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Abstract

This paper gives an overview of computational electromagnetics for simulating complex structures with a large nu
unknowns using integral equation method. First, it discusses the pros and cons of differential equation solvers versu
equation solvers. Then it gives an overview of different fast algorithms for solving integral equations. It also discus
difficulty of solving electromagnetic problems in the “twilight zone” between static and full-wave electromagnetics. Fin
discusses various methods for fast solutions of scattering and coupling problems involving layered media both for st
dynamic problems, and presents some numerical results.To cite this article: W.C. Chew et al., C. R. Physique 6 (2005).
 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Algorithmes rapides pour des milieux en couches. Cet article présente une vue d’ensemble de l’électromagnétisme e
du calcul pour la simulation de structures complexes avec un grand nombre d’inconnues à l’aide de méthodes inté
discute d’abord les avantages et désavantages des codes basés sur la résolution des équations différentielles com
sur les équations intégrales. Il donne ensuite une vue d’ensemble des différents algorithmes rapides pour résoudre le
intégrales. Il discute aussi la difficulté de résoudre les problèmes électromagnétiques dans la « zone d’ombre » entre
magnétisme statique et hautes fréquences. Enfin, il discute les diverses méthodes pour des résolutions rapides de p
diffraction et de couplage impliquant des milieux en couches à la fois pour l’électrostatique et l’électrodynamique, et
quelques résultats numériques.Pour citer cet article : W.C. Chew et al., C. R. Physique 6 (2005).
 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Keywords: Computational electromagnetics; Integral equations solvers; Layered media
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1. Introduction

Computational electromagnetics is becoming increasing important due to its potential to replace many laborator
ments. This essentially stems from the predictive power of the laws of electromagnetism, or Maxwell’s equations. M
equations are valid over a wide range of length-scales, and also valid over different frequencies or time scales. Con
when Maxwell’s equations can be solved accurately, the result is often used as a reliable method to predict the perfo
a design or the outcome of an experiment or a system.
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1631-0705/$ – see front matter 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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Due to the predictive capability of Maxwell’s equations, mathematical modeling has been very important from ve
time [1]. Mathematical modeling was used by early civilizations to design buildings. For instance, Pythagoras theo
known both in the Far East as well as the West from very early times [2]. One can say that pre-calculus, which was
Kepler to predict celestial events in the 1600s, marked a new beginning for the use of mathematical modeling for pr
In the late 1600s and early 1700s, Leibniz and Newton invented calculus that even further empowered us to describ
phenomena [3]. Navier–Stokes equations were developed in the 1800s to describe the physics of fluid with great succ
references therein]. In the early 1800s, telegraphy grew to be quite important, and submarine cables were even draw
America and Europe before the laws of electromagnetism were fully understood [5]. However, it was quite clear
telegraphy equations predicted wave phenomenon, but the laws of electromagnetism did not then. So it was almost
that Maxwell’s displacement current term be added in 1864 to complete the laws of electromagnetism [6].

After electromagnetic theory was fully formulated, early mathematical modeling was done with closed form so
involving simple shapes such as spheres and cylinders [7]. However, such closed form analytic solutions for math
modeling were insufficient for many queries of science and engineering. As a consequence, approximate solutions we
to expand the scope of problems that were solvable with analytic methods. These were the asymptotic methods, s
high-frequency method where a small parameter is assumed [8 and references therein]. The solutions are often an
and the errors in the solutions are often not controllable.

The advent of digital computer in the 1940s [9] was mainly driven by our need to solve the fluid equations which are
ear, and the only viable solutions are by numerical methods. Thus, numerical methods were developed early for com
fluid dynamics [10 and references therein].

However, Maxwell’s equations are pervasively used in many areas of engineering and science, because many ph
including light phenomena, are electromagnetic in nature. Hence, there has been an urgent need to solve Maxwell’s
for increasingly more difficult problems, and this often calls for numerical solutions via computational electromagnetic
early days, both differential equation solvers and integral equation solvers found their ways into computational electrom
[11,12]. Examples of differential equation solvers are the finite difference time domain method [13], and the finite e
method [14–16], while examples of integral equation solvers are the method of moments, and the Nyström method
Differential equation solvers and integral equation solvers have their pros and cons as follows [1]:

Differential equation solvers:

• Con: Field is the unknown to be sought, and it permeates all of space.
• Con: Number of unknowns scales volumetrically as(kD)3+α .
• Con: Grid dispersion error requires higher grid density for larger problems.
• Pro: Simplicity for implementation.
• Pro: Sparse matrix system.

Integral equation solvers:

• Pro: Current is the unknown that often resides only on surfaces.
• Pro: UnknownN scales as(kD)2.
• Pro: Green’s function is used as a propagator that reduces propagation error.
• Con: Difficult to implement (has to deal with singular integrals).
• Con: Dense matrix system.

In the above,k is the wavenumber andD is the diameter of the simulation region. In differential equation solvers, du
the grid dispersion error, the grid density often increases with problem size, and hence, the reason forN ∼ (kD)3+α in the
above [20]. The effect of grid dispersion error can be mitigated with high accuracy, higher-order numerical methods [
exponentα depends on the order of the numerical used. The higher the order of the numerical method (which general
higher accuracy), the smallerα is.

Integral equation solvers find its great advantage in surface integral equations, where the number of unknowns is
much smaller than those in differential equation solvers. What is holding back integral equation solvers has been t
matrix system which is both expensive to solve and store. However, fast solvers can alleviate this problem [1].

2. Overview of fast algorithms

Differential equation solvers are, in general, quite efficient for the number of operations needed to solve the nu
unknowns. Because of the sparse nature of the matrix system, anN unknown problem requires O(N) operations for a matrix
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vector product. Therefore, when the matrix-vector product is used in an iterative solver or a time-marching scheme
per iteration or per time step with respect to the unknown count is quite efficient. The drawback is thatN can be exorbitantly
large.

On the other hand, integral equation solvers come with dense matrix systems. Dense matrix systems can be solved
if they are of Toeplitz nature. This occurs when an FFT-based method is used to solve the problem [22–24]. The matri
can then be reduced to O(N) from O(N2). Moreover, a matrix-vector product can be performed in O(N logN) instead of
O(N2) operations. Early forms of FFT-base algorithms used rectilinear grids, limiting the versatility of the geometry t
be modeled. However, the introduction of the pre-corrected FFT method and the adaptive integral method lifted this l
[25,26]. The breakaway from rectilinear grid can also be achieved using interpolation and anterpolation [27].

The FFT-based method is only optimally efficient when applied to problems where the domain in which the FFT h
performed is approximately the same as the domain where the unknowns reside. This happens in problems where the
are volumetrically distributed or where the unknowns are distributed on the surface of a flat plate. When the unkno
distributed on the surface of a round or fat scatterer, an FFT cannot be performed efficiently, due to the zero paddi
necessary in order to use the FFT algorithm. Hence, for a fat scatterer where the surface area is proportional toD2 and the

volume is proportional toD3 whereD is the diameter of the scatterer, the cost of performing an FFT is of O(N
3/2
s logNs)

whereNs is the number of surface unknowns. The use of sparse-data FFT does not help either, as fast convolution c
performed by such a method [28].

While a fast matrix-vector product involving an integral equation operator cannot be performed rapidly using FFT
the data are sparsely distributed in space, fast algorithms existed in the astronomy community whereby Coulombic in
between cluster of stars can be rapidly evaluated [29,30]. This is equivalent to evaluating the action of an integral op
a cluster of static sources. The algorithm is later systematized by Greengard and Rokhlin [31]. Meanwhile, other fas
vector product algorithm for static field existed using wavelet decomposition [32 and references therein].

However, fast matrix-vector product algorithms for electrodynamic problems have been elusive. This is due to the
tory nature of electrodynamic fields, or Helmholtz-type field [33]. Oscillatory field sends information long range, whe
Laplacian field or a static field does not send information long range. In fact, a static field becomes increasingly sm
further it is from the source, implying the loss of information or bandwidth. Hence, simple compression scheme by
algorithm works for static fields, but not for oscillatory fields. Moreover, the task of transmitting information from objec
object B using multipole translation becomes increasingly expensive for a highly oscillatory field and large objects.

The translation of the field from point to point is intimately related to the translation operator which forms the tran
group [34]. This group is Abelian, and hence, a diagonal representation of such a group exists when plane waves
as the basis rather than multipoles when seeking the matrix representation of such a translator. Under the plane w
the translators are diagonal [1,33]. Strictly speaking, the ‘multipole algorithm’ is a misnomer when applied to electrod
problems.

Therefore, a suitable representation of the field from a group of sources is in terms of plane waves radiating from th
direction: a function that represents the strength of the plane wave radiation field in different directions is called the r
field pattern of the source. Hence, the information of the radiation field from a group of sources is captured in its r
pattern. When the observation point is outside the evanescent field of the sources, the outgoing plane waves can be
into incoming plane waves by the use of an outgoing wave to incoming wave (O2I) translator. Such a translator is only
for electrodynamic problems if it is diagonal, because the information content of the field grows with the size of the
sources.

A suggestion for such an algorithm was first given by Rokhlin [35]. However, unlike what was suggested, a simple
of such an algorithm into a multilevel (tree) algorithm does not yield an O(N logN) algorithm for a matrix-vector produc
for dynamic problems. In a multilevel algorithm, the group sizes of the sources are different at different levels [1].
fore, the information content of the field enriches as the group sizes become large. While the radiation pattern f
group sizes are sampled at a higher sampling rate, those for smaller group sizes can be sampled at a lower sam
Hence, the vector arrays that are used to store the information contents of the radiation patterns for different group
different—with smaller arrays near the leafy branches of the tree algorithm and larger arrays near the root of the tree.
groups near the leafy branches are numerous, and the groups near the root are scarce, the use of different array s
reduces the storage and workload at the near-leafy level of the algorithm. However, in order to enable the use of
array sizes at different levels, the radiation patterns have to be interpolated and anterpolated (transpose interpolated
different levels. This idea is akin to the idea of multilevel multigrid where such operations are used to reduce work
coarser levels [36]. As a consequence, a matrix-vector product can be effected in O(N logN) operations for dynamic prob
lems [37,38].
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3. The twilight zone

Another challenge region in fast algorithm is the ‘twilight zone’ where a field is not truly static nor truly dynamic, viz
domain of the quasistatic field [39–41]. When the operating frequencies of integrated circuits (IC) were low, most e
phenomena in a computer chip can be described using circuit theory. However, the increasing operating frequency o
calls for powerful and efficient full-wave electromagnetic simulation tools in this ‘twilight zone’. In this regime, static s
are inadequate, and the non-zero frequency effect of the field cannot be ignored. Consequently, broadband fast so
static to microwave range are needed that will capture the wave physics as well as the circuit physics inherent in the
design of computer chips. Due to the increasing complexity of computer chip design, it is imperative that these fas
handle problems with millions of unknowns, representing orders of magnitude in size capability over traditional solvers
this has been possible in the electrodynamic regime, or the electrostatic regime, it has been elusive in the ‘twilight zone
static and radio frequencies [42].

To understand this, we look at Maxwell’s equation more carefully in this regime:

∇ × E = 0, ∇ · εE = ρ = lim
ω→0

∇ · J/iω (1)

∇ × H = J, ∇ · µH = 0 (2)

This physics in this regime can be gleaned from Eqs. (1) and (2) when the frequency is zero. The electric field is d
from the magnetic field. The current associated with (2) is divergence free, while that with (1) is non-divergence free. He
current decomposes itself into a curl free (irrotational) component and a divergence free (solenoidal) component. Th
field represents the world of capacitors, while the magnetic field represents the world of inductors. Though uncoupled
they are weakly coupled in the quasi-static regime. Consequently, we have

J = Jsol + Jirr (3)

This decomposition is known as the Helmholtz decomposition [43]. Moreover, by comparing (1.1) and (1.2), we see th

Jirr ∼ O(ω), Jsol � Jirr , ω → 0 (4)

Any numerical code that fails to capture the aforementioned physics correctly will break down. This is because the irr
current that models the capacitors is much smaller than the solenoidal current, but both currents are equally importa
this instability is inherently due to the disparate amplitude of the irrotational current and the solenoidal current, the
second kind integral equations does not remedy this problem [44–46]. To remedy this instability, one needs to decom
current into irrotational and solenoidal currents, partition the matrix, and perform frequency normalization in order to s
the integral equation [47,39].

Alternatively, one can look at the vector wave equation

∇ × ∇ × E − k2E = ikJ/η (5)

Whenk → 0, a perturbation expansion in smallk, E ∼ E(0) + kE(1) + · · · and a similar one forJ can be substituted into th
above, and the leading terms satisfy the equations

∇ × ∇ × E(0) = 0, ∇ × ∇ × E(1) = (ik/η)J(0) (6)

which have no unique solution, since the curl operator has a null space. In other words, the zero frequency point is a
perturbation point [48].

Another potential hazard of the ‘twilight zone’ is the breakdown of acceleration techniques. The factorizations use
fast multipole method and the multilevel fast multipole algorithm designed for dynamic problems breakdown whenk → 0.
In other words, the error becomes larger for lower frequencies [49,50]. The factorization for oscillatory Green’s fun
based on plane wave radiation to the far field, assuming that evanescent waves are unimportant. When the frequen
zero, there is no plane wave to speak of regarding the field emitted by a source, and evanescent field dominates the
This morphing of the physics is essentially the reason for the breakdown of the factorization. Hence, when evanesce
dominate, it is more expedient to represent the field in terms of multipole expansions, as has been done in many electr
scattering problems [51]. Fortunately, multipole fields in the quasi-static regime have short range interaction, and henc
increase the complexity of the algorithm. In fact, in the limit whenk → 0, for surface distributed sources in 3D, a matrix vec
product can be effected in O(N) operations, with similar complexity for memory requirement.

Yet another hazard exists for the acceleration technique in the ‘twilight zone’ using multipole expansions. The fa
the factorized oscillatory Green’s function, exp(ikr)/(4πr), does not transition smoothly to the factors of the factorized s
Green’s function,1/(4πr). One can see this in the 2D expression for the translational addition theorem:

H
(1)
0

(
k|ρ − ρ′|) =

∞∑
H

(1)
n (kρ)Jn(kρ′)ein(φ−φ′) (7)
n=0
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whenρ > ρ′. In the above, whenk → 0, the left-hand side becomes infinitely large, while on the right-hand side, the H

functionH
(1)
n (kρ) ∼ O((kρ)−n) (except for then = 0 term), and the Bessel functionJn(kρ′) ∼ O((kρ′)n). So when the right-

hand side is expressed as the inner product between two vectors, the elements of the vectors can overflow and underfl
rise to numerical instability. This instability exists also when the Green’s function is factorized into a product of a vecto
a matrix times a vector.

The source of this ‘problem’ arises from the fact that Helmholtz equation has a ‘yardstick’ which is the wavelengt
yardstick remains for all wavelengths, and the Green’s function and its factorization can be written in terms of a dimen
parameterkρ. Whenk is identically zero, the corresponding Laplace’s equation is scale invariant, this yardstick disappe
the solution and its factorization cannot be written in terms of this dimensionless parameter anymore. This instabilit
alleviated by defining normalized Hankel and Bessel functions [52,53].

In modeling multi-scale problems using the acceleration method, the geometry in the leafy levels may be in the qu
regime, while the geometry on the whole may be in the wave regime. In this manner, it is necessary to factorize the
function using a mixed-form fast multipole algorithm, where the source fields are represented in terms of multipoles
leafy levels, and in terms of plane waves above the leafy levels [54]. A transformer is needed to bridge between the dich
nature of the field representation.[

αLL′ (rji )
]
L×L′ = [

βLL1(rjJ1)
]
L×L1

· [βL1L2(rJ1J2)
]
L1×L2

· [βL2L3(rJ2J3)
]
L2×L3

· [D]†
S4×L3

· diag
[
eik·rJ3J4

]
S4×S4

· [I ]TS5×S4
· diag

[
eik·rJ4J5

]
S5×S5

· diag
[
T̃ (Ωs5, rJ5I5)ωs5

]
S5×S5

· diag
[
eik·rI5I4

]
S5×S5

· [I ]S5×S4 · diag
[
eik·rI4I3

]
S4×S4

· [D]S4×L3 · [βL3L2(rI3I2)
]
L3×L2

· [βL2L1(rI2I1)
]
L2×L1

· [βL1L
′(rI1i )

]
L1×L′ (8)

The above shows the factorization of a translator into factors that use multipole as well as plane waves for repres
The diagonal factors follow from plane wave basis, while the non-diagonal factors follow from the multipole basis.D is a
transformer matrix that transforms back and forth between the two bases.I is an interpolation matrix between different level

4. Fast algorithms for layered media

While much advances have been made in designing fast algorithms for the homogeneous medium Green’s functio
ing them for a layered medium Green’s function is a challenge [55–59]. A prime reason is the complex nature of the
medium Green’s function: a layered medium Green’s function is expressible in terms Sommerfeld integrals, which us
not have closed forms [60]. Fortunately, these integrals can be written in terms of plane wave expansions, making t
ticularly suitable for their factorization. As mentioned before, plane wave basis diagonalizes the translator. A layered
Green’s function can be written as

g(rj , ri ) =
∫

dk̂ W(k̂)eik·rj i (9)

where the integral summation is over plane waves as well as inhomogeneous waves andrji = rj − ri . For 2D problem, the

above is a single integral while it is a double integral for 3D problems. Hence, the factor eik·rj i involves both kinds of waves
By letting rji = rjCJ

+ rCJ CI
+ rCI i as shown in Fig. 1, the above integral can be factorized easily:

g(rj , ri ) =
∫

dk̂ W(k̂)eik·rjCJ · eik·rCJ CI · eik·rCI i (10)

Here,rCI
, rCJ

are the centers of groupI and groupJ respectively.

In the above,W(k̂)eik·rj i is the integrand, and we assume thatW(k̂) is slowing varying, while eik·rj i is rapidly varying
becauserji is large. Hence, there is a steepest descent path (SDP) determined by eik·rj i as well as a steepest ascent path (SA
as shown in Fig. 2. A common integration path should avoid crossing the SAP of the pair-wise interaction between th
and the observation point, as the integrand becomes exponentially large on the SAP, a potential source of numerical i

Fig. 3 shows a viable numerical integration path that consists of the sum of Paths I, II, and III. By choosing the le
Path II, the path need not cross any of the SAPs for all the pair-wise interactions for all the sources between the tw
Moreover, the integrands of all the pair-wise interactions will decay along I and III. Consequently, after the use of a qu
rule in (10), we have (see Fig. 4)

g(rj , ri ) =
∑
q

eik(Ωq)·rjCJ︸ ︷︷ ︸
βjCJ

(Ωq)

wqeik(Ωq)·rCJ CI︸ ︷︷ ︸
αC C (Ωq)

eik(Ωq)·rCI i︸ ︷︷ ︸
βCI i (Ωq)

(11)
J I
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AP).
Fig. 1. Translation of a field from pointi to pointj can be decomposed into a product of three translations.

Fig. 2. Different source and observation points will have a different steepest descent path (SDP) and a steepest ascent path (S

Fig. 3. A viable integration path that consist of path I+ II + III for the Sommerfeld integration that crosses no SAPs.
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Fig. 5. Different sample quadrature points on the complex planes are needed for com
puting different group interactions.

Fig. 5 shows that for different group interactions, the integration paths translate horizontally.
In the multilevel algorithm, only the radiation patterns of sources and the aggregated radiation patterns of sources

and reused. The same applies to the receiving patterns during the disaggregation procedure. Therefore, in order
memory storage, it desirable to store only the radiation and receiving patterns on the real axis. Therefore, we express
of the patterns on the complex plane in terms of the value on the real axis as follows:

β(Ωq) =
∑
s

I (Ωq,Ωs)β(Ωs) (12)

whereI (
q,
s) is an interpolator that can be developed from an interpolation function. Using the above in Eq. (11), w

g(rj , ri ) =
∑
s

βjCJ
(Ωs) · βCI i(Ωs) ·

(∑
q

I(Ωq,Ωs) · αCJ CI
(Ωq)

)
=

∑
s

βjCJ
(Ωs) · TCJ CI

(Ωs) · βCI i(Ωs) (13)

Hence, points on the real axis can be reused for different group interaction. The above represents the factorizat
Green’s function using the fast inhomogeneous plane wave algorithm (FIPWA). Because only one summation is invo
translator in the above is diagonal. Error analysis of such a factorization has also been performed in [61,62].

When a point source is placed on top of a layered medium in a 3D space, the Green’s function can be decompo
direct term and the reflected wave term. The direct term can be treated with the conventional fast method, while the
wave term can be treated with the aforementioned method.

G(rj , ri ) = Gd(rj , ri ) + Gr(rj , ri ) (14)

where

Gd(rj , ri ) =
∫

SIP

dkρ
kρ

kz
H0

(
kρ |ρj − ρi |

)
eikz|zj −zi |

Gr(rj , ri ) =
∫

SIP

dkρ W(kρ)H0
(
kρ |ρj − ρi |

)
eikz|zj −ziI | (15)

where SIP stands for the Sommerfeld integration path,W(kρ) is a function that contains the effect of the wave reflection fr
the layered medium. Furthermore,riI = ρi + ẑziI represents the image location of the source pointri .

The contribution from the reflected wave term can be thought of as coming from an effective image source locat
optical image location, but it sends field to the field point via a complex Green’s function given by the second term of (1
is an image theorem but not in the conventional sense (see Fig. 6).

The interaction of the image source with the field point can be computed similar to the previous discussion, but the S
will be decided by the image source point and field point. Moreover, contributions from branch point and poles are
when the integration path is deformed from SIP to the SDP (see Fig. 7, [60]). Consequently, the reflected wave ter
further decomposed into three contributions, viz.,

Gr(rj , ri ) = GrSDP(rj , ri ) + GrP (rj , ri ) + GrB(rj , ri ) (16)
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Fig. 6. Effective image theorem for FIPWA. Fig. 7. The integration path along SDP, plus possible
pole and branch point contributions when the integra-
tion path is deformed from SIP to SDP.

In the reflected wave term, the Hankel function can be factorized and diagonalized by 2D FIPWA or the convention
(fast multipole method). Consequently, each of the terms in the above can be factorized and diagonalized.

Consequently, the layered medium Green’s function can be decomposed into the sum of contributions from the dir
the reflected wave that consists of the SDP, the pole, and the branch-point contributions.

G(rj , ri ) =
∑
s

βjl(
s) · Tll′(Ωs) · βl′i (Ωs) +
∑
s

βjl(Ωs) · T rSDP
ll′I (Ωs) · βl′I iI (Ωs)

+
∑
P

βjl(ΩP ) · T rP
ll′I (ΩP ) · βl′I iI (ΩP ) +

∑
n

βjl(Ωn) · T rB
ll′I (Ωn) · βl′I iI (Ωn) (17)

The algorithm for a buried object in a half space proceeds in a similar manner. The complication arises when the
embedded in between layered media. The expression will involve four image terms corresponding to the reflected fie
than just one in (14).

5. Objects embedded in layered media

The case of when the object is embedded in a layered medium is a more difficult case. In this case, the object
four effective image terms as oppose to one in the aforementioned discussion [60]. Hence, the book-keeping is rather
Even though the general dynamic case has not been fully worked out, we have developed fast algorithms for this case
fields [63]. The translator will similarly contain five terms: the self term plus four effective image terms:

α
jk
nm(rD) = Λ̃O + Λ̃UU + Λ̃UL + Λ̃LU + Λ̃LL (18)

According to ‘optical’ image theorem, there should be infinitely many image terms. However, the images can be sum
four main groups above.

When inter-layer translations are involved, there are only four terms to consider. These cases are shown in Fig. 8.
translator can be expressed in terms of Sommerfeld-type integrals as:

Λ̃L(r, r′;n,m, j, k) = i3j+n−|m−k|
π

A
jk
nmei(m−k)φ + [

IL1 + (−1)j+n−m+kIL2
]

IL1 =
∞∫

0

dλλj+nKm−k(λρ)eiλZΩ(−λ) IL2 =
∞∫

0

dλλj+nKm−k(λρ)e−iλZΩ(λ) (19)

whereΩ is a function that contains information on the layered medium [64]. Alternatively, they can be expressed as an
sum of images, which is not efficient for computation compared to the above. On the other hand, the discrete compl
method (DCIM) can be used to expedite the evaluation of the above expression, greatly expediting their evaluations [6
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ult of the
EC with
Fig. 8. Schematic for intra-layer translation (left) and inter-layer translation (right).

6. Numerical results

In this section, we show some numerical results from layered medium simulations. Fig. 9 shows the simulation res
scattering of a buried land mine using multilevel FIPWA consisting of three levels. The land mine is simulated as a P

Fig. 9. The simulation of a buried land mine using three-level ML-FIPWA with(θ inc, φinc) = (60◦,−90◦). The frequency is 600 MHz with
2646 unknowns.
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Fig. 10. The simulation of a buried unexploded ordnance using five-level ML-FIPWA with(θ inc, φinc) = (60◦,−90◦). The frequency is
600 MHz with 8532 unknowns.

Fig. 11. Simulation of a buried underground bunker using ML-FIPWA. The incident angles are the same as before, and the fre
900 MHz. The number of unknowns used is 1 074 588 and eight levels are used in ML-FIPWA.

dimensions shown, buried in a lossless half-space with a relative permittivity of 3.5. The direct calculations are done b
the MOM matrix equation without using acceleration method. Good agreement with direct calculations is observed.

Fig. 10 shows the simulation of scattering from a buried unexploded ordnance in the same lossless ground, us
unknowns, and five levels of ML-FIPWA. Again the agreement with direct calculations is excellent.

Fig. 11 shows the bistatic RCS (VV-pol) scattering solution of a buried bunker in a lossy ground withεr = (3.3,0.3),
requiring 1 074 588 unknowns for its simulation at 900 MHz. The incident angles are(θ inc, φinc) = (60◦,−90◦), the same as
before. Because of the large number of unknowns, eight levels of ML-FIPWA are required. The calculation took 18 h
CPU time on one SGI R10000/195-MHz processor in the Origin 2000 array at NCSA, using 3.94 GB of memory. If conve
matrix-based algorithm is used, 9.3 TB of memory would be required, and 11 years of CPU would be needed to s
problem. The data shows strong specular scattering, with smaller backscattering. The backscattering would have bee
the buried bunker is absent.

Fig. 12 shows the comparison of the memory requirements and CPU usage for a matrix-vector product of ML-FIP
the buried object case and the layered medium case. The additional resource for the buried object case is marginally
the free-space case in both the memory requirements and CPU usage. The comparison simulation was done on a 600
Alpha 21 164 workstation. The reason that only marginally more resources are needed is because there is hardly any
interaction between the image sources and the field point.
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Fig. 12. The comparison of the memory requirements and CPU usage with the free-space case. The memory requirement for the b
case is 13% more than the free-space case, and the CPU usage is about 10% more.

Fig. 13. The use of stratified medium fast multipole algorithm allows a problem of 1 204 352 to be solvable.

Fig. 13 shows the use of the stratified medium fast multipole algorithm (FMA) to solve a problem with over 1 m
unknowns using about 1.41 GB of memory on an old SGI Power Challenger. The computation time was 991.1 s per
This is only marginally more expensive than the free space case that took 966.8 s per iteration using 1.39 GB of mem

Fig. 14 shows the use of DCIM to expedite the setup times of both the FMA part as well as the MOM part of th
Speedup factors of more than 40 are possible, without severe degradation of the result.

7. Conclusions

We have given an overview of fast algorithm research in a complex environment. This topic is becoming exce
important because many real world applications require the simulation of electromagnetic field in such environment. A
regime is designing fast algorithms and solvers for the ‘twilight’ zone where wave theory meets static field theory. Thi
very important for the simulation of electrical signals inside computer circuits and computer chips, as well as nano-str

The solution of a scattering and coupling problem involving layered media involves another level of complexity an
keeping because of the complex nature of the Green’s function involved. We have shown that general fast algorithm
developed for Laplace’s equation for layered media. For full-wave problems, we have developed fast algorithms for
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Fig. 14. The use of discrete complex image method (DCIM) can greatly expedite both the setup time for FMA and MOM.

media when the object is above the layered media or below the layered media, but not for objects embedded in
medium. Much book-keeping is expected of such work, as it quickly becomes very complex.
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