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Abstract

Classic adaptive optics (AO) is now a proven technique that provides a closed loop real time correction of the tur
It is generally based on simple and efficient control algorithms. The next AO generation (Multi-Conjugate AO (MCAO
various forms and Extreme AO (XAO)) will require more sophisticated control approaches, especially in the case of w
AO. We present here the concepts behind optimal control. The advantages compared to more standard approaches a
A first experimental validation is presented.To cite this article: C. Petit et al., C. R. Physique 6 (2005).
 2005 Published by Elsevier SAS on behalf of Académie des sciences.

Résumé

Contrôle optimal pour l’optique adaptative multi-conjuguée. L’Optique Adaptative (OA) classique est aujourd’hui u
technique éprouvée permettant une correction temps réel en boucle fermée des effets de la turbulence. Généralement
sur des lois de commande simples et efficaces. Cependant, les futures générations d’OA (Optique Adaptative Multi-c
(OAMC) dans ces diverses formes et l’OA Extreme), nécessiteront des lois de contrôle plus sophistiquées en particuli
cas de l’OA grand champ. Nous présentons dans cet article une solution de contrôle optimal pour l’OA en général, e
en évidence ses atouts comparativement aux approches standard. Une première validation expérimentale de cette a
présentée.Pour citer cet article : C. Petit et al., C. R. Physique 6 (2005).
 2005 Published by Elsevier SAS on behalf of Académie des sciences.
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1. Introduction

Classic Adaptive Optics [AO] [1] and Multi-Conjugate AO [MCAO] [2–4] have similarities in terms of formalism
system structure. In both cases we have a real time closed loop system with delay and, in a first approximation, a line
for the Wave Front Sensor (WFS) measurements and for the Deformable Mirror (DM) correction. We show how to d
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optimal control in this context. The problem actually breaks down into a stochastic estimation of the turbulent phase,
by a deterministic control problem. With the usual assumptions made in AO/MCAO, the estimation problem can be s
Kalman filtering [5,6].

MCAO still has some specificities: it deals with a large number of degrees of freedom, the WFS measurements are
only in particular directions corresponding to the Guide Stars (GSs). Achieving a good correction in a large Field
(FoV) implicitly requires to interpolate the WFS measurements between the GSs. It implies a careful reconstruction
using prior information on the turbulent volume [7]. This leads to a global optimization of the multi-variable servo-loop
The extension to MCAO [9] of more standard techniques providing a mode per mode optimization [10–13] is also disc

The gain in performance brought by optimal control is illustrated in the particular case of tomographic Off-Axis Ad
Optics [OAAO] [14,15]. A first experimental demonstration is presented in this context.

We first present the principle of optimal control for AO/MCAO in Section 2. A step by step construction of the o
closed-loop control is proposed by defining different formal sub-problems (see Section 2.1). The sub-problems that h
solved are the following: WFS reconstruction (see Section 2.2), correction in open-loop (see Section 2.3), correction i
loop (see Section 2.4). For each case we define an optimal solution based on an explicit optimality criterion. We also
more straightforward solutions and discuss the underlying implicit prior models. For the sake of simplicity the forma
first given for classic AO, and then generalized to MCAO in Section 2.5 where the specificities of such systems are d
Finally, an experimental validation of optimal control is given in Section 3 in the particularly illustrative case of tomog
OAAO. The principle of OAAO is recalled (see Section 3.1) and experimental results are shown and compared to the
performance obtained by simulation (see Section 3.2).

2. Optimal control formalism

We will address in this section three different formal sub-problems that are summarized in Fig. 1: wave-front recons
open-loop and closed-loop correction. Wave-front reconstruction is an estimation problem which consists in evalua
turbulent phase from WFS measurements. The open/closed-loop corrections are control issues which consist in de
the DM voltages from WFS measurements. In the open-loop case the WFS directly sees turbulent wave-fronts, the D
located down-stream. In the closed-loop case the DM is up-stream and the WFS sees residual wave-fronts after corre

These three topics will be shown to be strongly related. For each scenario an explicit optimality criterion will be
and the optimal solution will be derived. The potential advantages of the optimal approach, compared to more straigh
methods, will be stressed.

2.1. Problem formulation

The turbulent phase integrated over the time interval[(n − 1)T ,nT ] will be denotedφn. T is the sampling period cor
responding to the WFS exposure time. With such a discretization the problems addressed here can be treated wi
quantities without any loss of generality [16]. The turbulent phase is described here by its Zernike polynomial expansiφn is
therefore a vector of Zernike coefficients.

In all three scenarios a description of the WFS measurements is needed. Considering a linear model, the WFS me
that becomes available in the time interval[(n − 1)T ,nT ] is given by:

sn = Dφwfs
n−dr + wn (1)

whereD is a matrix characterizing the WFS,φwfs
n−dr

is the phase seen by the WFS, andwn is the measurement noise. T
parameterdr denotes the ‘read-out’ delay. It accounts for the fact that the measurement related to the phase in a gi
interval is generally not instantaneously available due to signal read-out and processing time.

Note that in open-loop the WFS phaseφwfs
n is the turbulent phase,φn, while in closed-loop it is the residual phase af

correction,φn − φcor
n .

The first question addressed here is the optimal phase reconstruction from noisy open-loop WFS measurements.
tive is then to estimate, and even predict, the turbulent phase at a given time step. Let us assume that we are interesteφn+1.
Its optimal estimatêφn+1 is defined by minimizing, over turbulence and WFS noise statistics, the estimation error varia

εest=
〈‖φn+1 − φ̂n+1‖2〉

turb,noise (2)

The estimatêφn+1 has to be deduced from the past available WFS data{sn,sn−1,sn−2, . . .}. Section 2.2 solves this problem
the case of open-loop measurements. The generalization to closed-loop data is given in Section 2.4.

In any case, the optimal reconstruction requires statistical priors on turbulent phase and WFS noise. We assume a
white noise with centered Gaussian statistics of covariance matrixCw . The phase will be supposed to follow centered Gaus
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Fig. 1. Block-diagrams corresponding to the three sub-problems addressed here: wave-front reconstruction, open-loop and closed-l
tion.

statistics with a known covariance matrixCφ [17]. Different temporal models [5,18,19,6] can be constructed to account fo
evolution in time of the turbulent phases. Here we will use a first order auto-regressive model in the form:

φn+1 = Aturφn + νn (3)

whereνn is a white noise of covariance matrixCν . The matrixAtur defines the temporal correlation of each Zernike compo
of the phase. Ensuring the conservation of the global energy of the turbulence then leads to:

Cν = Cφ − At
turCφAtur (4)

Regarding correction, if any, the correction phaseφcor
n+1 is produced by the last calculated DM voltagesun which are kept

constant during the time interval[nT , (n + 1)T ]. Assuming for the DM a linear behavior with instantaneous time respons
can write:

φcor
n+1 = Nun (5)

whereN is the influence matrix.
The control voltagesun are estimated from the WFS data available in the time interval[(n − 1)T ,nT ], that is {sn,

sn−1,sn−2, . . .}.
The optimization problem consists here in finding the correction voltages that minimize the residual phase varianc

minimizing the following criterion:

εcor =
〈∥∥φn+1 − φcor

n+1

∥∥2〉
turb,noise= 〈‖φn+1 − Nun‖2〉

turb,noise (6)

The separation principle [20] tells us that this is equivalent to solve the stochastic reconstruction problem presente
minimization of Eq. (2) to obtain̂φn+1, and then to solve the control problem which here comes down to finding the
deterministic best least-square fit to the phase estimate, hence minimizing:

εcont=
∥∥φ̂n+1 − Nun

∥∥2 (7)
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We consider here a DM with an instantaneous response, but the formalism could be easily extended to accoun
dynamics [5]. Note that the separation principle still holds in this case.

The different sub-problems are now well defined. The solution to these sub-problems are derived and discuss
following paragraphs.

2.2. WFS reconstruction

We discuss here the question of phase reconstruction from delayed noisy open-loop WFS measurements. As sta
tion 2.1 the optimal reconstruction̂φn+1 is defined as minimizing Eq. (2).

The estimatêφn+1 has to be deduced from the past available WFS data{sn,sn−1,sn−2, . . .}. We therefore have to perform
an optimal inversion of the measurement equation using both the spatial and temporal priors (cf. Eqs. (3) and (4)) to r
the process and extract as best as we can the signal from the noisy data. Since we look for an estimate ofφn+1 from data related
at the latest, toφn−dr the estimation also implicitly includes a temporal extrapolation, namely a prediction atdr + 1 time steps.

With the linear models described in Section 2.1 and Gaussian priors, the optimal estimateφ̂n+1 is the conditional expectatio
of φn+1 with respect to the measurement data{sn,sn−1,sn−2, . . .}, which can be computed iteratively as the output o
Kalman filter [21]. The matrices involved in this computation are deduced from the matrices characterizing the system
turbulence.

For illustration we give here the optimal solution in the case of a one frame read-out delay (dr = 1), hence a two frame
total delay. The standard formulation consists in rewriting the measurement and evolution equations (see Eqs. (1) an
state space representation. The two frame delay implies that the state vectorXn includes the phase at three time steps, tha
Xt

n = (φn+1, φn,φn−1). The state model composed of respectively the evolution and measurement equations then rea

Xn+1 =

 Atur 0 0

Id 0 0
0 Id 0


Xn +


 Id

0
0


νn (8)

Yn = D( 0 0 Id )Xn + wn (9)

whereYn corresponds here to the WFS measurementsn. Hence the standard compact form:

Xn+1 = A Xn + Vn (10)

Yn = CXn + wn (11)

Standard linear optimal filtering theory then gives the optimal estimation in the following form:

X̂n+1/n = A X̂n/n−1 + A Hn

(
yn − C X̂n/n−1

) = A X̂n/n−1 + A Hn

(
sn − Dφ̂n−1/n−1

)
(12)

X̂n+1/n is the optimal estimation ofXn+1 using the measurements acquired till time stepn and the priors. Similarlŷφn−1/n−1

is the estimate of the phase at timen − 1 using measurements acquired till stepn − 1. The second component ofX̂n+1/n

gives the requested phase estimateφ̂n+1. The difference between the last available datayn = sn and its estimated counter-pa
Dφ̂n−1/n−1 is called innovation. A recursive up-date equation such as Eq. (12) is called an observer: one step of p
according to the evolution equation applied to the sum of the previous state prediction and of an observer gain appl
innovation.

The optimal observer gainHn provides a trade-off between model-based prediction and measurements, it is given by

Hn = Cn/n−1C t
(
CCn/n−1C t + Cw

)−1 (13)

whereCn/n−1 is the covariance matrix of the state estimation error.Cn/n−1 is computed by solving the Ricatti equation [22

Cn+1/n = A Cn/n−1A t + Cv − A Cn/n−1C t
(
CCn/n−1C t + Cw

)−1
CCn/n−1A t (14)

As this equation is independent from the data acquired during the closed-loop, it can be computed off-line. Since the
gain is shown to have a fast convergence one can actually replaceHn in Eq. (12) by a constant matrixH∞ corresponding to its
asymptotic value [6].

It is important to note that the optimal estimation up-date equation (Eq. (12)) and its observer gain (Eq. (13)) directl
from the physical priors on the turbulence and on the system.

In the unrealistic case of no delay (formallydr = −1), no prediction is implied and the optimal solution comes down
the standard recursive least square solution. Another degenerated case is the one shot optimal reconstruction of
phase from a single WFS measurement of this phase. The optimal solution is in this case the standard regularized in
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Eq. (1) [7]. When dealing with time series, one could think of applying this one shot regularized inverse to the last WF
Of course this is far from optimal. In particular such a solution would not benefit from a temporal filtering of the noise
the recursive Kalman estimation does, thanks to the temporal priors.

An even cruder approach would consist in performing a least-square best fit to the last available WFS data, that i
for φ̂ls

n+1 that minimizes‖sn − Dφ̂n+1‖2. Note that this deterministic criterion provides a best fit to the data, which is not

relevant for high resolution imaging. It leads to the generalized inverse solution:φ̂ls
n+1 = (DtD)−1Dtsn = Rlssn. However,

DtD is generally badly conditioned, a truncation of the Zernike basis, or a truncated SVD is required which leads to
controlled solution with an implicit ad-hoc regularization. The available priors on the turbulence are not explicitly use
is no attempt of performing a temporal prediction, and it is a one shot estimation with no temporal filtering of the noise

2.3. Open-loop correction

In the open-loop configuration the correction is provided by a DM which is not seen by the WFS channel. Such an a
is not used in current AO systems since it would require a high dynamic WFS and since open-loop performance could
sensitive to calibration errors. It is still an option under investigation for the future Multi-Object AO (MOAO) projects [2
In any case, open-loop correction is of formal interest since it is an interesting step before addressing the closed-loop

As stated in Section 2.1 the optimization problem consists here in finding the correction voltages that ensure a m
residual phase variance, that is minimizing Eq. (6). It was said to be equivalent to first solve the optimal reconstruct
open loop data described in Section 2.2, so as to obtainφ̂n+1. The optimal control voltages are then obtained by minimiz
the deterministic criterion given in Eq. (7). The minimization of Eq. (7) easily gives the optimal voltages in the form:

un = (NtN)−Nt φ̂n+1 = Pφ̂n+1 (15)

To summarize, the optimal open-loop correction is solved by a Kalman filter reconstruction of the turbulent pha
open-loop data followed by a projection onto the DM space.

A more naive approach could be to perform a least square fit of the last available data by the DM, that is looking forûls
n that

minimizes‖sn − DNun‖2. This leads to performing a generalized inverse of the interaction matrixDinter = DN in the form:

uls
n = (

Dt
interDinter

)−Dt
intersn = Rcomsn (16)

This is similar to the least-square wave-front reconstruction mentioned at the end of Section 2.2 and the same li
apply here (no prediction, no temporal filtering, . . . ). The restriction to the DM space brings here the implicit regula
that stabilizes the solution, but the condition number is still often very large due to unseen, alias waffle, modes and a
tricks are generally required to filter out such components. The fact that this approach does not distinguish the phase
part from the mirror control aspects is indeed limiting. The explicit phase estimation, using physical priors, performe
optimal estimation should allow a better treatment of aliasing and waffle effects. The importance of an explicit estim
the turbulent phase in MCAO will also be emphasized in Section 2.5.

2.4. Closed-loop correction

In the closed-loop mode, the WFS sees residual phases corrected by the DM. The measurement equation is the
accordingly (see Section 2.1). Assuming that the contribution of the DM to the closed loop measurement (sclosed

n ) is perfectly
known (DNun−dr−1), the problem is formally equivalent to the open-loop case. The separation principle still applies a
optimal phase estimate is obtained with the same Kalman filter equations (see Section 2.2), one has only to repla
observer equation the open-loop WFS measurement by the synthesized open-loop one. In Eq. (12), correspondin
frame delay, it means to replacesn by sclosed

n − DNun−2. The optimal voltages are still given by Eq. (15).
It is therefore interesting to note that, provided the model is correct, we have two equivalent systems, respectively

closed-loop, with a simple transposition between the open and closed-loop control law. However, one has to keep in
the robustness in stability and performance will be different in the closed-loop and open-loop cases. A specific study
performed particularly to estimate the impact of uncertainties on the WFS and DM model.

We now recall for comparison the conventional approach used in current AO systems [25]. It is based on an in
control law, the voltage increments being computed from the closed-loop WFS data by least-square reconstruction. T
summarized by the following equations:

δuls
n = (

Dt
interDinter

)−Dt
intersn = Rcomsn (17)

un = un−1 + g δuls
n (18)
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whereg is the integrator gain represented here as a global scalar gain. The gain can also be optimized mode per mode a
for priors on modal temporal behavior and noise level, this is the so-called Optimized Modal Gain Integrator [OMGI] [
Even if the OMGI procedure has been applied successfully on current AO systems, one can list several drawbacks t
limit its application in future developments (XAO [26], MCAO, . . . ). The optimization is not global: the multi-variable servo-
loop is split in individual scalar, supposedly independent, loops. Unseen modes are still brutally filtered out. In this fra
the choice of the modes has an influence, and is often difficult to justify. The choice of the control law itself, here an in
is ad-hoc and does not derive from the physical priors. One can actually rewrite the integrator control in an observer for
show that it supposes implicitly an underlying evolution equation for the turbulent phase. This implicit model is not phy
sound since it can be shown to have an unbounded energy. This is at the origin of the notorious wind-up effect for co
with integral action. Similarly, any linear AO control, such as predictive controllers [12], can be traced back to an obser
thus leads to an implicit turbulent phase model [27]. Besides, if the observer gain does not match the Kalman one, th
is sub-optimal with respect to the minimum variance criterion.

Contrary to the mode per mode approaches, our optimal resolution of the multi-variable servo-loop leads to a co
derived in a natural manner from the physical inputs on the system and perturbations to be corrected. For instan
perturbation to be corrected exhibits vibrations in addition to the turbulence, one can take them into account by modi
state equations accordingly. A new optimal control law can then be derived and is shown to provide both a good corr
turbulence and a huge damping of vibrations [8]. This asset is all the more relevant for XAO.

Note also that if the computation cost of optimal control is a few times higher than with standard techniques, it still r
of the same order. We remind that the resolution of Ricatti equation (Eq. (14)) is performed off-line before launching t
Time Computer (RTC). Besides the increase with telescope diameter of the computation cost follows the usual scalin

2.5. Specificities of MCAO

The equations presented in the previous sections are rather general, and they can easily be extended to the MCA
to now the turbulent estimates and correction phases were in the instrument pupil. In MCAO [28] one has to accoun
distribution of turbulence in the volume, which leads to a FoV dependent perturbation, and for possibly several DM
leads to a FoV dependent correction. Generally, several WFSs pointing at several Guide Stars (GSs) are also used to
turbulence volume.

The volumic turbulent phase is generally modeled by phases in L layers, represented by a meta-vectorϕ = {ϕk}, eachϕk

being a vector of Zernike coefficients describing the phase in altitude on given meta-pupils. Neglecting diffraction
the resulting phase in a given directionα is derived from the volumic phase by a linear relation:φ(α) = ML

α ϕ. A measure-
ment equation can then be deduced for each of theNgs GSs. Piling-up the individual measurementssi one obtains a uniqu
measurement equation quite similar to Eq. (1) with generalized vectors and matrices.

Concerning turbulence priors, one assumes independent layers leading to a block diagonal covariance matrixCϕ for the
volumic phase. Each block is deduced from Noll with a scaling that accounts for turbulence strength distribution in
Similarly a generalized block diagonal matrixAtur is used to describe temporal effects, and accounts then for the wind
profile.

The optimal wave-front reconstruction in the volumeϕ̂n minimizes the criterion〈‖ϕn+1 − ϕ̂n+1‖2〉turb,noise. The solution
is given by the Kalman filter, which leads to equations similar to Eqs. (8)–(14) applied to generalized vectors/matr
This reconstruction of the turbulent volume from WFS measurements of its projection in particular directions is ofte
‘tomographic reconstruction’.

Concerning the optimal correction issue, one has first to define the optimality criterion. We still seek the DM v
minimizing the residual phase variance, but one has to specify in which Scientific FoV of interest (SFoV). The criteri
reads:〈 ∫

SFoV

∥∥φn+1(α) − φcor
n+1(α)

∥∥2 dα

〉
turb,noise

=
〈 ∫
SFoV

∥∥ML
α ϕn+1 − MDM

α Nun

∥∥2 dα

〉
turb,noise

whereN is a generalized influence matrix characterizing the different DMs,MDM
α gives the correction in the positionα in

the FoV.
As the separation principle still applies, the optimal voltagesun are thus obtained by projection of the Kalman estimateϕ̂n+1

onto the DMs so as to minimize the deterministic criterion:
∫
SFoV‖ML

α ϕ̂n+1 −MDM
α Nun‖2 dα. The projection matrix is easil

derived [6] and accounts for the Scientific FoV, for the DM influence functions and altitude of conjugation. The solutio
the form:un = P(SFoV, {hDM

j
})ϕ̂n+1. Note that all the equations developed before can be generalized to weighted aver

the SFoV.
Of course, one can think of generalizing classic AO control to MCAO. However, the drawbacks mentioned before a

penalizing in this context: a least-square fit by the DMs of the WFS data will optimize the correction in the GS dire
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leading to a poor control of the correction in the rest of the FoV. The SFoV cannot be specified in standard approache
related to the handling of unseen modes. In MCAO estimating these modes (that have no impact in the GS direction
performing a good interpolation of the perturbation between GS and in turns a good correction in these regions.
methods simply filter out these components, whereas global reconstruction permits a global multi-variable treatme
includes an explicit estimation of the turbulent phase thanks to physical priors.

The potential gain in performance brought by optimal control in MCAO has been recently illustrated in simulation
a given representative MCAO system (2 DM and 3 GS configuration). Similarly for given performance specifications
control may reduce the system complexity (less or fainter GSs, . . . ). Besides the implementation in MCAO of the s
OMGI has been shown to be non-trivial due to aliasing effects specific to MCAO configurations [9].

Note that if the SFoV is reduced to a single directionαo, or a small region around it compared to the isoplanatic patch,
a single DM in the pupil is sufficient since the correction does not have to evolve in the SFoV. When a single GS is a
at a given angle away from the SFoV, this corresponds to the OAAO scheme described in detail in Section 3. In thi
is, of course, mandatory to dissociate the phase space in the volume and its estimation, from the mirror space in the
its control. The correction phase is a least square fit of the projection alongαo of the optimal volumic phase. An experimen
demonstration of the closed-loop real time correction in OAAO is given in Section 3.

If the SFoV is constituted of several well separated regions, each region being smaller than the isoplanatic patch,
specific DM per sub-field is required. This corresponds to the concept of Multiple Object Adaptive Optics (MOAO) [24
channel being similar to OAAO except that several GS are generally available for WFS. Besides, for extragalactic MOA
as the Falcon project [29], the GSs are faint and far apart. All these elements make Kalman control especially attractiv
application.

Note that prior knowledge on turbulence is required in optimal control. However, it has been shown that performa
not very sensitive to uncertainties on turbulence profile [30,16] and on temporal priors [6]. A careful analysis of the rob
of optimal control is currently under study. One can of course try to estimate the turbulence characteristics from the
and then modify the control law parameters in real time, so-called adaptive control [31]. Nevertheless stability is gene
ensured in such approaches.

3. Tomographic off-axis AO: a first experimental validation

3.1. Principle and experimental set-up

OAAO is a particular case of MCAO with a single GS for WFS and a SFoV reduced to a single directionαo. A unique DM
conjugated to the entrance pupil (diameterD) is then necessary. This is an intermediate concept between MCAO and c
AO. It will allow us, with a simple experiment, to have a first laboratory demonstration of closed-loop optimal control ba
a minimum variance tomographic reconstruction (see Sections 2.4 and 2.5). The principle is described in Fig. 2.

We consider a single turbulent layer at altitudeh and two stars with an angular separationαo. The on-axis GS is used t
analyze the on-axis turbulence. From these measurements, the turbulence in altitude is estimated, and the deduc
wavefront is corrected by the DM.

OAAO tests have been performed thanks to the classic AO test bench BOA developed by ONERA. It is compo
turbulence generator, a telescope simulator, the AO system and an imaging camera. The source is a fibered LAS
working atλ = 633 nm placed on-axis. The turbulence generator is composed of a phase screen mirror on a rotat
so as to reproduce the wind effects and placed in the collimated beam. The phase screen mirror is developed by Ob
de Paris-Meudon and reproduces Kolmogorov turbulence. The turbulence strength corresponds to aD/r0 � 2.8 at 633 nm.
Transposed to an 8 m telescope observing at 2.2 µm, this would correspond to a 0.21 arcsec seeing at 500 nm. It is weak b
could be representative of the turbulence in altitude.

The wavefront corrector is based on a Tip Tilt Mirror (TTM) and a 9×9 actuator DM. 69 of its actuators are used. The Sha
Hartmann WFS is composed of a 8× 8 lenslet array (52 sub-pupils used) and a 128× 128 pixel DALSA camera (read out nois
of 85e−/pixel/frame). The imaging camera is a 512× 512 pixel Princeton camera (read out noise 4e−/pixel/frame). Note tha
this AO configuration is designed to work in closed loop, meaning that DM and TTM are placed before the WFS in the
path.

For OAAO tests, a second source, identical to the first one, has been inserted. The two sources have a fixed angular
αo � 50(λ/D) so that both sources can be imaged on the Princeton camera. A large pinhole is also placed in the entra
plan of the WFS so as to select the on-axis source and stop the light coming from the off-axis one. The AO bench
calibrated and optimized so that the Strehl Ratio [SR] without turbulence (internal SR) is 84% for the off-axis star [32]

To increase anisoplanatism effects, the turbulent mirror can be translated in altitude. Scintillation effects have bee
to be negligible. Thus, the light beams from both sources intersect the turbulent layer defining two footprints, which
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Fig. 2. Principle of OAAO: we consider a single turbulent layer at altitudeh and two stars with angular separationα. The projections in the
turbulent layer of the entrance pupil in each direction define an on-axis (diagonal pattern) and an off-axis (horizontal pattern) footp
footprints relative separation is notedδ = αh/D. The 2α FoV defines a metapupil encircling both footprints. OAAO consists in analyzing
on-axis turbulence to estimate the off-axis turbulent wavefront and correct it with a single DM conjugated with the aperture.

projections of the system aperture. The footprint relative separationδ is related to the altitudeh, the angular separationαo and
the pupil diameterD by: δ = αoh/D. Then by analogy, when the footprint relative separationδ increases from 0 to 40% o
the set-up, it is equivalent to an angular separation between two stars ranking from 0 to 4 arcmin for an 8 meter teles
a 3000 meter high turbulent layer. Whenδ = 0, the turbulent layer is in the entrance pupil and there is no anisoplanatism
off-axis star sees the same turbulence as the on-axis one.

A specific RTC has been built by Shaktiware Inc. for our application on a commercial Linux 1.8 GHz PC. Its desig
a very good flexibility for the implementation of various control laws, and in particular for the Kalman based optimal c
According to benchmark tests, this new RTC should perform Kalman based correction up to a 500 Hz sampling ra
estimated modes, or a 130 Hz sampling rate for 300 estimated modes.

The experimental results presented here are obtained with the RTC running at a 60 Hz sampling frequency and w
speedV so thatV/D � 0.3. Note that the wind is in the direction defined by the two stars, the off-axis one being downs

3.2. Optimal control results

So as to validate the experimental results, a numerical simulation of the expectable performance of the Kalman fil
closed loop OAAO has been performed. Performance have been simulated thanks to an end-to-end numerical simul
experimental set-up. We will first present this simulator and its results before presenting the experimental performa
simulator reproduces each part of the system, meaning propagation through a Kolmogorov turbulent layer with the co
ing turbulence strength, the WFS analysis with a geometrical model fitted to the OAAO experiment thanks to calibrat
the DM correction with an influence matrix obtained experimentally during a previous calibration campaign. Thus,
merical simulation particularly matches the experiment. The performance obtained on the simulator also account for
aberration of the experiment that cannot be corrected for, so that the maximum numerical SR is the internal SR of th
that is 84%. Finally, either a classic integrator based or a Kalman filter based control law is applied in the numerical s
For both the numerical and experimental simulation, the performance are measured for different footprint relative sep
In each case, the optimal control is adapted to the new footprint relative separation so as to optimize the correcti
off-axis direction taking into account the closed loop on-axis wavefront measurement. The control law and associated
correspond to the equations given in Section 2 applied to the particular case of OAAO (single layer, a SFoV correspo
the off-axis star, . . . ). The turbulent phase is estimated over 150 Zernike modes.

Fig. 3 shows the evolution of the off-axis performance of the Kalman based optimal control versus a classic AO loop
integrator, both for the numerical and experimental simulation. In the particular case of integrator based classic AO co
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Fig. 3. Right: end-to-end numerical simulation and experimental results of the performance of a Kalman based optimal control in the cl
OAAO set-up configuration compared to a classic integrator based AO. The Strehl Ratio is given for the off-axis star according to the
relative separation in %. The solid line is the numerical Kalman based control performance, the dashed line is obtained with a classic
Experimental points are also plotted: diamonds are Kalman based optimal control, stars are classic integrator based control. Left: o
obtained for a 20% relative separation, either with integrator (left) or Kalman filter (right).

the gain has been optimized on-axis (or equivalently whenδ = 0), so that the on-axis performance is the highest for this k
of control law that is a 80% SR. First, considering the numerical simulation results (solid line for Kalman and dashed
integrator), we can see that a huge improvement of the off-axis SR is expected even for high footprint relative sep
The Kalman off-axis SR is nearly constant at 80% up toδ = 20%, while with a classic integrator controller, the off-axis
decreases steadily due to anisoplanatism effects.

Now, first results have been obtained with the experiment and are also presented on Fig. 3. Comparing nume
experimental performances, a good agreement is obtained. The overall behaviors are similar to the expected one
controller. A large improvement of the off-axis SR is indeed obtained with the Kalman based optimal control. For in
whenδ = 20% (2 arcmin angular separation between the stars according to our analogy for a 8 m telescope see Sectio
experimental integrator SR is about 27% while the Kalman one is as high as 66%. Experimental PSFs, obtained with
based optimal control or classic integrator based AO, are also given in Fig. 3 in this particular case of a 20% footprin
separation.

Nevertheless, some differences appear between numerical and experimental results for both controllers. The inte
decreases slightly faster in the experimental case. The Kalman performance is lower than in the numerical simulatio
differences can be due first to errors in the model of the simulator as of course the numerical description does not enco
the details or defects of the set-up (in particular the phase screen mirror does not have perfect Kolmogorov statistics).
in the particular case of the Kalman based optimal control, model approximations when defining the Kalman matrices
explain the loss of performance. This point is currently under study.

Still, this is the first demonstration of closed-loop off-axis optimal correction. It demonstrates the impressive impro
of the correction in a large field of view brought by optimal control. One could object that considering a unique lay
favorable case. However one has to keep in mind that only one GS is available for WFS, hence very limited measurem

Theses results prove the high potential of Kalman based optimal control for MCAO and MOAO compared to cla
proaches.

4. Conclusions

We have presented an optimal approach for open/closed loop correction in AO and MCAO. It is based on an
reconstruction of the phase from WFS data. This estimation takes the form of a Kalman filter. It accounts for the loop t
delays and uses the available temporal and spatial priors (temporal correlation, turbulence statistics and profile). The
commands are then deduced from the estimated phase by a projection onto the DM space.

With optimal control only a slight improvement is expected for the correction of turbulence in classic AO, compared
standard controllers. However, its flexibility allows us to easily account for parasitic perturbations. For instance, this con
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provides, in addition to a good correction of turbulence, a huge damping of vibrations thanks to temporal prediction [
asset is all the more relevant for XAO.

The approach is of course particularly suited for MCAO: the estimation step provides an optimal tomographic rec
tion, hence an efficient interpolation of the wave-front between the different GSs, while the correction can be spec
a given FoV of interest [6]. It applies to different WFS strategies [33] (Layer [34] or Star Oriented), with both Lase
(LGSs) [35] and Natural GS. Numerical simulations are very encouraging. An experimental demonstration is now nee
implementation of our control law on the MAD MCAO system currently developed at ESO [36] is planned. As a first
laboratory demonstration of the concept is presented here in the particular case of OAAO. While a classic AO controll
reaches a 27% SR for a 20% footprint relative separation (2 arcmin equivalent angular separation), our Kalman based
achieves a 66% SR. This highly significant improvement is also in good agreement with numerical simulations.

MOAO is very similar to OAAO except that it uses several faint and far apart GSs. This makes Kalman control es
attractive for this application. The interest of our control approach for Ground Layer AO (GLAO) [37] could also be inves
The specification of the FoV of interest could be helpful to improve the correction uniformity.

More generally, optimal control should be very useful in demanding conditions: restricting WFS geometries (fain
limited number of GSs, LGS) requiring a careful tomographic reconstruction, and specific correction cases (limited nu
DMs, particular SFoV, . . . ). Reciprocally for a given performance specification optimal control can allow to reduce the
complexity (less or fainter GSs, . . . ).
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