
/

tique

omagnetic
ian beams
bouncing
alyse the
tion of an

es
aisceaux
roposons
e faisceaux
e part un

oefficients
/précision)

mpromise
putation
C. R. Physique 6 (2005) 654–662

http://france.elsevier.com/direct/COMREN

Interaction of electromagnetic fields with the environment/Interaction du champ électromagné
avec l’environnement

Computation of electromagnetic scattering by multilayer
dielectric objects using Gaussian beam based techniques

Alexandre Chaborya,b, Jérôme Sokoloffb,∗, Sylvain Boliolia, Paul François Combesb

a ONERA/DEMR, 2, avenue Édouard Belin, BP4025, 31055 Toulouse cedex, France
b UPS/AD2M, 118, route de Narbonne, 31062 Toulouse cedex, France

Available online 2 September 2005

Abstract

This article aims to evaluate the abilities of Gaussian beam techniques to compute the interaction between an electr
field and a multilayer dielectric object. First, we propose an approach to expand a field on a set of elementary Gauss
from a curved surface. Then, we study two techniques to compute the interaction: a Gaussian beam shooting and
algorithm and another original approach using the Gaussian beam transmission and reflection coefficients. We an
advantages (rapidity/accuracy) of these two techniques with respect to a conventional approach to compute the radia
antenna protected by a radome.To cite this article: A. Chabory et al., C. R. Physique 6 (2005).
 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Modélisation de la diffraction électromagnétique par des objets diélectriques multicouches par des techniques basé
sur les faisceaux gaussiens.Dans cet article, nous évaluons les possibilités offertes par les techniques basées sur les f
gaussiens pour traiter l’interaction entre un champ électromagnétique et un objet diélectrique multicouche. Nous p
tout d’abord une nouvelle approche pour décomposer un champ connu sur une surface courbe comme une somme d
gaussiens élémentaires. Nous étudions ensuite deux techniques pour traiter l’interaction du champ avec l’objet : d’un
algorithme de lancer de faisceaux gaussiens et d’autre part une approche originale qui s’appuie sur la définition des c
de transmission et de réflexion associés au faisceau gaussien. Nous montrons l’intérêt de ces deux techniques (rapidité
par rapport à une approche conventionnelle pour modéliser le rayonnement d’une antenne protégée par un radôme.Pour citer
cet article : A. Chabory et al., C. R. Physique 6 (2005).
 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Keywords:Electromagnetic asymptotic methods; Gaussian beams; Radomes; Lenses
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1. Introduction

The radiation computation of antennas placed behind large dielectric multilayer radomes or lenses requires a co
between computation time and accuracy. Exact methods, such as the Method of Moments, imply a prohibitive com

* Corresponding author.
E-mail address:sokoloff@cict.fr (J. Sokoloff).
1631-0705/$ – see front matter 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.
doi:10.1016/j.crhy.2005.06.011
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time whereas asymptotic methods, such as Geometrical and Physical Optics, are known to be faster but less accu
asymptotic techniques based on Gaussian beams have been developed and seem to provide both rapidity and acc
have recently been used to study planar aperture radiation [1,2], metallic reflectors [3–5], lenses [6,7] and radomes [8
these approaches can be applied following two steps.

In the first, the incident field is expanded on a discrete set of elementary beams. One possibility is to choose the
multimodal orthogonal Gauss–Hermite (or Gauss–Laguerre) basis which has been successfully used to express field
by metallic [3] or dielectric [6] objects. However, this expansion strongly depends on the paraxial approximation which
that the described fields are only weakly diverging along their main propagation direction. Another solution is the Ga
pansion which expresses a signal as a superposition of Gaussian functions placed on a doubly infinite spectral-spat
lattice [9]. Felsen et al. [10] have shown that this expansion allows the representation of planar aperture radiation as
beams shifted both in position and in propagation direction. To avoid the numerical difficulties to determine the expans
ficients due to the non-orthogonality of the Gaussian functions, two different solutions have been developed. Maciel an
propose the ‘Gabor-based narrow waisted Gaussian beam algorithm’ [1]. The expansion coefficients are directly ob
sampling the initial field. Lugara and Letrou replace Gabor basis by the Gabor frame which corresponds to an over-sa
the elementary beams [2]. Expansion coefficients are then obtained with frame adjoint functions, providing numerical
The Gabor expansion, however, presents other limitations: the expansion surface has to be planar and the analytical f
of the elementary beams does not always correspond to conventional Gaussian beams. Two other expansion techn
also been developed to express a field as a combination of Gaussian beams shifted both in position and in propagatio
from a planar [4] and from a semi-spherical surface [5]. Although they do not use any base or any frame, but a set of
beams, they provide good results.

In the second step, the interaction between the elementary beams and the object is investigated. On a dielectric
most of the techniques assume that one incident Gaussian beam gives one transmitted and one reflected Gaussian
This assumption, combined with an expansion of the incident field, has led to the development of Gaussian beam sho
bouncing algorithms [7,12].

In this article, we both review expansion and interaction issues. In Section 2, we briefly present Gaussian beams
analytical formulations. In Section 3, we propose a new pragmatic expansion to express a field known on a regula
surface as a set of elementary beams shifted both in position and in propagation direction. Then, we analyze in Sec
approaches to treat the interaction of an electromagnetic field with a multilayer dielectric object. The first one is a G
beam shooting and bouncing algorithm. The second one is an original approach using the novel Gaussian beam tra
and reflection coefficients. Finally, we give in Section 5 an application of these techniques on a 3-layer dielectric el
radome. Concluding remarks follow in Section 6.

2. Gaussian beams

Gaussian beams are analytical solutions of the approximated wave equation. They depend on the paraxial appr
which requires that the field is only weakly divergent along its main propagation direction. A maximum divergence a
20◦ along this axis is often assumed. The analytical vectorial expression of a Gaussian beam propagating along thez-direction
is given by:

�E(x,y, z) = a(xz)

(
u(x, y, z)�ex − j

k

∂u(x, y, z)

∂x
�ez

)
+ a(yz)

(
u(x, y, z)�ey − j

k

∂u(x, y, z)

∂y
�ez

)

�H(x,y, z) =
√

εr

Z0
a(xz)

(
u(x, y, z)�ey − j

k

∂u(x, y, z)

∂y
�ez

)
−

√
εr

Z0
a(yz)

(
u(x, y, z)�ex − j

k

∂u(x, y, z)

∂x
�ez

) (1)

εr andk are respectively the relative permittivity and the wave number of the medium.Z0 is the free space impedance.a(xz)

anda(yz) represent the coefficients associated with thex andy polarization.u stands for the scalar Gaussian beam express

u(x, y, z) = u0

√
detQ(z)√
detQ(0)

exp

[
− jk

2

[
x

y

]t

Q(z)

[
x

y

]
− jkz

]
(2)

Q(z), which represents the beam’s complex curvature matrix, is similar to the real curvature matrix in the Geometrica
fields [11]. The inverse of this matrix linearly depends on the axial coordinate:

Q−1(z) = Q−1(0) + z

[
1 0
0 1

]
(3)
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Fig. 1. Circular symmetric Gaussian beam amplitude in transversal and longitudinal planes withW0 = λ.

Fig. 1. Amplitude d’un faisceau gaussien à symétrie de révolution dans les plans transversaux et longitudinaux pourW0 = λ.

Moreover,Q(z) provides the beam’s transversal evolution. It gives both the curvature radii of the wave front on thez-axis
and the Gaussian transversal variation of the amplitude. For a symmetric circular Gaussian beam, the initial matrixQ(0) only
depends on the beam waist sizeW0 and is given by:

Q(0) = −2j

kW2
0

[
1 0
0 1

]
(4)

Then, the paraxial approximation usually holds whenkW0 > 5, i.e.,W0 > 0.8λ whereλ is the wavelength in the medium
The amplitude of a symmetric circular beam is shown on Fig. 1.

In the far field region, the paraxial approximation produces an important phase error which prevents properly s
beams with different propagation axes. To overcome this limitation, another analytical expression exists which does no
on the paraxial approximation but on a far field approximation. For a Gaussian beam propagating along thez axis, this far field
expression is given by:

�E(r, θ,ϕ) = E(r, θ,ϕ)
[
a(xz)(cosθ �ex − sinθ cosϕ�ez) + a(yz)(cosθ �ey + sinθ sinϕ�ez)

]
(5)

with

E(r, θ,ϕ) = u0

√
1

detQ(0)
exp

(
jk sin2 θ

2

[
cosϕ
sinϕ

]t

Q−1(0)

[
cosϕ
sinϕ

])
exp(−jkr)

r
(6)

wherer, θ andϕ are the spherical coordinates. In the next sections, this expression will be used for the far field radiation
computation.

Hence, Gaussian beams present local properties with a finite extent on the transverse directions associated with
angular beamwidth radiation. They appear as an intermediate solution between the plane and the spherical waves.

3. Expansion of an electromagnetic field in Gaussian beams

In this section, we aim to develop an approach to express an electromagnetic field in terms of a set of conventional
beams shifted both in position and in propagation direction. Two expansions have previously been proposed. Pat
distribute the elementary beams on a doubly regular spatial/angular planar grid [4]. In order to find the expansion coef
point matching technique is then used by sampling the given field and the beam sum in the far field zone. Lemaître et a
the expansion from a semi-spherical surface [5]. The elementary beam centres are placed on a regular mesh of the s
each mesh point only one beam is located and oriented along the surface normal vector. The expansion coefficient
found by means of a point matching technique directly applied on the spherical surface.

Here, we propose an alternative expansion where the initial field( �Ei, �Hi) is known on a regular surface whose charac
istic dimensions (size, curvature radii) are large with respect to the wavelength (Fig. 2). Each elementary beam ha
reference(Oi

n, �ei
xn, �ei

yn, �ei
zn) whereOi

n stands for thenth-beam centre and(�ei
xn, �ei

yn, �ei
zn) respectively represent thenth-beam

polarization and propagation axes. To take into account the vectorial characteristics of the initial field, each beam m

anx-polarized component�Ei(xz)
n and any-polarized component�Ei(yz)

n , as shown in (1). Finally, the expansion expressio
given by:

�Ei =
N∑

a
i(xz)
n

�Ei(xz)
n + a

i(yz)
n

�Ei(yz)
n (7)
n=1
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Fig. 2. Gaussian beam expansion principle.

Fig. 2. Principe de la décomposition en faisceaux gaussiens.

Then, the characteristics of each elementary beam have to be determined. The beam centresOi
n are regularly distributed

on the initial surface from a mesh of stepd . As in [5], only one beam is selected on each beam centre in order to reduc
number. To have a precise description of the local properties of the electromagnetic fields, each elementary beam pr
axis is oriented along the local Poynting vector. Moreover, the elementary beam polarization is chosen so that a g

polarized along a vector�ei
x givesa

i(yz)
n expansion coefficients equal to zero. Finally, we obtain:

�ei
zn = �( �Ei(Oi

n) ∧ �Hi∗(Oi
n))

‖�( �Ei(Oi
n) ∧ �Hi∗(Oi

n))‖ , �ei
yn = �ei

zn ∧ �ei
x

‖�ei
zn ∧ �ei

x‖ , �ei
xn = �ei

yn ∧ �ei
zn (8)

The expansion coefficients are computed by a point matching technique. On the mesh points, we project the equalit
the initial electric field and the beam expansion along the two vectors associated to the elementary beam polarization


�Ei(Oi

p).�ei
xp = ∑N

n=1 a
i(xz)
n

�Ei(xz)
n (Oi

p).�ei
xp + a

i(yz)
n

�Ei(yz)
n (Oi

p).�ei
xp

�Ei(Oi
p).�ei

yp = ∑N
n=1 a

i(xz)
n

�Ei(xz)
n (Oi

p).�ei
yp + a

i(yz)
n

�Ei(yz)
n (Oi

p).�ei
yp

∀p ∈ [1,N ] (9)

Then, the solution of this linear system gives the coefficients.
The characteristics of the elementary beam set only depend on the choice of two related parameters: the waistW0 and the

mesh stepd . Their values affect both the accuracy and the rapidity. Small values ofW0 are suitable for a very local descriptio
of electromagnetic fields, but it has to comply with the paraxial approximation (W0 > 0.8λ). For smalld values, the mesh i
tight and there is an important number of elementary beams, increasing accuracy but also computation time. Howevd and
W0 cannot be chosen independently. When we consider the ratioκ = d/W0, we can note that large values ofκ (d 
 W0)

lead to a sparse distribution of beams, unable to describe properly the fields between the mesh points. On the o
small values ofκ (d � W0) correspond to overlaying strongly coupled beams, making the point matching technique inef
A comprehensive parametric study using various initial fields, incidences and surfaces has confirmed these expected re
It has been shown that a good compromise between accuracy and computation time was achieved withκ ∼= 0.9, andd varying
betweenλ and 2λ.

The test referred to in Section 5.1 illustrates the good performances of this expansion. However, this technique
since each elementary beam must be local on a limited area of the expansion surface. This implies that the initial field
and the surface curvature must remain moderate.

4. Interaction between an electromagnetic field and a multilayer dielectric object

4.1. Shooting and bouncing Gaussian beam algorithm

A first approach to treat multilayer dielectric objects with Gaussian beam techniques is a shooting and bounci
algorithm. It combines the incident field expansion presented above and the assumption that one incident Gaussian
dielectric interface generates only one transmitted and one reflected Gaussian beam.

First, we present the well-known approach to treat the transformation of each incident Gaussian beam on an
separating two dielectric media with relative permittivityεr1 andεr2 [11]. On Fig. 3(a), we define the local referencesli, lr

andlt respectively associated with the incident, reflected and transmitted beams and the local referenceΣ associated with the
interface. They are defined with respect to the incidence plane and they are centred inI , the intersection point between th
incident propagation axis and the interface.
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Fig. 3. Gaussian beam shooting and bouncing approach.

Fig. 3. Approche du lancer de faisceaux gaussiens.

The incident Gaussian beam coefficients and initial curvature matrix are expressed in the local incidence referen
are respectively denotedai(‖), ai(⊥) andQli(O). Then, the transmitted and reflected beams characteristics (references,
ture matrix amplitudes) must be determined. Their propagation axis and their curvature matrix can be evaluated by
matching principle which imposes a second order equality between the exponential terms of all the beams. It implie
propagation axes satisfy the Snell–Descartes laws (θr = θi and

√
εr1 sinθi = √

εr2 sinθt ) and the complex curvature matric
are given by:

Qlr (0) =

 Qli

11(0) − 2
QΣ

11
cosθi

2QΣ
12 − Qli

12(0)

2QΣ
12 − Qli

12(0) Qli
22(0) − 2cosθiQΣ

22




Qlt (0) =
√

εr1

εr2




cos2 θi

cos2 θt
Qli

11(0)
cosθi

cosθt
Qli

12(0)

cosθi

cosθt
Qli

12(0) Qli
22(0)


 +

√
εr2 cosθt − √

εr1 cosθi

√
εr2




QΣ
11

cos2 θt

QΣ
12

cosθt

QΣ
12

cosθt
QΣ

22




(10)

QΣ stands for the surface curvature matrix inI . Moreover, to estimate the reflected and transmitted beam coefficients, w
the Fresnel coefficients inI leading to:

ar(‖) =
√

εr2 cosθi − √
εr1 cosθt

√
εr1 cosθt + √

εr2 cosθi
ai(‖), at (‖) = 2

√
εr1 cosθi

√
εr1 cosθt + √

εr2 cosθi
ai(‖)

ar(⊥) =
√

εr1 cosθi − √
εr2 cosθt

√
εr1 cosθi + √

ε2 cosθt
ai(⊥), at (⊥) = 2

√
εr1 cosθi

√
εr1 cosθi + √

εr2 cosθt
ai(⊥)

(11)

In the shooting and bouncing algorithm, each elementary Gaussian beam, denoted GB on Fig. 3(b), is tracked th
dielectric media. When it reaches an interface, it generates two new beams (transmitted and reflected) which are then
turn. All different beams are treated the same way and the algorithm is stopped according to a beam power lower limit
the fields in the entire space can be computed as a sum of Gaussian beams.

The accuracy of this algorithm is limited by the assumption that one Gaussian beam gives only Gaussian beam
a dielectric interface. Its computation time depends on the number of beams generated by the algorithm and exp
increases with the number of layers.

4.2. Approach based on Gaussian beam reflection and transmission coefficients

We propose an original approach based on the definition of novel Gaussian beam reflection and transmission co
In this subsection, these coefficients are first defined. Then, a fast iterative process is proposed to compute multilayer
objects.
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The Gaussian beam reflection and transmission coefficients are obtained from a conventional technique using
wave spectrum representation [16]. We consider a dielectric interface between two media with relative permittivityεr1 andεr2
illuminated by an incident field associated to an incident reference(Oi, �ei

x , �ei
y, �ei

z). On the interface pointI , the incident field
can be written as:

�Ei(I ) = 1

4π2

+∞∫
−∞

+∞∫
−∞

�̂Ei(ki
x, ki

y)exp
(−j �ki ·

−−→
OiI

)
dki

x dki
y (12)

where�ki = (ki
x , ki

y, ki
z) are the plane wave vectors expressed in the incident reference. Ifk1 is the wave number in the firs

medium, theki
z component is obtained fromk2

1 = ki
x

2 + ki
y

2 + ki
z
2
. �̂Ei represents the plane wave spectrum and correspon

the spatial Fourier transform of the field atzi = 0:

�̂E(
ki
x, ki

y

) =
+∞∫

−∞

+∞∫
−∞

�E(
xi , yi ,0

)
exp

(
jki

xxi + jki
yyi

)
dxi dyi (13)

Using the local tangent plane approximation, the reflected and transmitted field expressions onI can be written as:

�Er(I ) = 1

4π2

+∞∫
−∞

+∞∫
−∞

R
(�ki , �n(I)

) �̂Ei
(
ki
x, ki

y

)
exp

(−j �ki ·
−−→
OiI

)
dki

x dki
y

�Et (I ) = 1

4π2

∫ +∞
−∞

+∞∫
−∞

T
(�ki , �n(I)

) �̂Ei
(
ki
x, ki

y

)
exp

(−j �ki ·
−−→
OiI

)
dki

x dki
y

(14)

whereR andT are the dyadic Fresnel coefficients depending both on the plane wave propagation axis and on the loca
plane orientation. In the conventional approach, to obtain the reflected and transmitted fields on the interface, these tw
must be numerically computed, which can be time consuming.

The Gaussian beam coefficients are developed to suppress these numerical integrations. Considering now a
Gaussian beam, its analytical expression (1) combined with (13) provides a Gaussian analytical expression for the sp

�̂E(ki
x, ki

y) = 2πj

k1
√

detQi(0)
exp

(
j

2k

[
ki
x

ki
y

]t

Q−1(0)

[
ki
x

ki
y

])(
ai(xz)�ei

x + ai(yz)�ei
y − ai(xz)ki

x + ai(yz)ki
y

ki
z

�ei
z

)
(15)

Assuming the paraxial approximation and slowly varyingR andT coefficients, the asymptotic evaluation of the integr
(14) with the steepest descent path method [14] gives analytical expressions for the reflected and transmitted fiel
interface:

�Er(I ) = R
(�kis , �n(I)

) �Ei(I ) = RGB(I ) �Ei(I ), �Et (I ) = T
(�kis , �n(I)

) �Ei(I ) = T GB(I ) �Ei(I ) (16)

Thex andy components of�kis correspond to the saddle point of the steepest descend path method. They are given

[
kis
x

kis
y

]
= k1Q(z)

[
xi

yi

]
, kis

z = k1 − kis2

x + kis2

y

2k1
(17)

RGB andT GB define the novel dyadic coefficients associated with the Gaussian beam. They provide analytical expre
the transmitted and reflected fields on a dielectric interface illuminated by a Gaussian beam. These expressions can be
with the previous expansion for dielectric multilayer object computation.

An iterative solution technique has been developed [15], as illustrated on Fig. 4. As usual, the incident field is e
in Gaussian beams. Then, on the first interface, the transmitted and reflected fields are computed with (16). The tr
field is expanded whereas the reflected field is stored at level{1}. On the following interfaces, the same process is app
On the last one, the procedure is reversed, the transmitted field is stored at{M} whereas the reflected field is expanded. T
process then crosses the object in the other direction. On the last but one interface, the transmitted field is added to{M − 1} and
expanded. After that, the reflected field is stored at{M − 1}. This process is repeated until field power reaches a given l
Finally, the fields on the first and last interfaces respectively correspond to the sum of level{1} and to the sum of level{M}.
They are expanded in Gaussian beams in order to obtain the fields reflected and transmitted by the object. This pr
remain efficient for objects with many layers because its computation time linearly depends on the number of layers.
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Fig. 4. Processus basé sur les coefficients de réflexion et de transmission d’un faisceau gaussien.

5. Application

5.1. Example of a field expansion

To test the expansion efficiency on a curved surface, we expand an initial field on a semi-spherical surface. Thi
radiated by a planar aperture placed inzi = 0 (Fig. 5(a)). The electric field distribution in the aperture is linearly polari
along thex-axis and given by:

Ei
x =

{
cos

πρi

L
if |ρi | < L/2

0 elsewhere
with ρi =

√
xi2 + yi2 (18)

The aperture width isL = 8λ and the frequency is 10 GHz. The expansion is performed on a semi-spherical surface
on the aperture with a radius of 12λ. The expansion parameters ared = λ andκ = 0.9. In a preliminary stage, the initial field i
obtained on this surface thanks to the Kottler radiation integrals. Then, the expansion coefficients are computed by s
linear system (9). This expansion requires 850 beams and needs 17 s on a PC 3 GHz CPU.

On Fig. 5(b), we show the field in theE-plane atzi = 10λ obtained from the Gaussian beam sum and from the Ko
radiation integrals. We observe that the Gaussian beam sum takes correctly into account the field propagation in the
region. On Fig. 5(c), we represent the far field radiation pattern in theE-plane. Here, we recall that Gaussian beams m
be computed with their far field expression (5). We note a very good agreement between the two results. Moreover,
verified that the vectorial difference is below−60 dB.

Fig. 5. Comparisons between the Gaussian beam expansion and the Kottler radiation integrals.

Fig. 5. Comparaisons entre la décomposition en faisceaux gaussiens et les intégrales de rayonnement de Kottler.
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Fig. 6. Radome configuration and reflected field cartographies in theE-plane.

Fig. 6. Configuration du radôme et cartographies du champ réfléchi dans le planE.

5.2. Radome computation

As an application of both approaches presented in Section 4, we place the aperture of the example above under an
3-layer radome. The configuration is detailed on Fig. 6(a). First, we compute the reflected field in theE-plane with a conven
tional plane wave spectrum approach denoted PWS [16]. Fig. 6(b) represents this field. On Fig. 6(c), the vectorial d
between the conventional approach and the Gaussian beam shooting and bouncing algorithm (denoted GBSB) is s
observe that the difference remains below−30 dB everywhere. Fig. 6(d) represents the difference between the conven
approach and the process based on Gaussian beam coefficients (denoted GBC). The result is slightly better since the
here is below−35 dB. Concerning the rapidity, the total computation times are respectively 46 min 35 s for PWS, 1 m
for GBSB and 1 min 39 s for GBC. We note that the two Gaussian beam based techniques approximately give the s
and are faster than the PWS approach. Thanks to the linear evolution of its computation time, GBC will become fa
GBSB for a radome with multiple layers.

6. Conclusion

First, the expansion of a field in a set of elementary Gaussian beams on a curved surface has been developed an
Then, two Gaussian beam approaches to treat multilayer dielectric objects have been presented and tested. The fi
shooting and bouncing algorithm using the well-known assumption that one incident Gaussian beam only gives Gauss
through a dielectric interface. The other one is based on the novel Gaussian beam transmission and reflection coeffici
provide the transmitted and reflected fields on a dielectric interface illuminated by a Gaussian beam. Concerning the
both have led to very good performances compared to a conventional radome approach. Furthermore, GBC shows an
linear evolution of computation time with the number of layers thanks to a judicious iterative process. Concerning the a
the comparisons with PWS have been very satisfactory. For objects with thicker layers or with non-constant thickne
expect that Gaussian beam techniques may provide better accuracy than PWS. Indeed, to take into account multiple r
they use iterative processes contrary to PWS which uses global multilayer Fresnel coefficients. To demonstrate this a
intend to make comparisons with other reference results (measurements, numerical methods,. . .).

Finally, this article has shown the abilities of two Gaussian beam techniques to compute the interaction between a
magnetic field and a large dielectric multilayer object. Some improvements are now being investigated to treat more
shapes and more complex structures. To compute sharp nose aircraft radomes, we are looking for new expansions o
the limitations due to high incidence angles and high curvatures. We also want to take into account the effects of meta
on the radome (metallic tip, lightning protector strips). It leads us to the general issue of searching new analytical form
in order to treat the diffraction of a Gaussian beam by a metallic surface with sharp edges.
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