules, diffusion, relaxation (par projection), solveurs efficaces (méthode multipole rapide, méthode particules-grille, mé-
thode hybride) et implémentation sur ordinateurs paralléles. Des examples sont présentés concernant I'application aux sillages
tourbillonnaires d’ailes/avions : 2-D et 3-D, non-visqueux et visqueux, simulation directe et simulation des grandes échelles.
On consideére des enroulements, de la dynamique de tubes tourbillon, des instabilités 3-D et la complexité/turbulence qu’elles
produisent. Un systéme de tourbillons en effet de sol est aussi préBeutéiter cet article: G. Winckelmans et al., C. R.
Physique 6 (2005).
0 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction

This paper presents vortex methods and their application to the simulation of wing/aircraft trailing wake vortices. Vortex
methods are Lagrangian methods used to simulate unsteady convection-dominated problems. Since they are Lagrangian, the
have negligible dispersion error. They also have good energy conservation properties. These two qualities make them efficient
tools for the simulation of convection dominated flows: direct numerical simulations (DNS) and large-eddy simulations (LES).
Recent and global references on vortex methods can be found in [1,2,35].

We define the velocity, thematerlal derivativ D{ = % + (Vf) -u and theconservative derlvatlv% = %f + V- (fu).
They are related by% = D,

the propertyp 7 f t(pf). Consideringf (x, t) integrated over a small material voluni&?r) and using Leibnitz theorem,
one obtalns

o / fdx= / fdx+/fu ndx_/(f+v (fu))dx_f fdx Q)

V() V() S(1) V() V()

Lagrangian methods follow the evolution of quantities integrated over material volumes. The physicgl iBefliscretized
usingparticles Eachp particle represents a small material voluiig Thestrengthof each particle represents the integral of

+ fV -u. The conservation of mass % 0 or, equwalently, = —pV - u. This leads to

. A " . . .
f over the material volumez), = fv,, fdx= f,V,. Theposition(centroid) of each material volume is denotedxpy Each
material volume is carried by the local velocity field; = u(x, (1), t). Its strength evolves according to the discretized version

of Eq. (1). Its volume evolves according to the conservation of n@@\/)p =0 and thus;- d_c‘l/ﬁ - plp dop _ =(V-uwp.In
summary, one obtains:
d d Df d
_ — — V,) = — Vo, —V,=(V- \%4 2
a P = dz(fp ») (Dt>pp dr ? (V-WpVp )

This defines the method. Itis thus a method which is simply the Lagrangian expression of the conservation equation considered.
We here focus on the methods used to solve the vorticity formulation of the Navier—Stokes equations for incompressible

(V - u=0) and viscous flows of Newtonian fluids. The equation for the evolution of the vortigiy,V x u, is obtained by

taking the curl of the momentum equation:

%_uvz =(Vu)-o=(VU)' =S 0=V (Un) 3)

wherev is the kinematic viscosityy 2 stands folV - (Ve) (a notation used throughout) aSd= %(Vu + (vwT) is the strain
rate tensor. The forms of the stretching term are equivalent because of the idengity- (Vva)l) b= (Vxa) xb.

Recalling the evolution equation for a differential material elem#ml = (Vu) - 81, one concludes that, in 3-D inviscid
flows, avortex line(line everywhere tangent to the local vorticity) moves as a material line; consequeviifea tubetube
made of an ensemble of vortex lines) moves as a material tube: this property forms the basmethtietof vortex filaments

The velocity is obtained as=V x ¥ + u,, with u, a potential velocity (e.g., a uniform free stream velocity) gnthe
streamfunction related ® by a Poisson equatiof2y = —w.

In 2-D flows, the vorticity only has one component (perpendicular to the velocity field), hence no vorticity stretching:

@ = we; With w = 3—“ — 35+ The streamfunction also has one compongnt= Ve;, u = % v = —% also leading to
V2y = —w. The vort|C|ty equatlon reduces to
D
i = sza) 4)
Dt

The streamfunction (and thus the velocity) are obtained using either a Green’s function approach (Biot—Savartfast in the
multipole methoyor a fast Poisson solver on a grid (as in tleetex-in-cell methodVvIC). With the Green’s function approach,
one has (3-D and 2-D respectively):

_ _ i L / /
Y=, /I w(X)dx V)= /Iog<7|x_x/|>w(X)dx ®)
with L any reference Iengthb( defined up to a constant). The induced velocity is then:
1 x—x) o 1 (x—x) , ,
u(x) = yl) e x w(X') dx/, u(x) = 2 | X x (0(X)e;) dx (6)

There are also fundamental invariants and/or diagnostics for 2-D and 3-D unbounded flows: see [3] (and also [1,2] in the
context of vortex methods).
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2. 2-D vortex methods

The 2-Dmethod of regularized vortex particléaslso calledvortex blobj s first considered (the singular method being not
very practical, see [1,2]). One associates to each particle ansgread acirculation I',, the integral ofw over the material

surface:l’y = fs,, wdS 2 wpSp. The method reads

d d 2
g Xp=Ur Erp:(vv ) ,Sp (7

The induced velocity field is determined by using a regularized Biot—Savart integral. The simplest is to use radially symmetric
regularization functions:

1 8o (IX = Xpl)

U (X) = — =
7 2r X —Xp|2

(X=Xp) x (I'pe;) 8

with o the regularization length ang (r) 2 g(g) the regularization function, with(p) — 1 for p 2 g large andg(p) p2
for p small. The self-induced velocity ig (r) = % M. The corresponding streamfunction is then obtained as

1
Yo == Go(Ix=XpI) I )
p

with G4 (r) 2 G(%)and % = %%% (p). This streamfunction also corresponds to the solutioﬁ%f/g = —wy With

w5 (X) = o *w8=Z§U(|X—Xp|)Fp (10)
P

A - .
wheregg(|x|? = ﬁg(;) anldg(.p) - %a%(p%%(p)). On also obtalng(.p) - %g%.(p) and thusg(p) = [§ {(s)s.ds. The
streamfunction and the velocity field are thus those induced by the particles consideogaslobsthe blob function being
o (r) with o the characteristic size. The normalizatigi;, (|x|) dx = 1, leads tof(‘)’o Z(p)p dp =1 (consistent witlg — 1 as
p — o0). The inviscid version of the method is thus

d 1 8o (IXp —Xg1)

q p q

It conserves the impulde= Zp Xp x (I'p€;) and the angular impulsé = —% Zp IXp |2F,,. It also conserves the energy,
1 1
E:EZF,,I/JJ(XP):—EZFI,GUUX,,—Xq|)Fq (12)
p 204

The viscous version of the method is obtained when one adds a diffusion scheme, such as the PSE (see later and Eg. (31))
The methods converge for regular vorticity fields as the number of patrticles is increased provided that the cores of neighbor

blobs maintain overlapping (definingé h? for the fluid area of each particle, one requires that > 1) and thatparticle
redistribution schemeare used (see later).

In general, a function is said to be of ordethere ‘order’ refers to spatial truncation error) when it satisfies the moment
properties/ x*x52¢5 (x)dx = 0 if 1 < p1 + p2 < r and [ |X|"|¢5 (X)| dx < oo. Order higher tham = 2 calls for functions
that are not strictly positive. For radially symmetric functions, these beg@?ﬁe(p)plH dp=0fors evenand X s <r,
andfcg’O |§(p)|p1+’ dp < oo (see, e.g., [4] for a review list of functions, and Table 1 for usual ones)ldvn@rder algebraic
function has- = 0: it can only be used for global vortex modelling, as it does not converge for detailed field discretizations.
For detailed studies, we typically use= 2 functions: thehigh order algebraidunction or theGaussiarfunction. Ther = 4
functions are not strictly positive; in principle, they lead to a 4th order method (we have no experience in using them).

The vortex method can also be used withdifferent for each particle (see also [32] and later for the method with non-

. . . A . . . .
uniform spatial resolution§, = h2, but that varies slowly in space). One then uses the symmetrized version (replage

o2, 2 %(03 +02) in the dynamics of Eq. (11)), which ensures the conservation of impulse, angular impulse and energy. For

viscous flows, one uses the symmetrized PSE scheme (see later).

The 2-D method, when combined with particle redistribution and with efficient velocity evaluation (see later) has a wide
range of applicability: inviscid and viscous flows. It is comparable to most 2-D Eulerian methods of quality used to solve
convection—diffusion problems, eventually with source terms.



470 G. Winckelmans et al. / C. R. Physique 6 (2005) 467—-486

Table 1
Examples of 2-D regularization functions
Function 8(p) G(p) 7(p) r
2
i o 1 2 2
Low order algebraic /’2“2 5109(p=+1) , (P2+1)2 0
: i p2(p?+2) 1 2 W 4
High order algebraic (p2+1)22 2[|09(P2 +1D+ p§+l] (ngbs 2
Gaussian e r/2 3llog(5%) +E1(50)] e P2 2
2 2
Super-Gaussian 11— %)e*/’z/z 3llog(5%) +Ex (%) — er?/2) @2- %)efﬂz/z 4

[0, [roeseeeressresssossrsosion R R SRR RUL TR R FRRUULIEE IR R R AR

Fig. 1. Example of roll-up of a thin vortex sheet corresponding to an airfoil with elliptical loading. Vorticity field=a2.10.

An illustrative example, obtained using the inviscid version of the method, is presented in Fig. 1. This corresponds to the
2-D roll-up of a thin vortex sheet emitted by an airfoil. Its circulation per unit lengh(is = —%Iy:(y) with I'(y) = Ip[1—

y2/(b/2)2]l/2 (case of an airfoil of spah and with elliptical loading). Here, the singular vortex sheet was first regularized in
order to produce a vorticity field,

b/2
1 / |X—yev|2
wa(x):ﬁ / eXD(—T'>J/(y)dy (13)
—bJ2

We here used /b = 2.5 x 10~3, thus still a very thin vortex sheet. The vorticity field was then discretized using particles put

on multiple layers across the sheet, leading to a total of about 16 000 particles. The vortex method with Gaussian regularization
function was used (using = ), with the fast multipole method (see below) and with particle redistribution (see later) done
every 10 time steps. At the end of the simulatier& /1o ~ 0.2 whererg £ ang/l“o), we had about T®particles. It is seen

that the method is able to capture fine structure dynamics: here Kelvin—Helmholtz instabilities developing on the vortex sheet
as it rolls up.

3. 3-D vortex methods

The 3-D methods are presented: thethod of regularized vortex filamertisd themethod of regularized vortex particles
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3.1. Vortex filaments

In 3-D inviscid flows, vortex lines move as material lines: this constitutes the basis fanetteod of vortex filaments
Each filamentp corresponds to a vortex tube of circulatidh: the strength associated to that filament. The method must be
regularized as singular filaments have a logarithmically infinite self-induced velocity everywhere their curvature is nonzero. For
filaments using radially symmetric regularization functions, one has

1 8o (IX—Xpl)
UU(X):_E;FP/W(X_XP) x dx, (14)

where the regularization functigg (r) 2 g(g) is such thag (p) — 1 for p large ancg (p) p3 for p small. The corresponding
streamfunction is obtained as

Vo) = pr / Go (X = xpl) dx, (15)

with G4 (r) 2 %G((LT) and&g’) = —% %%(p). This streamfunction also corresponds to the solutioﬁ%ﬁg = —wy With

wg (X) = er/§0 |X_Xp|)dxp (16)
Cp
wherez, (Ix)) £ 7L5¢(Z) and—4¢ (p) = 255 (P* g5 (»)). One also obtains(p) = % (o) and thugg (p) = J§ £(s)s2ds.

The normallzatlonf Lo (X)) dx =1, leads tof0 ;(,o),o2 dp = 1. The vorticity and streamfunctlowg andy , are divergence
free because the filaments are closed (or periodic); the velogiig divergence free because it is the curlgf. The method
then consists in convecting all points on all filaments with their local veloﬁ;ty:p(s) = U (Xp(£)). It conserves the total
vorticity € = 0, the impulsd and the angular impulsé:

2X:Fp/xl,,xdxp, A_3ZFp/xpx(xp><dxp) 17)
¢, Cp
It also conserves the energy,
E= ZF,,Fq // (1Xp —Xpl) dxp - dXg (18)
CpCy

One typically uses parametric splines to numerically represent the filaments. The regularized method converges for regular
vorticity fields when the number of filaments is increased, provided that the overlapping condition is satisfied. The regularization
function has normalizatiorf ¢, (x) dx = 1. It is of orderr when it satisfies the moment propertiﬁsflxgzxg?’ga X)dx=0

for 1< p1+ po+ p3 <r, and [ [x|"|¢5 (X)| dx < co. For radially symmetric functions, these becoy?ééj ;(p),o2+‘ dp=0

fors evenand X s <r, andf(‘,>o |§(,o)|p2+’ dp < oo. Order higher tham = 2 calls for functions that are not strictly positive.

See, e.g., [4] for a review list of typical functions and Table 2 for usual oneslowherder algebraicfunction hasr = 0: it

can only be used for global vortex tube modelling (as done in the examples below), as it does not converge for detailed field
discretizations (using many filaments per vortex tube). For detailed studies, we typically use filaments ®itbinctions: the

high order algebraidunction or theGaussiarfunction. The vortex filament method can also be used witlifferent for each
filament, provided that the method be symmetrized by replaefigy agq = %(03 + qu) [5]: this ensures the conservation of
impulse, angular impulse and energy.

Different choices ofg, regularization function can be scaled with respect to each other (by chanpsmas to have the
samelong wavelength dynamicene then considers the dispersion relation (self-induced rotational vel@gityf bending
perturbations on a line vortex (Kelvin's lowest order mode) for long wavelength perturbatiersnall), see [6,7]. Kelvin's
long wave dispersion relation, derived for the top-hat vortex of ragljis:

2= i%kﬂlog(%) + (y —~ %) + %] (19)

wherey = 0.5772... is the Euler constant. With the vortex filament method, one obtains

Q= i%kz[log(%) + (y - %) + C] (20)
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Table 2

Examples of 3-D regularization functions

Function g(p) G(p) ¢(p) r

3
; p 1 __3
Low order algebraic (%2+21)3/2 (p2+1)1/2 (P2+1)572 0
. . (p%+5/2) (p?+3/2) 15/2

High order algebraic 7@2“)5/2 (02+1)32 (p2+1)7/2 2
Gaussian 9(21/2) —p(2 2y1/2¢-p 22 %erf(zl_p/z) (2 211/2¢—p 2/2 2

Fig. 2. Crow instability in a two-vortex system computed using the vortex filament method. Times shows @24 and 23.7 (just before
viscous reconnection would occur).

with C =1 for the low order algebraic functiog, = 1/2 for the high order algebraic function, agd= 1.058 for the Gaussian
function: this provides the necessary relative scalings @f have the same dynamics.

An example of application of the method is shown in Fig. 2, for the case of a two-vortex system undergoing the Crow
instability. The problem is periodic in and a periodic version of the filament method is used. The peridd j$g = 17.1
(twice the theoretical most unstable wavelength). As the instability only involves bending of the vortex tubes, each vortex tube

can be represented by one vortex filament here a low order algebraic distrilbution; L e 2)2 with o /bg = 0.091; thus

we use filaments wit "(r) 2972 We use parametric cubic splines({), y(i) andz(z)) with 640 points per filament:

= (rZT
the point to point spacmg is thus/bg = 2.66 x 102 (i.e., h/o = 0.294). The filaments were initially perturbed using random
displacement (maximum amplitude ofbg ~ 1 x 10~8). As usual, the times shown are expressed usifig/ 1o with 7g = "’,—0

whereVg = 2 |s the vortex system descent velocity. The growth rate of the unstable Crow mode, evaluated from Fig. 3, is
octo~0.77.

Notice that the filament method was here also ‘filtered’. Indeed.oags increased, the dispersion relation of filaments
fails to follow Kelvin’s lowest order bending mode (whef2monotonically increases @& increases), see [6,7]: it goes back
down and eventually crosses the axis, thus leading to a non-rotating bending #heg@)(whenko is of order unity (for the
low-order algebraicko ~ 1.12). If nothing is done, this spurious mode will pollute the simulation (and eventually make it blow
up): filtering is necessary. Here, we used a discrete filter acting on the splines representation of the filaments. Defining the basic
stencil-3 operatoP acting onf; (herex(i), y(i) andz(i)),

1
P fi & =3l fiy1 = 2fi + fial (21)
and iterating itn times,
Psfi EP*Px-- - xPxf (22)
—_——
m times

the filtered functionflgm) (filter of orderm) is
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Fig. 3. Evolution of the modal displacement amplituidé? in a two-vortex system, for modé$g = 0.737, 1.473, and 2.210 which correspond
to the Crow modek() and its first two harmonics respectively.

7;m>é.7'—m*fl’=fi—77m*fi (23)
In Fourier space, the transfer function of this filtefis— (sinz(%))’"]. If we apply the filtering: times,

Tk fi = Fm & Fp %% Fp % f (24)
S —

n times

this gives, as transfer functiofil — (sinz(%))”’]”. We here used = 32 andr = 2, and applied every two times steps: the
damping then starts for modeskdt/ ~ 0.1 (thus herébg ~ 12); those withkh /7 > 0.4 (thus her&bg > 47) are essentially
completely damped.

Another example is shown in Fig. 4 for the case of medium wavelength instabilities in a counter-rotating four-vortex system.
This case, although a bit academic (as not easily achievable on a real aircraft), offers the possibility of fast growing instabilities
(the so-called ‘Omega’ loops) as shown in [8-10], and thus provides potential for rapid changes in flow topology and the gen-
eration of small scale structures and turbulence through the strong interaction between unequal-strength opposite sign vortices
(see also later for LES simulations done using the VIC method). Initially, we FgWEy = —0.3, bo/b1 = 0.3 (Spacing ratio),
o01/b1 =0.075 andbp /01 = 2/3. Each vortex has the low-order algebraic distribution. We also defiregjhigalent two-vortex
systen(same half-plane global circulation and same linear impulsd)goy I'y + I'> andbg = (I'1by + I'ob2)/Ip. The simu-
lation extent corresponds to one wavelength of the Crow instability for the equivalent two-vortex sgstdm € 8.53). The
filaments were initially perturbed using a small random displacement (maximum amplitude @f;)0The time evolution of
the perturbation amplitude of the unstable modes is also shown in Fig. 5. It is seen that the medium wave instability also acts as
an amplifier of the Crow instability (see also [8]).

Clearly, the method of vortex filaments constitutes a simple and useful investigation tool for global vortex tube dynamics.
Yet, it is limited to essentially inviscid studies (core growth by diffusion can be captured by varyingdoes not allow for
the reconnection of vortex tubes: something that can only happen by strong viscous interactions niethuats of filament
surgeryhave also been developed by some authors to artificially reconnect filaments of opposite sign and same strength, or to
remove problematic parts of filaments. We do not follow such approaches. Instead, we use the viscous version of the vortex
particle method, as presented in the next sections.

3.2. Vortex particles

We now consider the 3-D method of regularized vortex particles. One then associates to each vortical fluid element a volume
o . . A L .
V) and a vectostrengthe ,, which is the integral o& over the material volumex , = fv,, wdV =w,V),. The inviscid version
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Fig. 4. Example of medium wavelength instabilities in a four-vortex system computed using the vortex filament method. Times shevin are
and 0.88.

10° . . ‘ . .
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Fig. 5. Evolution of the modal perturbation amplituqlxef’u2 in a four-vortex system, fok;;b1 = 5.09, %;; and kcb1 = 0.567 (Crow);
opmto=16.4 (in 0.07 < v < 0.49).

of the method can be written:
d d
ax,,:u[,, Ea,,:(Vu)p-o(p (25)
The viscous version amounts to adding the diffusion term in the evolution equatiep fsee later). The methods converge as
the number of particles is increased, provided the core overlapping condition is satisfied and that particle redistribution is done.
It then allows for accurate long-time simulations of flows with regular vorticity field. Assuming

B ()= o (IX=Xpl)ep (26)
p
one obtains
v (x)=iZG (Ix —Xpl)e u (x):—izw(x—x )X @ (27)
o - ~ o pl)=p o 4r ~ |X—Xp|3 P p

The method suffers from the fact that, is not exactly equal t&/ x u,, and thus that the particle field®, and 1}(,
are not generally divergence free. It appears, from experience in simulations, that the method is naturally well-behaved, at
least when the simulation is well-resolved and when particle redistribution is used. Yet, for simulations covering a long time,
and/or in under-resolved simulations, one eventually needs to re-enforce that the particle field remains a good representation of
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ws =V X Uy : relaxation schemeare thus required. The simplest relaxation scheme consists in resetting the particle strengths
to the field:a"®W = @, (xp)h3. This procedure is easy but quite diffusive.

In the VIC method (see later), an efficient and non-diffusive projection scheme is used instead. It is as follows: one first
evaluates the discrete vorticity divergence on the grid, using finite differences acting on the redistributed particle weights:
V), - «; one then solves a Poisson equation on the gﬁﬁiF =V, - a; the particles are then reset usind®V = o — V,, F,
which ensures that the particle field is divergence free.

4. Viscous diffusion and LES

We already mentioned the viscous schemes to be used with particle method: for DNS, for LES, and even for RANS. We here
present the scheme known as fiaticle strength exchang®SE), see [11-13]. We develop it in 3-D; the 2-D case is obtained
following the same procedure. In 3-D, one considers kernels suclf Mfétxgzxé’%g x)dx=0for1< p1+ p2+p3 <2+,

except thatf x;.x ;1o (X) dx = 8; ;02 (and thus |24 (X) dx = 30-2), and with [ [x|>+" |55 (X)| dx < 0o. In the case of radially
symmetric kernelsy, (|x|) 2 ﬁlgia’i(‘aﬁ)' the condition arg® 1(p)p** dp = 0 fors evenand X s < r, [§° n(p)p*do =3,
andfa’o n(p)|p*" dp < c0. The following integral operator

2 /
(V2 f)o (X) ~ 2 / (f() = F(0)ne (X' —x) dx (28)

then provides an order” approximation of the Laplacian. One can obtain ondkernels by using)s (x) = —%ﬁf’z‘;), with
¢ an orderr regularization (strictly positive kernels corresponding te: 2). In the case of radially symmetric kernels, this
givesn(p) = —% g%(,o) (asfa’o g“(,o)p2 dp =1 indeed implies thafé’o n(p)ptdp = 3). In the particular case of the Gaussian,
¢(p) = (2)2exp(—p?/2), one obtains thaj(p) = ¢ (p).

To evaluate the integral operator, one simply performs a quadrature using the particles:

2
V(sz)a(xp):_‘; Z (fq _fp)na(p(q _Xp|)vq
g q<€Pp

d 2v
(a%) =2 Z (@gVp —apVns (1%g —Xpl) (29)
v q€Py

with «p 2 fpVp the particle strengths an®, the ensemble of particles close enoughptdhat the interaction kernel is
significant. Diffusion is thus done by particle strength exchange amongst neighbor particles. The scheme is conservative (as it
should):ZI, ap is conserved. It can also be developed for non-uniform diffusion, as required in LES and RANS. One finally
has, for the 3-D vortex method,

d 1
g =Wy -apt+ — D (v(%g) + v (X)) (g Vp — e Vo (1%g — Xpl) (30)
o qePp
and, for the 2-D vortex method,
d 1
EF” = Z (v(Xg) + V(X)) Ty Sp — TpSene (1Xg — Xpl) (31)

q<Pp

The 2-D and 3-D viscous methods also require that the particles remain fairly uniformly spaced as the simulation proceeds, and
thus also particle redistribution. Regions of low vorticity also need to be able to diffuse towards regions of even lower vorticity.
Hence, particles must be present where needed; this is also a task performed by the redistribution step.

The viscous vortex particle methods can be used to solve any convection-diffusion equations (eventually also with source
terms, as for RANS). In the case of LES, a subgrid-scale (sgs) model is used to dissipate energy at the smallest resolved scales
For instance, one can use an effective viscosity sgs model (e.g., the Smagorinsky model). Such model can also be combinec
with a hyper-viscosity model (easily obtained by applying recursively the PSE scheme) so as to form a mixed model.

There is also the modeling procedure proposed by [14] (see also [1,2]) and originally developed to compensate for truncation
errors in 2-D vortex methods: it amounts to further correcting the particle strengths using a PSE-like version of the so-called
tensor-diffusivity mod€ITDM):

d 1
EFP =52 z?; [2v + (Uo (Xg) = Us (Xp)) - (Xg = Xp)](TgSp = TpSq)na (IXg — Xpl) (32)
q9€Fp
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To avoid problems related to negative diffusion effects, clipping is also used: by retaining only the interactiof& with

(Us (Xg) — Ug (Xp))) - (X4 — Xp)] = 0. This scheme significantly improves the behavior of the vortex method at the fine scales.
It can also be used as sgs model for LES: one then pateanstant in front of the clipped TDM part: ug2v + C(Uy (Xg) —

Ug (Xp)) - (Xg —Xp)].

As to quasi-inviscid simulationgquasi-Eule), we here mean simulations without viscosity and without sgs viscosity-type
model. Such simulations are used to model flows in the limit of very high Reynolds number. In 3-D, some sgs hyper-viscosity
term is nevertheless required, as the small dissipation produced by the particle redistribution operation is not sufficient.

As an illustration of the 2-D viscous vortex particle method, we present an example of roll-up of a near wake, starting from
wind tunnel experimental data (five-hole probe and PIV data) on a generic configuration consisting of a fuselage and a flapped
wing (the SWIMconfiguration, see [15]). The comparison between experimental measurements and simulations are presented
in Figs. 6, 7 and 8. We first used diffusion based on a unifeffective turbulence viscosijty; (thus a very simplified RANS
approach) set according to the scaling proposed by Owen [16] (see also [17]):

zzl\/i e D_gz/l . g, —poRe (33)
v BV o vy v
The factorg was set to 8 as calibrated on one SWIM data set, on the criterion that the time of merging of the co-rotating
vortices be comparable to that in the experiments; it was then showed to be appropriate for the other SWIM data sets, and even
for data sets related to other projects and at higher Reynolds numbers (not shown). With the SWIM data set, this led to using
Re = 4 x 103. The vortex method was run at high resolution, (uskng b/400 with b the wingspan), using the Gaussian
regularization function (witte = ), and with particle redistribution done every 10 time steps. One globally observes a good
agreement for the evolution of the roll-up process; even the details of the filamentation can be compared.

It is important to stress that the merging process is hestalalemerging: as opposed to thmstablecase corresponding
to the merging of vortices that are further apart, and that can happens through 3-D short wave instabilities, their satura-
tion and the turbulence they generate. The case of stable merging can indeed satisfactorily be captured using 2-D RANS.
The case of 3-D unstable merging calls for using 3-D LES (see later). Of course, RANS with the assumption of uniform
turbulence viscosity constitutes an oversimplification: one captures properly much of the physics and the global features,
but the vortex cores are too diffused. RANS models that take into account the spatial variability are eventually needed;

0.1._ ........... . ............ :.....,..A.,..: ............ e s grisinis s e ............ ., ............ gosssion rine s ;

o j ; J | i | j | | |
y [m]

Fig. 6. Initial vorticity field atx/b = 1.25 for configuration 1, from experimental measurement (SWIM, five-holes probes) cleaned up for
simulation.
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Fig. 7. Vorticity field atx/b =5 for configuration 1. Top: obtained from five-hole probes velocity measurements; middle: simulation using a
uniform effective viscosity; bottom: simulation using the clipped TDM.

those are also required to model the enhanced mixing across the centerline due to the turbulence created by the fuselage
wake.

As another example, we also considered a simulation using instead the clipped TDM model agd=wih(also cali-
brated for obtaining the proper time of stable merging). This model performs quite well: it can be shown to produce negligible
diffusion in regions with pure rotation (i.e., within the vortex core); yet it produces sufficient diffusion to capture the tur-
bulent interactions between the vortices and thus the merging. The agreement with the experimental data is seen to be
better than for the case with uniform effective viscosity. We also expect that the clipped TDM model will constitute an
interesting sgs model for 3-D LES, because of the negligible diffusion in regions with pure rotation; this remains to be in-
vestigated.

5. Particle redistribution

Previously, we have often mentioned the needpfarticle redistribution Without it, Lagrangian methods fast loose their
accuracy as the simulation proceeds, because the condition of distribution uniformity, that is required for overlap of the particle
regularization functions, does not remain satisfied. The commonly used redistribution schemes are presented (see also [1,2]):
one makes use of a regular redistribution lattice of izhe old set of particles is replaced by a new set, the new particles being
on the lattice. First consider the 1-D problem. Denotihghe distance (normalized i) between the old particle and a new
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Fig. 8. Vorticity field atx /b = 10.25 for configuration 1. Top: obtained from five-hole probes velocity measurements; middle: simulation using
a uniform effective viscosity; bottom: simulation using the clipped TDM.

one, the fraction of the old particle strength that is attributed to a new patrticle is denpt€d (» meaning that it conserves
the moments up to order from Zp ap upto Zp xjap). The zero and second order schemes are:

1 1-v? fo<U <3
1 ifU<5
Ao(U) = 2 Ay =11 1 A 9y
o@ {0 otherwise 2U) 51-U)2-U) if53<U<3 (34)
0 otherwise
Both schemes are discontinuouss(U) at 3; A2(U) at 3 and3. The first and third order schemes are:
1-U ifo<U<1 31-U3H2-U) fo<U<1
- I ~ ~ _ )
M= { 0 otherwise A3 = 11-0)2-U)E-U) if1<U<2 (35)
0 otherwise

Both schemes are continuous, which leads to better numerical results (less high frequency noise after redistribution). It is also
worth mentioning another popular scheme: Miﬁ: scheme,

1-302+3u8 ifo<u<i
M) =1 31-v)2-U)? if1<U<2 (36)
0 otherwise
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It is continuous and so is its first derivative. It has width 4 and is of second order.

In multiple dimensions, the redistribution schemes are obtained using products of 1D schHeesV) = A, (U) A, (V)
in2D, A, (U, V,W)=A,(U)A,(V)A-(W) in 3D. TheA1(U) scheme is what was commonly used in the first vortex-in-cell
(VIC) methods; it should be avoided as it is quite dissipative. NowadaysA#i&) or theMj1 schemes are most often used,
including for VIC; they are much less dissipative (hyper-viscosity behavior).

The redistribution lattice needs not be uniform; it can stretch, as long as the stretching rate remains moderate. This is most
useful, as it allows to tailor the spatial resolution of simulations. The above redistributions schemes are then applied within the
uniform index space (this does not conserve exactly the moments; yet, with moderate stretching rate, the behavior of the method
is still acceptable as redistribution is a local operator). The same goes for diffusion: the symmetrized PSE,

Ofp =2v Z (“q Vo = ap Vo, Xp —Xq) (87)
qe'Pp

still yields a second order scheme, provided that the lecedriations are small (this is the case since particles are regularly
redistributed on a lattice with moderate stretching, and thésrset proportional té@ of the local lattice), see [18].

6. Efficient velocity evaluation: fast multipole method and vortex-in-cell method

The Green’s function (i.e., Biot and Savart) direct evaluation of the velocity (and, in 3-D, its gradient) induedoiniex
elements, ab/ locations require€) (M N) operations. This precludes large-scale simulations. Fast methods have been devel-
oped, both in 2-D and in 3-D, that have an operation cour®@¥ log N) (or evenO(N) depending on the details of the
algorithm), see, e.g., [19-21]. The basic idea of these methods is to decompose the element population spatially into clusters
of particles and build a hierarchy of clustete& quad-tree in 2-D, oct-tree in 3-D)—smaller neighboring clusters combine to
form a cluster of the next size up in the hierarchy and so on.

Each cluster is represented by its multipole expansion, expressed with respect to an expansior,c@nter,use the
‘centroid’: X, = (Zp xp|ap\)/(zp leep])) [22]. In 3-D, this gives

4ﬂ¢g(X)=/GU(|X—X’|)w(x’) dx’
1
= Go (IX =X )M© = 0 Go (1x = X )M(P + 20;0; Gor (1x =X M7 = - (38)

whereM© = [ox)dd', M = [(X = x0)i0()dX, M(Z) JX = %)X = xo) jo(X)dX, etc. are the monopole,
dipole, quadrupole moments of the distribution. With partlcles, one obtiff§ = 2p%ps Mfl) =2 ,(Xp = Xc)iatp,

Mg) = Zp(xp — Xo)iap(Xp — Xc) j, etc, where the sum runs over the particles of the cluster. For the singular kernel,
G(r) =1/r, one obtains

1t o, 1t o 13 /1 @, ..
4n1/l(X)_|X_XC|M +|X—X,;|2 iM; +2|X— |3<e,ej 351)M + - (39)
The expansion of any regular kernel (e@Gq () = 1/(r2 4+ 02)1/2 as used in [21], or any other one) is also easily obtained.

The multipole expansion of a cluster can then be used to obtain the fields (streamfunction, velocity (by differentiating once the
expansion), velocity derivatives (by differentiating twice)) at any point outside the smallest ball of bacliuaining all the

cluster particles and centeredxat The absolute errog,,;, made on the velocity evaluated at a distarice b can be bound

tightly for multipole expansions of any function and of any order (see [21]). In 3-D, one typically uses expansiopsath
(monopole+ dipole+ quadrupole terms). The followirtight error boundsare then obtained:

B B b\
< bound_ 0 2 o
W< €l 4r(d — b) (BobZ d

bound Bog B> b\3 B> 2/p\*
el < el =4n(dfb)2[4<Bob2><3> N ag?) (40)

where Bg = Zp leep| @and By = Zp IXp — XL|2|otp| are cluster properties. For each cluster, this equation deternijges

corresponding to a prescribed toleral g' a cluster property. The multipole expansion of a cluster contributes to the velocity
at an evaluation point if the distandeof the point tox, is greater thai; (and, when using expansion of the singular kernel
for problems with regularized particles, if the point is outside of the region influenced by the regularizatiénz no where
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n depends on the regularization function). Otherwise, the cluster is not used and the test is applied recursively to all active
children clusters within that cluster. If a smallest size cluster has been reached and the error criterion is still not satisfied, one
then proceeds with direct evaluation of the velocity induced by the regularized particles in that smallest cluster. A good estimate
of the final error for the velocity evaluated at one pointis the square root of the sum of the error bounds squared for all multipoles
used to compute the velocity at that point. In 3-D, one typically ends up with a mean actual error bound equal to three to five
times the prescribe 81: a comforting result. Fast 3-D tree-codes have also been developed so as to run on massively parallel
computers with distributed memory: tiparallel fast multipole metho@PFMM). Computations using many processors have

been carried out, with a very good parallel performance, see, e.g., [21,22].

An efficient alternative to using fast multipole methods (FMM) is to use grid-based Poisson solvers. Efficient solvers (e.g.,
the Fishpack software) have @M log M) computational cost{ being the number of grid points), and the constant in front is
much smaller than that associated with the I#@&¥ log N) FMM. Such approach then calls for a hybrid particle-grid method:
the so-callediortex-in-cell metho@VIC). It was first introduced by [23], and then further used and developed by others (see [1]
and references therein, and also [24,25,30,34]). At each time step, the VIC method uses projection of the particle strengths
onto the grid, and the projection of the grid-solved velocity (and its gradient in 3-D) back onto the particles. These are easily
achieved using the high redistributions schemes as interpolation scheme#/(g.g.,

Note that VIC still retains the main advantage of the vortex method: as the particles are still convected in a Lagrangian way,
the method still has negligible dispersion error. Moreover, since there is a grid, the diffusion term (DNS, LES or RANS) can
be evaluated using the grid (i.e., no need to use a PSE scheme). The grid-evaluated diffusion term is interpolated back to the
particles using the same interpolation scheme as that used for the velocities.

Of course, a¥2y = —w is solved on a grid, one must use a large domain so as to be able to provide approximate analytical
boundary conditions o on the sides of the computational grid. Alternatively, one could assume that the problem is periodic.

In either cases, the approximation of an open-domain flow requires that the computational grid be quite large.

An efficient alternative has recently been developed within our group: use the VIC methodology, but with the exact boundary
conditions obtained using the fast multipole method (FMM). This combination VIC-FMM is very efficient: a compact VIC grid,
enclosing tightly the non-zero vorticity field can be used, while the boundary condition is still enforced exactly.

Furthermore, the method can also easily be parallelized, using the domain decomposition method: each processor handles
its own subdomain (local solution of the Poisson equation using the grid-solver); the parallel fast multipole method (PFMM)
code, which has a global view of the whole field, is used to obtain the exact boundary conditions on each subdomain. Notice
that all is done without iteration between the subdomains: the VIC-PFMM combination amounts to an efficient parallelized
Poisson solver (one without any iteration).

As example of application, the case of medium wavelength instabilities in a four-vortex system is again considered, see
Fig. 9. The initial perturbation was done such that the centerlines of the vortices were displaced, perpendicular to the longitudinal
x-axis, using a small-amplitude sine wave. In order to determine the wavelength of the most unstable mode, a parametric study
was done using the vortex filament code: it was determinedithat 6.39 (or equivalently that /b1 = 0.983) had the fastest
growing behavior. The problem is periodic.in(with L, /b1 = 0.983) but not iny andz. The discretization i&/L, = 1/64.

A Mgf redistribution is done every time step. It is a quasi-inviscid simulation, and we use a hyper-viscosity sgs model (obtained
by iterating twice a grid-evaluated Laplacian):

Do C

o = (Vo 5(hzvg)zw (1)
with C =6.8 (i.e., Ch4/to =25x 10_8). The simulation was run using the VIC-PFMM combination on 4 processors (an
x-periodic version of the PFMM was used to obtain the boundary conditions on each VIC subdomain). The total VIC grid grew
from 64x 127 x 65 to 64x 305x 178 (3.5 millions), and the number of particles frotB®to 18 millions. The results are also
usefully compared to those obtained using a reference spectral method (here with high%rlu@erviscosity sgs model): it
is seen, in Figs. 10 and 11, that the instabilities, their growth, and the non-linear interactions (including the energy decay) are
very well captured by the present method. Note that a DNS caste=atl; /v = 5000, was also performed: it is presented
in [2].

To further illustrate the capability of the parallel method, a case where the simulation extends over one Crow wavelength
of the equivalent two-vortex system was also dohg/b; = 11.1 (i.e., Lx/bg = 8.53). Here, a small level random initial
perturbation (max magnitude 1Bb1) was applied. The simulation ran 5800 time steps in 65 hours on 48 processors. The VIC
grid grew from 720x 128 x 64 to 720x 310x 312 (70 millions) and the number of vortex particles from 3.3 to 18 millions.

The 3-D field energy evolution is shown in Fig. 12: again, this compares well with that obtained using the reference spectral
method. The vorticity field is shown in Fig. 13: this too compares well with the spectral results. The VIC-PFMM combination
is clearly able to accurately and efficiently simulate very complex and large scale flows.

Finally, a four-vortex system with co-rotating vortices is considered, see Fig. 14. This is a case with unstable merging of
the co-rotating vortices, thus requiring 3-D LES. The parameter§gtE; = 0.4, b/b1 = 0.5, 01/b1 = 0.05,02/b1 = 0.025,
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Fig. 9. Evolution of the four vortex system as obtained using the VIC-PFMM code. Iso-surfaces of vorticity modulus shawrfajé_ =100
(high opacity) and 2.0 (low opacity). Times are= 0.0, 0.61, 0.79 and 1.05.

Lyx/b1=1,h/L, =1/100. It ran for 2500 time steps on 8 processors; the grid grew fromk1DB8 x 73 to 100x 181 x 181
(3.3 million) and the number of particles from 0.75 to 1.1 million.

7. Cases with solid boundaries

Nowadays, vortex methods are also used efficiently to simulate unsteady flows with solid boundaries. One then needs to
evaluate, at each time step, the vorticity flux emitted at each point on the solid surface, in order to satisfy the no-slip condition
after the vorticity has been convected and diffused [26—28]. For general geometries, this flux is obtained as the solution of an
integral equation, itself discretized using panels. The vortex method is thus combinedowithaary element meth¢BEM).

This flux is emitted using a PSE-like scheme [27,28]; it ends up providing an update of the nearby vortex particles.

In the first step, one convects the particles with the local velocity and updates their strength according to the PSE (eventually
modified near the boundary, so as to have a zero flux of tangential vorticity (and a zero normal vorticity in 3-D), as in [18,29]; this
is however not fully necessary, see [30]). After this step, there is a spurious slip velogjty, seen at the boundary. The vortex
sheetdy, necessary to cancel this slip velocity is then computed using BEM. The boundary is discretizef usingpdary
elements (i.evortex sheet panélseach of size @) (with & the typical distance between particles near the boundary) and each
of unknown strength. For each panel on the body, the mean slip velocity underneath that panel is taken as the average, over the
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Fig. 11. Evolution of kinetic energy for the VIC-PFMM method (solid) and the spectral method (dash): energy of 3-B fietdi energy of
longitudinally-averaged (2-D) field; .

panel, of the velocity induced by the freestream and all vortex particles (considered as point vortices, to ensure that all vorticity is
outside of the boundary), see [27,18,29,33]. Once the slip velocity has been evaluated for all panels, obtaining the panel strengths
S0 as to cancel this slip velocity amounts to solving an integral equation: thus a linear system of tAé fosab whereA is
full, since, in addition to inducing a tangential velocity underneath themselves (eq%},tme panels induce a velocity on
one another). The velocity induced by 8l panels on all/ panels, which corresponds to the operatity, is thus also an
M-body problem: it can also be evaluated efficiently using the FMM. Thus, the system is solved using an iterative method, with
FMM used at each iteration. Such fast BEM method allows for large humbers of panels (eésttb)ﬂjﬁ in 3-D, as in [29]).

The total flux to be emitted into the flow, for the other substep of the diffusion process, is then giv%(;‘c;by ‘23—),’ This
flux must be emitted during a timg. In effect, the vortex sheety must be distributed to neighbor particles by discretizing
the Green'’s integral for the inhomogeneous Neumann problem corresponding to the diffusion equation, [26,27,18,29,1,2]: the
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Fig. 12. Four vortex system over a long domain. Evolution of the kinetic energy: VIC-PFMM method (solid) and spectral method (dash).

obtained formulas amount to an update of the particles near the panel, so as to absorb this flux; atsthésecmnpletely
distributed to the nearby particles.

Instead of the pure fast multipole method, the VIC method with body fitted grid can also be used [31,25]. Yet another
method is the combination of VIC and immersed boundaries techniques, see [25,30]: the VIC grid then crosses the body surface
arbitrarily and the Poisson equation is solved everywhere (inside and outside); the vorticity flux is obtained by solving an
integral equation for the required singularities, and discretized using the grid points nearest to the surface.

As an illustration, we here show an example of application for wake vortices in ground effects (IGE), see Fig. 15. As the
ground is here taken flat, there is no need to solve a boundary integral equation for the panels strengths: by symmetry, those are
directly obtained from the slip velocity evaluated at the wall. The problem is here periodiaird of extend., = bg. Initially,
the vortices are low order algebraic vortices (wittbg = 0.05) and are placed at heighy. The discretization ig/L, = 1/64.

The simulation is a DNS a@Re= I'p/v = 5000. It was run using the VIC-PFMM on 4 processors. The VIC grid grew from
64 x 340 x 92 to 64x 390 x 130 (3.2 million) and the number of particles from 0.20 t6 fillion. We see that short-wave
instabilities develop on the secondary vortices produced at the ground. This results in a complex flow that will enhance the
demise of the primary vortices. Longer extent simulations, also at high Reynolds number and using LES, are ongoing work.

8. Conclusions

This paper was aimed at presenting the Lagrangian vortex methods (mainly particle methods) for solving incompressible
unsteady flows, including the recent developments: particle redistribution schemes, diffusion schemes, relaxation (projection)
schemes, efficient velocity solvers (fast multipole method, vortex-in-cell method, combined method) and the efficient imple-
mentations on parallel computers.

The emphasis was on their application to the simulation of wing/aircraft trailing wake vortices. Various illustrative examples
were considered and detailed: in 2-D and in 3-D, for quasi-inviscid simulations and for viscous flow simulations (using DNS
and LES approaches; also a simplified RANS approach).

The main conclusion is that the modern particle methods are able to efficiently and accurately treat all types of unsteady
convection-diffusion equations (also with source terms). They should be considered as mature and competitive numerical meth-
ods: methods that can be used for a wide variety of investigations: DNS, LES and unsteady RANS. The main advantage of
Lagrangian methods is the fact that they have negligible dispersion error: they convect very well. This feature is still retained in
the vortex-in-cell method, as the convection step is still Lagrangian.

In the field of trailing wake vortices, the methods have already been used with success for detailed studies: wake roll-up,
global vortex tube dynamics, 3-D instabilities in vortex systems (also their saturation and the complex interactions/reconnections
of vortex elements), the generated turbulence and the decay of the vortex system. The method is now also being applied to
investigations of vortices interacting with the ground.
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Fig. 13. Evolution of the four vortex system over a long domain. Iso-surfaces of vorticity modulus sho}m‘pb%r,el“l =10.0 (high opacity)
and 2.0 (low opacity). Times are= 0.0, 0.52, 1.06, 1.16 and 1.58.
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Fig. 14. Evolution of a co-rotating four vortex system. Iso-surfaces of vorticity modulus showma{efl‘l = 25.0 (high opacity) and 5.0
(low opacity). Times are = 0.30, 0.61, 0.91 and 1.21.

Fig. 15. Example of wake vortices in ground effects. Iso-surfaces of vorticity modulus shoMl%ﬁFo =10.0 (high opacity) and 1.0 (low
opacity). Times are = 0.0, 1.6, 3.2 and 4.0
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