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Abstract

This article aims to evaluate the abilities of Gaussian beam techniques to compute the interaction between an electromagneti
field and a multilayer dielectric object. First, we propose an approach to expand a field on a set of elementary Gaussian beam:
from a curved surface. Then, we study two techniques to compute the interaction: a Gaussian beam shooting and bouncing
algorithm and another original approach using the Gaussian beam transmission and reflection coefficients. We analyse the
advantages (rapidity/accuracy) of these two techniques with respect to a conventional approach to compute the radiation of ar
antenna protected by a radonie.cite thisarticle: A. Chabory et al., C. R. Physique 6 (2005).

0 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Modélisation de la diffraction électromagnétique par des objets diélectriques multicouches par des techniques basées
sur les faisceaux gaussienfans cet article, nous évaluons les possibilités offertes par les techniques basées sur les faisceaux
gaussiens pour traiter I'interaction entre un champ électromagnétique et un objet diélectrique multicouche. Nous proposons
tout d’abord une nouvelle approche pour décomposer un champ connu sur une surface courbe comme une somme de faisceal
gaussiens élémentaires. Nous étudions ensuite deux techniques pour traiter I'interaction du champ avec I'objet : d’'une part ur
algorithme de lancer de faisceaux gaussiens et d’autre part une approche originale qui s’appuie sur la définition des coefficient:
de transmission et de réflexion associés au faisceau gaussien. Nous montrons l'intérét de ces deux techniques (rapidité/précisio
par rapport & une approche conventionnelle pour modéliser le rayonnement d’'une antenne protégée par uroraditae.
cet article: A. Chabory et al., C. R. Physique 6 (2005).
0 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction

The radiation computation of antennas placed behind large dielectric multilayer radomes or lenses requires a compromise
between computation time and accuracy. Exact methods, such as the Method of Moments, imply a prohibitive computation
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time whereas asymptotic methods, such as Geometrical and Physical Optics, are known to be faster but less accurate. Other
asymptotic techniques based on Gaussian beams have been developed and seem to provide both rapidity and accuracy. The
have recently been used to study planar aperture radiation [1,2], metallic reflectors [3-5], lenses [6,7] and radomes [8]. Most of
these approaches can be applied following two steps.

In the first, the incident field is expanded on a discrete set of elementary beams. One possibility is to choose the vectorial
multimodal orthogonal Gauss—Hermite (or Gauss—Laguerre) basis which has been successfully used to express fields scatterec
by metallic [3] or dielectric [6] objects. However, this expansion strongly depends on the paraxial approximation which requires
that the described fields are only weakly diverging along their main propagation direction. Another solution is the Gabor ex-
pansion which expresses a signal as a superposition of Gaussian functions placed on a doubly infinite spectral-spatial discrete
lattice [9]. Felsen et al. [10] have shown that this expansion allows the representation of planar aperture radiation as a sum of
beams shifted both in position and in propagation direction. To avoid the numerical difficulties to determine the expansion coef-
ficients due to the non-orthogonality of the Gaussian functions, two different solutions have been developed. Maciel and Felsen
propose the ‘Gabor-based narrow waisted Gaussian beam algorithm’ [1]. The expansion coefficients are directly obtained by
sampling the initial field. Lugara and Letrou replace Gabor basis by the Gabor frame which corresponds to an over-sampling of
the elementary beams [2]. Expansion coefficients are then obtained with frame adjoint functions, providing numerical stability.
The Gabor expansion, however, presents other limitations: the expansion surface has to be planar and the analytical formulation
of the elementary beams does not always correspond to conventional Gaussian beams. Two other expansion techniques have
also been developed to express a field as a combination of Gaussian beams shifted both in position and in propagation direction
from a planar [4] and from a semi-spherical surface [5]. Although they do not use any base or any frame, but a set of Gaussian
beams, they provide good results.

In the second step, the interaction between the elementary beams and the object is investigated. On a dielectric interface,
most of the techniques assume that one incident Gaussian beam gives one transmitted and one reflected Gaussian beam [11]
This assumption, combined with an expansion of the incident field, has led to the development of Gaussian beam shooting and
bouncing algorithms [7,12].

In this article, we both review expansion and interaction issues. In Section 2, we briefly present Gaussian beams and their
analytical formulations. In Section 3, we propose a new pragmatic expansion to express a field known on a regular curved
surface as a set of elementary beams shifted both in position and in propagation direction. Then, we analyze in Section 4 two
approaches to treat the interaction of an electromagnetic field with a multilayer dielectric object. The first one is a Gaussian
beam shooting and bouncing algorithm. The second one is an original approach using the novel Gaussian beam transmission
and reflection coefficients. Finally, we give in Section 5 an application of these techniques on a 3-layer dielectric ellipsoidal
radome. Concluding remarks follow in Section 6.

2. Gaussian beams

Gaussian beams are analytical solutions of the approximated wave equation. They depend on the paraxial approximation
which requires that the field is only weakly divergent along its main propagation direction. A maximum divergence angle of
20° along this axis is often assumed. The analytical vectorial expression of a Gaussian beam propagating akbingctien
is given by:
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& andk are respectively the relative permittivity and the wave number of the medigris the free space impedaneé*?)
anda?) represent the coefficients associated withittedy polarization.. stands for the scalar Gaussian beam expression:
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0(z), which represents the beam’s complex curvature matrix, is similar to the real curvature matrix in the Geometrical Optics
fields [11]. The inverse of this matrix linearly depends on the axial coordinate:
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Fig. 1. Circular symmetric Gaussian beam amplitude in transversal and longitudinal plan&gywith.
Fig. 1. Amplitude d'un faisceau gaussien a symétrie de révolution dans les plans transversaux et longitudin&gx=pour

Moreover, Q(z) provides the beam’s transversal evolution. It gives both the curvature radii of the wave front pattse
and the Gaussian transversal variation of the amplitude. For a symmetric circular Gaussian beam, the initigl (@)abriky
depends on the beam waist si#g and is given by:

10
00 = sz[o 1] @

Then, the paraxial approximation usually holds whé¥y > 5, i.e., Wy > 0.8% wherej is the wavelength in the medium.
The amplitude of a symmetric circular beam is shown on Fig. 1.

In the far field region, the paraxial approximation produces an important phase error which prevents properly summing
beams with different propagation axes. To overcome this limitation, another analytical expression exists which does not depend
on the paraxial approximation but on a far field approximation. For a Gaussian beam propagating atadshthis far field
expression is given by:

E(r,0,9) = E(r,6, 9)[a%? (coshé, — sind cospé;) + ) (cosvéy, + sind singé;)] (5)
with
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wherer, 6 andg are the spherical coordinates. In the next sections, this expression will be used for the far field radiation pattern
computation.

Hence, Gaussian beams present local properties with a finite extent on the transverse directions associated with a reduce
angular beamwidth radiation. They appear as an intermediate solution between the plane and the spherical waves.

3. Expansion of an electromagnetic field in Gaussian beams

In this section, we aim to develop an approach to express an electromagnetic field in terms of a set of conventional Gaussiar
beams shifted both in position and in propagation direction. Two expansions have previously been proposed. Pathak et al.
distribute the elementary beams on a doubly regular spatial/angular planar grid [4]. In order to find the expansion coefficients, a
point matching technique is then used by sampling the given field and the beam sum in the far field zone. Lemaitre et al. perform
the expansion from a semi-spherical surface [5]. The elementary beam centres are placed on a regular mesh of the surface. C
each mesh point only one beam is located and oriented along the surface normal vector. The expansion coefficients are thel
found by means of a point matching technique directly applied on the spherical surface.

Here, we propose an alternative expansion where the initial (igidH) is known on a regular surface whose character-
istic dimensions (size, curvature radii) are large with respect to the wavelength (Fig. 2). Each elementary beam has its own
referencg O}, &t , ¢ *yn, éi,) whereO}, stands for theith-beam centre an@.,, & €y, €2,) respectively represent thgh-beam
polarization and propagation axes. To take into account the vectorial characterlstlcs of the initial field, each beam may have

anx-polarized componenE’(“) and any-polarized componenﬁ?ﬁl(ﬂ), as shown in (1). Finally, the expansion expression is
given by:
N
Ei = Za}il(xz) Ef,(”) +a£l(yz)1§£l(yz) )

n=1
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Fig. 2. Gaussian beam expansion principle.
Fig. 2. Principe de la décomposition en faisceaux gaussiens.

Then, the characteristics of each elementary beam have to be determined. The beanﬂﬁleateeeegularly distributed
on the initial surface from a mesh of stépAs in [5], only one beam is selected on each beam centre in order to reduce their
number. To have a precise description of the local properties of the electromagnetic fields, each elementary beam propagation
axis is oriented along the local Poynting vector. Moreover, the elementary beam polarization is chosen so that a given field
polarized along a vecttﬁﬁc giveSaL(yZ) expansion coefficients equal to zero. Finally, we obtain:
S W(ENO) AHT(0)) L e nE o
€ = i A % i ’ eyn =" i’ Cxn =
IRCE* (On) A HY (Op))l llezn A exll
The expansion coefficients are computed by a point matching technique. On the mesh points, we project the equality between
the initial electric field and the beam expansion along the two vectors associated to the elementary beam polarization:

&, neL, (8)
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Then, the solution of this linear system gives the coefficients.
The characteristics of the elementary beam set only depend on the choice of two related parameters: Wigamdishe
mesh stepl. Their values affect both the accuracy and the rapidity. Small valuggafre suitable for a very local description
of electromagnetic fields, but it has to comply with the paraxial approximatign= 0.81). For smalld values, the mesh is
tight and there is an important number of elementary beams, increasing accuracy but also computation time. é#awever,
Wo cannot be chosen independently. When we consider thexatiel/ W, we can note that large values of(d > Wp)
lead to a sparse distribution of beams, unable to describe properly the fields between the mesh points. On the other hand,
small values ok (d « Wy) correspond to overlaying strongly coupled beams, making the point matching technique inefficient.
A comprehensive parametric study using various initial fields, incidences and surfaces has confirmed these expected results [13].
It has been shown that a good compromise between accuracy and computation time was achievedOmdtrandd varying
betweem and 2..
The test referred to in Section 5.1 illustrates the good performances of this expansion. However, this technique is limited
since each elementary beam must be local on a limited area of the expansion surface. This implies that the initial field incidence
and the surface curvature must remain moderate.

4. Interaction between an electromagnetic field and a multilayer dielectric object
4.1. Shooting and bouncing Gaussian beam algorithm

A first approach to treat multilayer dielectric objects with Gaussian beam techniques is a shooting and bouncing beam
algorithm. It combines the incident field expansion presented above and the assumption that one incident Gaussian beam on a
dielectric interface generates only one transmitted and one reflected Gaussian beam.

First, we present the well-known approach to treat the transformation of each incident Gaussian beam on an interface
separating two dielectric media with relative permittivity; ande,» [11]. On Fig. 3(a), we define the local referenéesr
and!r respectively associated with the incident, reflected and transmitted beams and the local réfeassoeiated with the
interface. They are defined with respect to the incidence plane and they are centrabarintersection point between the
incident propagation axis and the interface.
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Fig. 3. Gaussian beam shooting and bouncing approach.
Fig. 3. Approche du lancer de faisceaux gaussiens.

The incident Gaussian beam coefficients and initial curvature matrix are expressed in the local incidence reference. They
are respectively denoted!, /1) and 0/ (0). Then, the transmitted and reflected beams characteristics (references, curva-
ture matrix amplitudes) must be determined. Their propagation axis and their curvature matrix can be evaluated by the phase
matching principle which imposes a second order equality between the exponential terms of all the beams. It implies that the
propagation axes satisfy the Snell-Descartes las=(6’ and NG sing! = J/Erzsing") and the complex curvature matrices
are given by:

b
li 011 £ ol
er 0) = Q]f]_(o) - ZQOSGi ?le - Q]fz(o)
20%,— 01,00 04,0) — 2cow’ 03,
; ; b b
cog6 . © cost! 0l (0 t S Pn Qi (10)
oty = [ErL | cofer THTT cosst TIZ | | VEr2C0S9 — /Er1COS | copr  coss!
j b
&2 | cost’ 0l 0 ol 0) VEr2 01, 0%
cosp! ~12 22 cosh! 22

QZ stands for the surface curvature matrixinMoreover, to estimate the reflected and transmitted beam coefficients, we use
the Fresnel coefficients ihleading to:

i t i
() — Er2C08" = V1OV iy 2/Er1co i)
€71 €00’ + , /£,2 COSH! JEr1CosH! + /€, C0SH!
,/sr cosfi — ,/sr cosy! ' 2./ corsei (11)
oD = veorl _ r2 pRIdan) al ) — rl pRIan)
JEr1cosdt + /g5 cosp? ’ /e,1C0S0! + /&, COSH?

In the shooting and bouncing algorithm, each elementary Gaussian beam, denoted GB on Fig. 3(b), is tracked through the
dielectric media. When it reaches an interface, it generates two new beams (transmitted and reflected) which are then tracked i
turn. All different beams are treated the same way and the algorithm is stopped according to a beam power lower limit. Finally,
the fields in the entire space can be computed as a sum of Gaussian beams.

The accuracy of this algorithm is limited by the assumption that one Gaussian beam gives only Gaussian beams through
a dielectric interface. Its computation time depends on the number of beams generated by the algorithm and exponentially
increases with the number of layers.

4.2. Approach based on Gaussian beam reflection and transmission coefficients

We propose an original approach based on the definition of novel Gaussian beam reflection and transmission coefficients.
In this subsection, these coefficients are first defined. Then, a fast iterative process is proposed to compute multilayer dielectric
objects.
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The Gaussian beam reflection and transmission coefficients are obtained from a conventional technique using the plane
wave spectrum representation [16]. We consider a dielectric interface between two media with relative perspittantye, »
illuminated by an incident field associated to an incident referé@éeé;, &l “‘) On the interface poink, the incident field
can be written as:

1 +00 +00 .
E’(I):ﬁ/ /El(k;,kly)exp(—jkl.oll)dk;dk’y (12)
—00 —00

wherek! = (kj'c Y Z) are the plane wave vectors expressed in the incident referenceidfthe wave number in the first

medium, thdcé component is obtained frowf = kj{ + kly + k; . E’ represents the plane wave spectrum and corresponds to
the spatial Fourier transform of the fieldzt= 0
+00 +00
E(ki ki) = / / E(x',y", 0)exp(jkix’ + jki y') dx' dy! (13)
—00 —00

Using the local tangent plane approximation, the reflected and transmitted field expressiarendre written as:

+00 +00
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whereR andT are the dyadic Fresnel coefficients depending both on the plane wave propagation axis and on the local tangent
plane orientation. In the conventional approach, to obtain the reflected and transmitted fields on the interface, these two integrals
must be numerically computed, which can be time consuming.

The Gaussian beam coefficients are developed to suppress these numerical integrations. Considering now an incident
Gaussian beam, its analytical expression (1) combined with (13) provides a Gaussian analytical expression for the spectrum:

27 j [k ! L atC O —I—ai(yz)ki‘ "
EL, ki) = e exp( [ ] () PSR EPLIC L R, B (15)
k1y/detQi(0)  \2k [} ky Y K :

Assuming the paraxial approximation and slowly varyil?agind% coefficients, the asymptotic evaluation of the integrals
(14) with the steepest descent path method [14] gives analytical expressions for the reflected and transmitted fields on the
interface:

E"(I)=R({*.A(D)E' (1) = Rep(E (D). E'()=T ([, i(D)E" (1) = Tea(DE (1) (16)
Thex andy components ok's correspond to the saddle point of the steepest descend path method. They are given by:
P2 P2
kis . K+ kY
[k” ] k10(2) [ } ) k' =k1— Tk 17)

Rgg and TGB define the novel dyadic coefficients associated with the Gaussian beam. They provide analytical expressions of
the transmitted and reflected fields on a dielectric interface illuminated by a Gaussian beam. These expressions can be combinec
with the previous expansion for dielectric multilayer object computation.

An iterative solution technique has been developed [15], as illustrated on Fig. 4. As usual, the incident field is expanded
in Gaussian beams. Then, on the first interface, the transmitted and reflected fields are computed with (16). The transmitted
field is expanded whereas the reflected field is stored at [@yelOn the following interfaces, the same process is applied.

On the last one, the procedure is reversed, the transmitted field is stdrét) athereas the reflected field is expanded. The
process then crosses the object in the other direction. On the last but one interface, the transmitted field i &dddd tnd
expanded. After that, the reflected field is storedMt— 1}. This process is repeated until field power reaches a given limit.
Finally, the fields on the first and last interfaces respectively correspond to the sum dflleaed to the sum of levelM}.

They are expanded in Gaussian beams in order to obtain the fields reflected and transmitted by the object. This process will
remain efficient for objects with many layers because its computation time linearly depends on the number of layers.
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Fig. 4. Process based on Gaussian beam reflection and transmission coefficients.
Fig. 4. Processus basé sur les coefficients de réflexion et de transmission d’un faisceau gaussien.

5. Application
5.1. Example of a field expansion

To test the expansion efficiency on a curved surface, we expand an initial field on a semi-spherical surface. This field is
radiated by a planar aperture placedzin= 0 (Fig. 5(a)). The electric field distribution in the aperture is linearly polarized
along thex-axis and given by:

. 7 I o : ;
E! = COST if o' < L/2 with p! =/xi* + yi* (18)

0 elsewhere

The aperture width i€ = 8 and the frequency is 10 GHz. The expansion is performed on a semi-spherical surface centred
on the aperture with a radius of 12The expansion parameters @dre- . andx = 0.9. In a preliminary stage, the initial field is
obtained on this surface thanks to the Kottler radiation integrals. Then, the expansion coefficients are computed by solving the
linear system (9). This expansion requires 850 beams and needs 17 s on a PC 3 GHz CPU.

On Fig. 5(b), we show the field in thE-plane at;’ = 10x obtained from the Gaussian beam sum and from the Kottler
radiation integrals. We observe that the Gaussian beam sum takes correctly into account the field propagation in the near fielc
region. On Fig. 5(c), we represent the far field radiation pattern infth@ane. Here, we recall that Gaussian beams must
be computed with their far field expression (5). We note a very good agreement between the two results. Moreover, we have
verified that the vectorial difference is belew60 dB.
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Fig. 5. Comparisons between the Gaussian beam expansion and the Kottler radiation integrals.
Fig. 5. Comparaisons entre la décomposition en faisceaux gaussiens et les intégrales de rayonnement de Kottler.
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Fig. 6. Configuration du radome et cartographies du champ réfléchi dans I€ plan

5.2. Radome computation

As an application of both approaches presented in Section 4, we place the aperture of the example above under an ellipsoidal
3-layer radome. The configuration is detailed on Fig. 6(a). First, we compute the reflected fieldchplkinee with a conven-
tional plane wave spectrum approach denoted PWS [16]. Fig. 6(b) represents this field. On Fig. 6(c), the vectorial difference
between the conventional approach and the Gaussian beam shooting and bouncing algorithm (denoted GBSB) is shown. We
observe that the difference remains bele80 dB everywhere. Fig. 6(d) represents the difference between the conventional
approach and the process based on Gaussian beam coefficients (denoted GBC). The result is slightly better since the difference
here is below—35 dB. Concerning the rapidity, the total computation times are respectively 46 min 35 s for PWS, 1 min 18 s
for GBSB and 1 min 39 s for GBC. We note that the two Gaussian beam based techniques approximately give the same time
and are faster than the PWS approach. Thanks to the linear evolution of its computation time, GBC will become faster than
GBSB for a radome with multiple layers.

6. Conclusion

First, the expansion of a field in a set of elementary Gaussian beams on a curved surface has been developed and analysed
Then, two Gaussian beam approaches to treat multilayer dielectric objects have been presented and tested. The first one is ¢
shooting and bouncing algorithm using the well-known assumption that one incident Gaussian beam only gives Gaussian beams
through a dielectric interface. The other one is based on the novel Gaussian beam transmission and reflection coefficients. They
provide the transmitted and reflected fields on a dielectric interface illuminated by a Gaussian beam. Concerning the rapidity,
both have led to very good performances compared to a conventional radome approach. Furthermore, GBC shows an interesting
linear evolution of computation time with the number of layers thanks to a judicious iterative process. Concerning the accuracy,
the comparisons with PWS have been very satisfactory. For objects with thicker layers or with non-constant thicknesses, we
expect that Gaussian beam techniques may provide better accuracy than PWS. Indeed, to take into account multiple reflections,
they use iterative processes contrary to PWS which uses global multilayer Fresnel coefficients. To demonstrate this ability, we
intend to make comparisons with other reference results (measurements, numerical mejhods,

Finally, this article has shown the abilities of two Gaussian beam techniques to compute the interaction between an electro-
magnetic field and a large dielectric multilayer object. Some improvements are now being investigated to treat more general
shapes and more complex structures. To compute sharp nose aircraft radomes, we are looking for new expansions overcoming
the limitations due to high incidence angles and high curvatures. We also want to take into account the effects of metallic parts
on the radome (metallic tip, lightning protector strips). It leads us to the general issue of searching new analytical formulations
in order to treat the diffraction of a Gaussian beam by a metallic surface with sharp edges.
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