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Abstract

In this paper, a review is presented on computational methods for the prediction of Radar Cross-Sections (RCS) and
platform interactions. In a first part the techniques for RCS computations are considered. A list of frequency and time
solvers for the Maxwell’s equations are given with their performances in memory requirements and run-time. Boun
ements Methods, Finite Difference Time Domain Methods, Finite Elements—Finite Volume Methods, Hybridizatio
Factorization Techniques, are reviewed. The exceptional performances of the Fast Multipole Method compared to
the classical Moment Method are especially highlighted. We have also made mention of some recent research wo
merical techniques conducted in France. Asymptotic methods are mainly discussed in the second part of this articl
to antenna–platform interactions. After a brief description of the historical evolution of Geometrical Theory of Diffr
tools for antenna analysis and design, the advantages and drawbacks of different techniques for generating the geo
searching the rays are discussed. Then a list of unsolved problems and lines of future research on asymptotic tech
presented together with an example of a computer code founded on the Uniform Theory of Diffraction. In the conclusi
new research topics such as higher order finite elements defined on surfaces represented by B-Splines and macro-
tions containing information on the phase or derived from analytical or asymptotic solutions are briefly introduced.To cite this
article: F. Molinet et al., C. R. Physique 6 (2005).
 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

État de l’art sur les méthodes de calcul pour la prédiction des surfaces équivalentes radar et des interactions antennes–
structures. Dans cet article une synthèse sur les méthodes de calcul pour la prédiction des Surfaces Equivalentes Ra
et des interactions antennes–structures est présentée. Dans une première partie les techniques de calcul des SER s
rées. Une liste de solveurs en régime harmonique et stationnaire est donnée avec leurs performances en place mémo
de calcul. Les méthodes d’éléments finis de frontière, de différences finies en régime temporel, d’éléments finis vo
ainsi que les techniques d’hybridation et de factorisation sont passées en revue. En particulier, les performances
nelles de la méthode des multipôles rapides comparées à celles de la méthode classique des moments sont mises
Nous avons aussi mentionné les travaux de recherche récents sur les techniques numériques conduits en France. L
asymptotiques sont surtout traitées dans la seconde partie de cet article consacrée à l’interaction antennes–structures
courte description de l’évolution historique des outils de calcul fondés sur la Théorie Géométrique de la Diffraction, le
tages et inconvénients des différentes méthodes de représentation de la géométrie et de recherche des rayons sont d
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1631-0705/$ – see front matter 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.
doi:10.1016/j.crhy.2005.06.013
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une liste des problèmes non résolus et les axes de recherche futurs sur les méthodes asymptotiques sont présenté
exemple de code de calcul fondé sur la Théorie Uniforme de la Diffraction. Dans la conclusion quelques nouveaux suj
cherche tels que les éléments finis d’ordre supérieur définis sur des surfaces décrites par des B-Splines et les macro-f
base contenant une information sur la phase ou dérivées de solutions analytiques ou asymptotiques sont brièvemen
Pour citer cet article : F. Molinet et al., C. R. Physique 6 (2005).
 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Keywords: Radar Cross-section; Antenna–platform interaction; Numerical methods; Asymptotic methods; Uniform Theory of Diffracti

Mots-clés : Surface Equivalente Radar ; Interaction antenne–structure ; Méthodes numériques ; Méthodes asymptotiques ; Théorie U
la Diffraction

1. Introduction

Computational electromagnetics constitutes nowadays a wide domain of research and development (R & D) in a
which the chief actors are

(i) the Universities and the research centres, mostly involved in the conception of new algorithms,
(ii) industry, active in the development of software adapted to its needs, assisted by software development companie

(iii) some SME highly specialized in a particular technique.

From this R & D activity throughout the world, emerges every year, an enormous number of publications on new alg
most of which have only a short lifetime, while a few of them constitute a major advance which will profit by long
development.

In this article we limit our state of the art review to this last category. However, some new lines of research which h
yet passed through the whole chain of investigation running from the research state to industrial use, will also be give

Computational methods can be classified in two categories: numerical methods for the resolution of the Maxwell eq
called also exact methods, and asymptotic high frequency methods, which are only valid when the characteristic dime
the scatterer are large compared to the wavelength.

Numerical methods are limited by the electrical size of the body measured in wavelengths. Thus, as the frequen
creased, the computer storage or the CPU time required to set up and solve Maxwell equations becomes prohibitiv
frequency.

In the past, for targets in and just above resonance, numerical techniques were used. For radar targets in the m
band, asymptotic high frequency methods formed the basis for computation. However, owing to the rapid progress in n
techniques, especially during the last fifteen years, their limit of applicability has been shifted to higher frequencies and
cludes a large part of the diffraction problems encountered at radar frequencies, such as radar cross-section (RCS) co
electromagnetic compatibility applications, and antenna design.

However, at the same time, the size and complexity of objects have also risen, especially in the field of radiocommun
but also in the field of radars, where objects which are both complex in shape and partially composed of lossy die
anisotropic material are potential radar targets. While most of these objects can now be treated by a combination of n
techniques, especially for the prediction and analysis of their radar cross-sections, the antenna–platform interaction,
on large platforms like airplanes, spacecrafts and ships, still fall outside their domain of applicability. For this rea
have divided our review in two parts: the prediction of radar cross-sections where numerical methods predominate
prediction of antenna–platform interactions where asymptotic methods remain absolutely necessary. These two su
treated respectively in Sections 2 and 3. Of course, numerical methods are also of great importance in antenna an
design, and some first applications of these methods to antennas mounted on a spacecraft have been reported recen
promising algorithms are also described in this special issue [2]. However, since most of the numerical techniques
in Section 2 concerning RCS predictions are also applied in antenna analysis, these methods will not be presented a
Section 3 devoted to antenna–platform interactions. On the other hand, high frequency methods [3] are still of impor
RCS computation especially at higher frequencies. Moreover, they give a physical insight in the diffraction processe
can be useful in the design of low RCS targets. Again, since the corresponding software tools employ the same te
for the geometrical modelling of surfaces and for ray searching as those discussed in the antenna–platform interac
we will limit our analysis in the RCS part to some fundamental discussions on asymptotic methods, and especiall
role of the caustics which gives greater importance to current-based methods to the detriment of field based method
computation.
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It was impossible to present in detail the different numerical methods mentioned in our review. Instead we have g
references of some of the main articles where the information can be found. We have also quoted the work on n
techniques of French researchers in applied mathematics which is not so well known by the electromagnetic commun

2. Predictions of Radar Cross-Section: synthesis on numerical methods

Numerical methods in electromagnetism have increased in efficiency in the last decades. These techniques are no
most frequently used for RCS, CEM applications and antenna design. The choice of the methods to be used depends

• Time discretization: time harmonic or time domain formulations;
• Spatial discretization: finite differences / volumes or elements methods;
• Solver: explicit, direct or iterative;
• Sensors (emitters/receivers): monostatic, bistatic,. . . ;
• Media: in/homogeneous, an/isotropic, dispersive;
• Computer resources: distributed / shared memory, . . . ;
• The complexity of the problem to be solved: multiscale, large body,. . . .

In this section, we first consider three main families of numerical methods: the boundary elements methods (BEM
difference time domain methods (FDTD), and finite elements/volumes methods (FEM/FVM ). To solve complex pr
(large body and many apertures), we present some hybridization and factorization techniques. Asymptotic method
briefly discussed.

2.1. Boundary Elements Methods (BEM)

These methods are derived from the discretization of the Maxwell integral equations. Thirty years ago, the Method
ments (MoM) appeared (Harrington [4]): from harmonic domain integral equations we obtain an algebraic system co
from a complex dense matrix, right-hand sides for each incident wave and current density as unknowns. The most
formulation is the well-known Electric Field Integral Equation (EFIE) using the Hdiv ‘edge’ boundary elements on tria
meshes (Rao Wilton Glisson basis functions [5]). A good accuracy of the solutions could be obtained by taking the l
each edge of elements of the orderλ/7. Some extensions to Magnetic Field Integral Equation (MFIE) and Combined Fie
tegral Equation (CFIE) could be used to solve problems constituted by homogeneous domains of media, but these for
are less accurate than EFIE and require at least aλ/10 mesh size. However, the CFIE is more stable and is a remedy t
problem of spurious frequencies.

2.1.1. Direct solvers
Most of the industrial BEM codes use direct solvers (LU factorization) on parallel machines and are now very effic

problem sizes less thanN = 200000 unknowns. The limitation is due to memory requirements of O(N2) to store the matrix (in
core or out of core) and CPU of O(N3 + sN2) to solves linear systems (s the number of sources).

2.1.2. Iterative solvers
Iterative solvers (conjugate gradients, GMRES, QMR) can reduce the CPU overheads to O(spN2) wheres is the number

of sources andp is the number of iterations, but matrix products are costly. To decrease the cost of matrix products, r
during the years 1994–1995, Multi-Level Fast Multipol Algorithm (MLFMA) using the CFIE formulation (Chew [6,7]) lea
CPU use of O(spN log2 N) and memory storage of O(N logN). Problem sizes of more thanN = 10 million unknowns could
be now available for RCS problems (up to S and X bands).

The Table 1 shows a comparison between MoM and FMM in case of a bistatic perfectly conducting sphere (report
EMSS from ESA [1]).

The use of preconditioning (SPAI for example) often decreases run-time and gives a convergence of the solution
case of monostatic or multi-sources problems (when the number of sourcess is large), efficiency could be increased by us
block multi right-hand side iterative solvers as Block GMRES, MGCR (Sylvand [8], Simon [9]) or interpolation techn
(Carayol [10]). Mer [11] uses FMM methods in Desprès Integral Equations to obtain accurate solutions. Meanwhile, to
FMM methods, more evaluations have to be made in terms of accuracy, for cavities and bodies including absorbing m

2.1.3. Time domain
Time domain boundary element methods (BEMTD) has been developed during the 1990s [12,13]. This method us

finite elements to compute potentials and an implicit, stable, temporal scheme. At each time step, it needs to solve
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Table 1
Comparison between FMM (CFIE without preconditioning, mesh inλ/10) and MoM. CPU time is obtained with an AMD Opteron 24
2.2 GHz

Sphere
diameter

Number of
unknowns

MLFMA
memory

MLFMA
run-time

MoM
memory

MoM
run-time

2.566λ 6 372 41.4 Mbytes 83.0 s 620 Mbytes 655 s
5.132λ 25 050 160.5 Mbytes 355.9 s 9.35 Gbytes 4.74 h

10.264λ 100 005 636.3 Mbytes 0.46 h 149 Gbytes not solv
20.528λ 398 304 2.475 Gbytes 2.61 h 2.31 Tbytes not sol

linear system (conjugate gradient or direct solver) and a matrix convolution. BEMTD are well suited for large band p
and, to increase the efficiency, FMM techniques could be used during the matrix convolution (see Terrasse [14]).

2.2. Finite Difference Time Domain methods (FDTD)

These methods are derived from the discretization of the time domain Maxwell equations on structured meshes
time, we obtain a fully explicit scheme (Yee scheme [15]) allowing us to compute quite easily several millions of unk
(electromagnetic fields). We find many applications in CEM and in computation of fields in heterogeneous media. T
drawback of FDTD is the accuracy of the solution: firstly, absorbing boundary condition for the outer boundary in fre
gives spurious solutions if the distance between this boundary and the body is too small, and secondly, the stair cas
mation of the body produces dispersive solutions. Recently Béranger in 1994 [16], introduced Perfectly Matched Laye
which removes the drawbacks of absorbing boundary conditions. To remove the stair case approximation, a coupling
FDTD (in free space) and FEM or FVM (a region around the body discretized with tetrahedrons, see next subsection)
used.

2.3. Finite Elements/Volume Methods (FEM/FVM)

These methods are derived from the discretization of the Maxwell equations on unstructured meshes (tetrahedron
hexahedrons).

2.3.1. Harmonic time domain
FEM are based on Hcurl ‘edge’ elements (Nédélec basis functions [17]). These elements are free of spurious m

lead to the correct field continuity properties at the interfaces between different media particularly well suited for the m
of inhomogeneous anisotropic scatterers. To model homogeneous regions and particularly the unbounded free-spa
equations (BEM) have been combined to FEM and the compatibility between Hcurl end Hdiv elements has been es
The combined equations lead to solve a quite-sparse linear system and direct and/or iterative solvers could be used (s
some applications).

2.3.2. Time domain
FVTD was first introduced in electromagnetic by Shankar in 1989 [19] and was derived from codes used in CFD

equations), but solutions were too dissipative. Later, more accurate explicit high order schemes have appeared [20].
Concerning FETD (mixed finite elements) or DGTD (Discontinuous Galerkin elements) [21,22] we introduce a hig

non dissipative explicit scheme, with very accurate solutions for long time simulation. To reduce the free-space regi
techniques could also be combined with this time domain method.

2.4. Hybridization/factorization

Coupling together different methods is a good way to reduce computer requirements in terms of memory and CPU
solving multiscale and complex structures for electromagnetic problems: large bodies with cavities, protuberances,
dielectric materials, . . . . It consists in first separating the global problem in smaller local problems, then computing
solutions with an appropriate method for each sub domain, and, at the end, in summarizing the solutions.

Collaborative simulations are also a good application for coupling techniques: the electromagnetic simulations of
or RCS contributors must combine models under the responsibility of various partners: i.e., antennas developed by an
systems manufacturer, missiles by a weapon manufacturer, engine by an engine manufacturer. The aircraft manufac
be able to gather these models to get the integrated behaviour of all sub-systems.



630 F. Molinet et al. / C. R. Physique 6 (2005) 626–639

hniques

ors on the
actorized

does not

s.
he free-

the short
on of the
d

at

egral

rt circuit
e solved

e problem
Dassault
ng BEM

r):
knowns),
tion
reement
We find a discussion and a full description of some hybridization and factorization techniques in [23,24]. These tec
have been first introduced in [25] and further reported in [26].

2.4.1. Factorization
This consists of a matched domain decomposition, separated by interfaces. Each domain is reduced to operat

interfaces by using a suitable numerical method. Then a gathering of operators leads to the final solutions. If the f
operators process on the same basis functions than the solver, factorization is only an algebraic manipulation and
provide any loss of accuracy.

Factorization is an efficient method and we obtain a reduction of cost fromn to n2 wheren is the number of sub domain
Limitations of this method concern the decomposition of unbounded regions and difficulties to model interfaces in t
space, leading to spurious solutions.

2.4.2. Hybridization
We decompose the global problem in two sub problems: in the case of apertures in a body the first problem, called

circuited problem, contains the body without apertures (for an air duct the aperture or interface will be the cross secti
air intake); we obtain the radar cross section RCS1, the source currentsJs and receiver currentsJr at the interface. The secon
problem, called the local problem, contains the apertures and near regions around apertures; we use−Js currents as sources
the interface and solve theMs currents at the interface. Then we compute an integral reaction at interfaces betweenMs currents
inducted by emitters from the local problem, andJr currents inducted by receivers. Finally we summarize RCS1 and int
reaction to obtain an approximate RCS of the global problem.

Hybridization is well suited for the computation at high frequency when the aperture size is > 5 wavelength. The sho
problem could be solved by a high frequency method: asymptotic or FMM for example and the local problems could b
by numerical methods adapted to the apertures: BEM for example.

For an application to the channel mock-up at 7 GHz, see Fig. 1. The measurements have been made at ONERA. Th
is decomposed in 9 domains: an outer region (the cylinder) is solved by the method of asymptotic currents (MoASC in
Aviation Spectre code) and the inner region (6 inlet sections and 2 engine wheels) is solved by factorization (usi
methods in Dassault Aviation Spectre code).

Fig. 2 shows a comparison of monostatic near field RCS in polarizationθθ function ofθ (x, z angle, wherez is along the
duct,θ = 90◦ for an incident wave entering in the duct andθ = 180◦ for an incident wave perpendicular to the outer cylinde
red crosses for measurements, blue line for reference factorization method (9 BEM methods, involving 500 000 un
cyan line for hybrid method (1 MoASC+ 8 BEM methods involving 200 000 unknowns) and green line for factoriza
method (9 BEM methods with an truncated outer cylinder involving 200 000 unknowns). We observe a very good ag
between all solutions, except for the factorization with a truncated cylinder whenθ > 160◦.

Fig. 1. Perspective of the channel mock-up.
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Fig. 2. RCS of the channel mock-up as a function ofθ for 7 GHz.

2.5. Asymptotic methods

Geometrical Optics (GO) predicts an infinite value for the RCS of a flat plate of finite dimensions. This wrong resu
be explained by the fact that the rays reflected by the surface of the plate are all parallel and therefore pass throug
caustic at infinity.

A more refined analysis consists in observing that in the vicinity of the shadow boundaries of the reflected GO field,
diffracted by the rim of the plate lie in the transition regions of the reflected field. At large distance from the plate, th
of rays reflected by the plate is entirely situated in the transition zones and GO is no longer valid and must be replac
Uniform Theory of Diffraction (UTD). It can be shown that by adding to the reflected field at an observation point loc
finite distance, the field diffracted by the rim given by UTD and by letting the observation point tend to infinity in the direc
reflection, the terms which do not satisfy the Sommerfeld radiation condition cancel, and the rest of the formula gives th
result. This procedure, which involves a passage to a limit, is not easy to apply to a general polygonal plate. Moreover,
problem arises when the plate is slightly bent, in which case the derivation of the correct result is much more complica
consequence, field-based methods are not suitable for RCS computations of flat or quasi-flat plates. An easier approa
in determining first the currents on the plate and then in calculating the fields radiated by these currents. This techniq
is called a current-based method, is widely used in RCS computation of complex targets, composed of curved and
surfaces, such as airplanes, ships and tanks. In the past, most of the codes used the Physical Optics (PO) approxima
determination of the currents associated with the Physical Theory of Diffraction (PTD) giving a correction to PO whe
edges are present. Since PO considers only the currents on the illuminated part of an object, this method is not valid
bistatic angles. It gives also inaccurate results for the monostatic RCS for nose on illumination of an airplane or a mis
asymptotic current method, which consists in completing the GO contribution to the currents on the surface by transitio
currents close to the light shadow boundary, and by the creeping wave current in the shadow region, permits us to
the shortcomings of PO. The most recent versions of asymptotic methods codes for RCS computation integrate the a
current method, the rays being determined by a shooting of rays procedure described in the antenna–platform interact
of this article.

3. Antenna–platform interactions

3.1. Introduction

The interactions of an antenna with its platform or with other surrounding objects is a fundamental problem which a
various domains, such as radars mounted on an airplane or a ship, terrestrial or satellite radiocommunications and e
netic compatibility between equipments.

This problem differs from the computation of the Radar Cross-Section (RCS) by the fact that the source, or, reci
the observation point, are at a finite distance from the platform supporting the antenna, whereas, for the RCS, the
illuminated by a plane wave and the scattered field is observed at infinity. In addition, practically all algorithms which ha
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developed in the past have been limited to monostatic configurations, the emitter and the receiver being superposed, w
antenna–platform interaction is essentially bistatic. These differences are at the origin of the development of algorithm
take into account the near field interactions and which are specifically tuned to antenna analysis and design.

Generally, the modelisation of an antenna in its environment implies the use of several methods depending on the
the complexity of the structure of the antenna itself, and on the natural or artificial obstacles which intercept the radiat

In this review, we limit our investigations to artificial man-made obstacles constituted by the platform supporting the a
mast, tower, building, terrestrial vehicle, ship, spacecraft and aircraft. In addition to the deformation of the radiation p
the antenna (amplitude, phase, polarisation, directivity), the surrounding obstacles may also enhance or reduce th
between antennas located on the same platform. It is well known that the electromagnetic characteristics of an anten
strongly modified and its performance reduced by the platform on which it is mounted. Since most antennas are not de
a particular platform and a specific location on it, it was important to develop appropriate software to compute the int
of the antenna with the platform as well as with other neighbouring antennas.

The computational methods which have been developed for the prediction of antenna–platform interactions can be
in two main categories: numerical methods and asymptotic high frequency methods.

Numerical methods are mainly used for the modelisation of the antenna itself. The different techniques are the sam
described in Section 2 for the computation of the RCS. Despite the rapid augmentation of their performance during
fifteen years, due mainly to the Fast Multipole Method, the treatment of the interactions between an antenna and its
has only started very recently [1] for medium sized platforms and antennas defined by their free space radiation diag
complex antennas mounted on a platform which is very large compared to the wavelength, or for an array of elements c
to the surface of an aircraft, the size of the problem is still too big for strictly numerical methods.

The asymptotic high frequency methods used in antenna analysis and design comprise principally the Geometric
(GO) associated to the Geometrical Theory of Diffraction (GTD) which give directly the scattered field along rays a
asymptotic current method which give the currents on the surface of the scattering object. In connection to these meth
techniques have been developed mainly to remedy locally some of their insufficiencies; for instance, the Uniform T
Diffraction giving correctly the field in the transition regions close to the shadow boundaries, the Spectral Theory of Dif
allowing one to extend the theory to non local plane waves, the Incremental Theory of Diffraction valid in the vicinity
edge and verifying the boundary conditions, the Equivalent Edge Currents giving the field on a caustic of the edge d
rays. On account of the bistatic behaviour of the interaction between an antenna and the surrounding structures, tech
the Physical Optics (PO) approximation, which consists in calculating the currents on the illuminated region of an obje
the GO field, and the Physical Theory of Diffraction (PTD), giving a correction to the field radiated by these currents
the existence of fringe currents close to the edge of a wedge, which are both very important in RCS computations, a
importance here. An exception is the computation of the radiation pattern of reflector antennas where GO and GTD
valid, owing to the presence of a caustic of the reflected field and of the field diffracted by the rim, at infinity.

On the other hand, the asymptotic current method which gives the currents on both the illuminated region and the s
region by taking into account the effect of creeping waves, plays an important role, especially in hybrid methods com
numerical technique with asymptotic solutions.

In Section 3.2, after a brief description of the historical evolution of GTD tools for antenna analysis and design
advantages and drawbacks of different techniques for generating the geometry and searching the rays, are discussed

In Section 3.3, we present a list of problems which remain to be solved. These problems will be the basis from
different lines of future research and development will be defined.

In Section 3.4, a typical UTD code for antenna analysis is presented with some comments and illustrations on the ge
modelling of the platform, the ray searching technique and the types of outputs provided.

3.2. Historical development and state of the art of GTD tools for the computation of antenna–platform interactions

At high frequencies, or, more precisely, whenkD � 1 wherek is the wave number(k = 2π/λ) andD is a characteristic
dimension of the scatterer, the reflected GO field constitutes the dominant contribution to the scattered field. It is the firs
an asymptotic expansion in entire or fractional powers of 1/k and is of order zero with respect to this parameter. The next t
of orderk−1/2 corresponds to the field diffracted by a sharp wedge. Creeping waves, which are of orderk−1/3, are generally
a weaker contribution, owing to the exponential decay along their propagation path. However, this argument is only
RCS computation in a monostatic diffraction process since there, the creeping waves travel a long distance because
to circumvent the object in order to shed energy in the direction opposite to the direction of propagation of the incide
unless it is diffracted by an edge and consequently of lower order. In the case of an antenna interacting with a platfor
curved surfaces, creeping waves may exist which travel on a very short distance. In this case, their contribution can
be neglected. Since the beginning of the development of codes for antenna analysis and design, the effort has been p
three contributions.
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Fig. 3. Chain of interactions comprising reflections, edge diffractions and creeping waves.

For computing the GO field reflected by curved surfaces, it is necessary to know the principal radii of curvature
principal directions of the surface at the point of reflection. Since the curvatures depend on the second derivatives of th
we see that the geometrical modelisation of the latter is constrained by completely different limitations, compared to n
methods. In the first codes which have been constructed (code SARGASSES [27] from THALES, France, code NEC-
from University of Ohio, USA), the structures were represented with the aid of elementary analytical surfaces (cylinde
ellipsoid, flat plates, etc.. . . ). The rays were searched by solving the equations verified by the co-ordinates of the inte
points, obtained by applying the Fermat principle. The knowledge of the rays and of the surface characteristics at the in
points allows one to calculate the reflected and diffracted fields. In order to make this operation easier, MOTHESIM ha
oped the library PROMETHEE [29] which is composed of modules, each of which treats a specific interaction (reflectio
diffraction, creeping waves) and has general inputs and outputs, allowing them to be used at any place in the interac
along a ray trajectory. For instance the same module corresponding to a reflection is used atQ1 andQ3 in the chain of interac-
tions of Fig. 3. These modules which take also into account the necessity to use specific asymptotic solutions in the v
the shadow boundaries given by the Uniform Theory of Diffraction, have been integrated in the software SARGASSE
end of the 1980s.

The geometrical modelisation of a complex object (an airplane for instance), with a collection of analytical surface
expensive operation (3 weeks for an engineer) and its accuracy is difficult to control. For this reason, this technique
progressively replaced by CAD procedures, which have, very rapidly, been installed on workstations.

The second version of SARGASSES makes use of curved surfaces represented by NURBS (Non Uniform Ra
Spline). The rays are still searched directly by applying Fermat’s principle and solving the corresponding equations o
squares. This is, however, a very heavy procedure, especially when applied to double interactions (double reflections,
diffraction) on a general complex object, without a first trial of the rays. For a systematic search of ray trajectories w
interactions, the computer time needed nowadays remains still too long and unfeasible on a workstation.

In order to overcome this difficulty, researchers turned towards a new technique called the ‘shooting of rays’, which
in emitting a ray or a thin pencil of rays in a given direction and in following its path by applying at each interaction poin
a surface, the laws of reflection. By emitting rays in all directions and selecting those which reach a small volume ar
observation point, it is possible to determine all simple and multiple reflected rays. This procedure applies also to the d
by an edge. In this case, new elementary pencils of rays are emitted from the interaction point on an edge, in the di
the generatrixes of the Keller cone. This procedure is used in the software SPECTRE [30] from Dassault Aviation for
objects (air-planes), modelled geometrically with the CAD tool CATIA.

The shooting of rays is particularly rapid for searching multiply reflected rays on an object, the surface of which is m
by plane facets, since, in this case, the divergence per unit length of a pencil of rays remains constant, so that t
divergence can be easily controlled. In the case of curved surfaces however, the divergence of a pencil of rays can ch
rapidly, especially close to shadow boundaries as illustrated on Fig. 4.

Fig. 4. Divergence of the reflected rays near the shadow boundary.
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In this case, it is necessary to reduce drastically the width of the pencil of rays in some directions of space and s
the shooting of rays procedure until a pencil sufficiently thin reaches the observation point. This difficulty, which le
much longer CPU time, is at the origin of the preference accorded in the ray search tools to facetted surfaces. An
is the code AAPG 2000 (Aircraft inter-Antenna Propagation with Graphics) de Matis Inc. in collaboration with IIT Re
Institute, USA [31] which operates on a three-dimensional platform–surface representation, consisting of a collection
triangular facets. The ray searching procedure starts with a set of initial trial paths which can be obtained by the shootin
technique. In a second step each of the initial paths is optimized by an iterative algorithm which searches for an extrem
curve length. The geometrical parameters of the true surface which enter in the UTD formulas are evaluated via a dou
interpolation, one for smoothing the field of tangent vectors and the other for smoothing the field of normals in the vic
the interaction point for reflection or edge diffraction and along the facetized surface path for creeping rays.

The computation of the geometrical data of the true non facetted surface at the interaction points of the ray path
surface is essential for applying the UTD formulas. Otherwise the information concerning the crossing of a caustic of
or edge diffracted rays would be lost and the phase shift ofπ/2 (in the time convention exp(iωt)) affecting a wave crossing
caustic would not be taken into account. There are still some GTD codes in France and elsewhere which do not take c
problem.

It is also important to mention that the number of facets needed for the geometrical modelling of a surface is not inde
of the frequency and augment with the latter. The criterium which is usually adopted is that the maximum distance bet
surface and the facet is less thanλ/16, whereλ is the wavelength. When a fixed sampling is used at higher frequencies, a
noise’ appears in the radiation diagram.

Another GTD code which operates on surfaces represented by plane triangular facets coupled with a shootin
procedure has recently been developed in France by ONERA (code FERMAT [32]). This code is well adapted to ve
scenes composed of buildings, trees and vegetation. Some more information on the coupling between the shootin
technique and the asymptotic methods used in the code FERMAT may be found in [33,34]. For aerodynamic form
aircraft or a missile which are mainly composed of curved surfaces, geometrical modelling by a parametric repres
using NURBS is now in strong competition and takes advantage of the rapid augmentation of the possibilities of the c
FASANT [35] is a well-known code using such a representation. It has been developed by the University of Alcalà
The rays are obtained by solving the equations resulting from the direct application of Fermat’s principle. Since this pr
computationally complex, acceleration techniques based on visibility tests (z-Buffer) are used. A similar representatio
in the code IDRA [36] of IEEA (France). More details on this code and some numerical results are presented in Sectio

3.3. Unsolved problems and lines of future research

In all the computer codes described so far for GTD applications, the antenna is represented either by a phase cen
its radiation pattern at infinity transposed by similarity to a finite distanceR corresponding to the distance of the phase ce
to an interaction point on the platform, or by numerical data of electric and magnetic equivalent currents on the surfa
antenna or on a surface close to the antenna and surrounding it. Since some of the current elements may be locat
the platform–surface, appropriate asymptotic solutions are needed for computing the interaction of the field radiated
elements with the platform. Now the asymptotic solutions which are available for smooth convex surfaces are limite
following situations:

(1) Source and observation point are both located at far distance from the obstacle [37],
(2) The source is located on the surface or very close to it (kh � 1, h = height), the observation point being at large dista

from it [38,39].

When the height of the source above a convex smooth surface is of the order of a few wavelengths, or less, or w
the source and the observation point are close to the surface, the uniform solution (1) becomes inaccurate, espec
transition regions close to shadow boundaries through which it is no longer continuous. The last situation is encounte
two neighbouring antennas are located close to the platform–surface and when the coupling between these antenna
evaluated.

Other interactions like the diffraction of a creeping wave by the edge of a wedge in a curved convex surface into
wave or another creeping wave [40] are also important for computing the deformation of the radiation pattern and, par
for evaluating the coupling between antennas. Here again, existing asymptotic solutions are not valid when the sou
observation point or both of them are close to the edge of the wedge.

In the future, we will see platforms with antennas structurally integrated in them. The region in which these anten
reside will be complex, both geometrically and materially. A hybrid numerical-asymptotic code (finite elements for in
coupled to the outside through GTD) is a possibility for treating such configurations. If the platform is a strongly elo
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Fig. 5. Equivalence theorem for the hybridization of an integral equation method with asymptotic solutions.

object (like the fuselage of an aircraft or a missile) new asymptotic solutions are needed in the paraxial direction. So
on generalized creeping waves propagating with very weak attenuation along on elongated object has been report
Further research work on this subject, the results of which could also be applied to the coupling between elements o
conformed to the surface of an elongated platform, will also be of interest for the future.

In all the techniques using asymptotic methods described so far, it has been supposed that the electric characteri
antenna, and particularly the currents on its surface, have not been influenced by the platform. This is an approximatio
all the more coarse if the antenna is located close to the platform surface. Again, it is possible to take into account this
by using a hybrid numerical–asymptotic method based on the equivalence theorem illustrated on Fig. 5.

As shown in Fig. 5, the exterior surface of a complex antenna is replaced by surface densities of electric and
currents

−→
J and

−→
M , radiating in the presence of the platform which is supposed to be a perfect conductor limited by a

convex surface. An integral equation method, restricted to the outer surface of the antenna can therefore be applied in
coupling with the platform is described by the Green’s function of the space limited by the exterior surface of the platfo
verifying the boundary conditions on this surface. For very large platforms asymptotic solutions allowing one to calcu
Green’s function have to be developed for convex, but also for concave and, more general smooth surfaces, like conve
surfaces having an inflection line with a source and an observation point, both located close to the surface.

3.4. UTD asymptotic code used for antenna implementation on electrically large structures

The implementation of antennas in a complex environment still remains a problem when high frequencies are co
The Uniform geometrical Theory of Diffraction (UTD) is one of the most convenient techniques to solve this problem
method is applied in the software IDRA developed at IEEA. Compared with other methods, the UTD has some int
advantages. It is an efficient tool to understand the phenomenology because the global field results from localised co
In addition, the computational time is reduced. It is frequency independent and enables the software to handle electric
structures.

3.4.1. Structure geometry
In IDRA, the structure geometry is based on NURBS curves and surfaces, which are imported from common CAD

such as, for example, IGES or CATIA. NURBS is a parametric representation of a 3D curve or surface. It allows an
description of any arbitrary shape. The surface curvature is easily derived. It is an important parameter for UTD coe
computation. Fig. 6 presents some examples of structures described with NURBS. In these examples, very few NURBS
are needed to describe complex geometries.

3.4.2. Ray tracing
Once the environment is geometrically described, the software performs a two steps calculation:

• ray tracing;
• once the interaction point is found, information about angles and curvatures are gathered to compute the UTD coe

The details of the UTD coefficients will not be explained here.

The ray tracing method used on arbitrary shaped NURBS will be explained for the case of reflection. The geo
presented in Fig. 7(a). The total length of the ray path from source S to observation O (incident ray+ reflected ray) depends o
the position of a point R on the NURBS surface. This point follows the NURBS parametric equation. That is why the le
a function of two parameters (u,v). According to Fermat’s Principle, the reflection point is found when the length reach
extremum. A conjugate gradient routine is used to compute the parametersu andv minimizing or maximizing the ray length
It is not difficult to extend the method to all interactions, except one: creeping rays.

A creeping wave propagates on a surface along a geodesic path. The ray tracer has to find a whole curve and
a finite number of points. The geodesic path is described by Eq. (1) on a parametric surface in which the coefficienΓ are
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Fig. 6. Two examples of aircrafts described with NURBS surfaces and curves. A detail of the nose is shown to see the complex fo
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Fig. 7. Ray tracing on arbitrary NURBS curves or surfaces: (a) simple reflection, (b) simple diffraction, (c) double reflection.

Fig. 8. Geodesic path computed from a source located on a curved surface.

the Christoffel coefficients of the surface, the indices 1 and 2 corresponding respectively tou andv. For an arbitrary shape
geometry, Eq. (1) must be solved numerically. In IDRA, the ray tracer uses a Runge–Kutta solver. Fig. 8 presents a s
Eq. (1).

d2v

du2
= Γ 1

22

(
dv

du

)3
+ (

2Γ 1
12 − Γ 2

22
)(dv

du

)2
+ (

Γ 1
11 − 2Γ 2

12
)(dv

du

)
− Γ 2

11 (1)

3.4.3. An application: antenna implementation
Once the rays are traced, the UTD coefficients are applied to compute the electric field. Fig. 9 presents an example

coupling parameter. Other outputs can also be provided like near field maps or radiation patterns. These values are
parameters for antenna design and may be highly dependent on the antenna environment.

As the computation speed is very high, many iterations may be made in limited time. This feature makes the softw
suitable for optimisation routines. The input of the problem is the position of the antenna. The cost function is the di
between the parameter to reach and the computed value of this parameter. For example, the cost function may be the
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Fig. 9. Coupling between two dipole antennas separated by a square plate.

between the free space radiation pattern and the computed radiation pattern. In that case, the aim is minimizing the in
the environment. In other cases, the aim may be using the environment to reduce the coupling between two antennas

An interesting class of optimisation methods is the genetic algorithms (or other related stochastic methods). There
very little information on the cost function. In addition, this function may have several local extrema. The genetic alg
are able to manage this situation.

As a conclusion, the software IDRA based on UTD provides an efficient solution for fast evaluation of the radiation
of an antenna mounted on an electrically large carrier, or of the coupling between two antennas in a complex envi
Coupled with a set of optimisation utilities, it is a convenient tool for antenna implementation on structures.

The example of Fig. 9 is taken from Burnside and Marhefka [42, Fig. 48, chap. 20]. It applies to the calculation
S-matrix parameters at the dipole feeding points: S11 (blue lozenge and crosses) and S12 (squares and triangles).Tw
considered, one with the square screen and another without the square screen.

In the last case each dipole is in the shadow of the other dipole. The agreement is quite satisfactory. The small d
are explained by the fact that in the asymptotic technique the currents are imposed and are not modified by the coupl

4. Conclusion and future trends

Frequency domain numerical solvers of the Maxwell equations have made a very rapid progress in the last de
especially to major breakthroughs in iterative solvers. The fast multipole method is now able to perform computatio
more than ten million unknowns. Some improvements and extensions of this method are still matter for research, e
its application in time domain solvers which is very promising. However it seems that we have now reached a stair
the number of unknowns which can be handled. Rather than continuing to augment the number of unknowns, the ne
research go towards a reduction of the numbers of unknowns of a given problem either by using higher order finite e
or by employing macro-basis functions. The convergence of numerical algorithms founded on finite elements of orde
a number of elements per square wavelength which augments with the desired accuracy. For an accuracy of 0.1 dB
elements per square wavelength are needed whereas the same accuracy may be obtained with 30 elements of order 2
is only valid if the geometrical modelisation of the surface by planar triangles is satisfactory. Curved triangular facets
necessary when the order of the finite elements for the expansion of the currents augments. Some research work is
at the moment on the application of finite elements of higher order defined on surfaces described by B-splines [43,44]
of higher order finite elements in the multipole method is also a topic of future research.

Another way to limit the number of unknowns consists in including in the representation of the currents some info
on the phase. The usual shape functions in the finite elements are polynomials in the local co-ordinates of the eleme
therefore not properly follow the oscillations of the solution. A natural idea consists in incorporating an exponential with
phase variation corresponding to a plane wave. Since the direction of propagation along the elements is not known, a
sition of waves with uniformly distributed propagation directions has been chosen [45,46]. The introduction of the pha
shape function permits one to choose large elements covering about six wavelengths [46]. Since, in the method of a
currents, the propagation directions of the waves on the surface are known, this information could also be used for
the number of unknowns. Some work has been reported recently on analytically or asymptotically derived characteri
functions [47,48].
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Hybrid numerical-asymptotic methods in the sense of building macro-basis functions, but also in the classical
coupling two methods, which already constitute an important domain of research will remain a topic of further research
with the development of industrial codes in the form of a toolbox which will couple together codes that are based on
methods and which are needed for performing a specific task. An example is the software toolbox ADF (Antenna
Framework) developed by ESA for the computation of antenna-spacecraft interactions.
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