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Abstract

We study spin dependent phenomena in superconducting junctions in both ballistic and diffusive regimes. For ballistic junctions
we study both ferromagnet/s- and d-wave superconductor junctions and two-dimensional electron gas/s-wave superconductor
junctions with Rashba spin-orbit coupling. It is shown that the exchange field always suppresses the conductance while the Rashba
spin-orbit coupling can enhance it. In the latter part of the article we study the diffusive ferromagnet/insulator/s- and d-wave
superconductor (DF/I/S) junctions, where the proximity effect can be enhanced by the exchange field in contrast to common belief.
This resonant proximity effect in these junctions is studied for various situations: conductance of the junction and density of states
of the DF are calculated by changing the heights of the insulating barriers at the interfaces, the magnitudes of the resistance in DF,
the exchange field in DF, the transparencies of the insulating barriers and the angle between the normal to the interface and the
crystal axis of d-wave superconductors α. It is shown that the resonant proximity effect originating from the exchange field in DF
strongly influences the tunneling conductance and density of states. We clarify the followings: for s-wave junctions, a sharp zero
bias conductance peak (ZBCP) appears due to the resonant proximity effect. The magnitude of this ZBCP can exceed its value
in normal states in contrast to that observed in diffusive normal metal/superconductor junctions. We find similar structures to the
conductance in the density of states. For d-wave junctions at α = 0, we also find a result similar to that in s-wave junctions. The
magnitude of the resonant ZBCP at α = 0 can exceed that at α/π = 0.25 due to the formation of the mid gap Andreev resonant
states. To cite this article: T. Yokoyama, Y. Tanaka, C. R. Physique 7 (2006).
 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Effets de proximité polarisés en spin dans les jonctions supraconductrices. Nous étudions des phénomènes dépendant du
spin dans des jonctions supraconductrices en régimes balistique et diffusif. Pour les jonctions balistiques, nous étudions à la fois
les jonctions entre ferromagnétique et supraconducteurs à ondes s et d et entre gaz d’électrons bidimensionnel et supraconducteurs
à ondes s, avec couplage spin-orbite de Rashba. Nous montrons que le champ d’échange diminue toujours la conductance alors
que le couplage spin-orbite de Rashba peut l’augmenter. Dans le reste de l’article, nous étudions les jonctions diffusives ferroma-
gnétique/isolant/supraconducteurs à ondes s et d (DF/I/S), où, contrairement à l’opinion commune, l’effet de proximité peut être
accru par le champ d’échange. Cet effet de proximité résonnant dans ces jonctions est étudié dans diverses situations : la conduc-
tance de la jonction et la densité d’états du DF sont calculées en changeant les hauteurs des barrières isolantes aux interfaces, les
amplitudes de la résistance dans DF, le champ d’échange dans DF, les transparences des barrières isolantes et l’angle α entre la
normale à l’interface et l’axe cristallographique des supraconducteurs à onde d. Nous montrons que l’effet de proximité réson-
nant dû au champ d’échange dans DF influence fortement la conductance tunnel et la densité d’états. Nous clarifions les points
suivants : pour les jonctions à onde s, un pic marqué de conductance sous polarisation nulle (ZBCP) apparaît, à cause de l’effet
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de proximité résonnant. L’amplitude du ZBCP peut dépasser sa valeur dans les états normaux, à la différence de ce qui se produit
dans les jonctions diffusives entre métal normal et supraconducteur. Nous trouvons des structures similaires à la conductance dans
la densité d’états. Pour les jonctions à onde d à α = 0, nous trouvons aussi un résultat similaire à celui obtenu pour les jonction à
onde s. L’amplitude du ZBCP résonnant à α = 0 peut être supérieure à celle obtenue à α/π = 0,25, à cause de l’apparition d’états
d’Andreev résonnants en milieu de bande interdite. Pour citer cet article : T. Yokoyama, Y. Tanaka, C. R. Physique 7 (2006).
 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction

In normal metal/superconductor (N/S) junctions, a unique scattering process occurs in low energy transport: An-
dreev reflection (AR) [1]. The AR is a process where an electron injected from N with energy below the energy gap ∆

is converted into a reflected hole. Taking the AR into account, Blonder, Tinkham and Klapwijk (BTK) proposed the
formula for the calculation of the tunneling conductance [2]. It revealed the gap-like structure or the doubling of tun-
neling conductance due to the AR. This method was extended to normal metal/unconventional superconductor (N/US)
junctions [3]. It is shown that a zero bias conductance peak (ZBCP) appears when the mid gap Andreev resonant state
(MARS) is formed due to the anisotropy of US.

The BTK theory was also extended to ferromagnet/superconductor (F/S) or ferromagnet/unconventional supercon-
ductor (F/US) junctions [4] and used to estimate the spin polarization of the F layer experimentally [5–7]. In F/S
junctions, AR is suppressed because the retro-reflectivity is broken by the spin-polarization in the F layer [8]. To clar-
ify spin dependent transport phenomena is important for the fabrication of a new device manipulating an electron’s
spin. Nowadays, there are many works about charge transport of electrons relevant to electron spin.

Among recent works, many efforts have been devoted to study the effect of spin-orbit coupling on transport prop-
erties of two-dimensional electron gas (2DEG) [9–12]. The pioneering work by Datta and Das suggested the way to
control the precession of the spins of electrons by the Rashba spin-orbit coupling (RSOC) [13] in F/2DEG/F junc-
tions [14]. This spin-orbit coupling depends on the applied field and can be tuned by a gate voltage. It also gives the
off-diagonal elements of the velocity operator [15]. There are several works about spin dependent transport in the
presence of RSOC [16,17].

The RSOC induces an energy splitting, but the energy splitting does not break the time reversal symmetry unlike an
exchange splitting in ferromagnet. Therefore transport properties in 2DEG/S junctions may be qualitatively different
from those in F/S junctions. As far as we know, in 2DEG/S junctions the effect of RSOC on transport phenomena is
not studied well. Recent experimental and theoretical advances in spintronics stimulate us to challenge this problem.
We illustrate the two kinds of splittings in Fig. 1.

The first purpose of this article is to calculate the tunneling conductance in F/S and 2DEG/S junctions and clarify
how the exchange field and the RSOC affect it. We think the obtained results are useful for a better understanding of
related experiments in mesoscopic F/S and 2DEG/S junctions.

On the other hand, in diffusive junctions, the physics is clearly different from that in ballistic junctions. In diffusive
normal metal/superconductor (DN/S) junctions, proximity effects play an important role in the low energy transport.

Fig. 1. Zeeman versus Rashba splitting.
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The phase coherence between incoming electrons and Andreev reflected holes persists in DN at a mesoscopic length
scale and results in strong interference effects on the probability of AR [18]. One of the striking experimental mani-
festations is the zero bias conductance peak (ZBCP) [19–29].

A quasiclassical Green’s function theory [30–32] is often applied to the charge transport in DN/S junctions. Volkov,
Zaitsev and Klapwijk (VZK) solved the Usadel equations [33], and showed that this ZBCP is due to the enhancement
of the pair amplitude in DN by the proximity effect [34]. VZK applied the Kupriyanov and Lukichev (KL) boundary
condition for the Keldysh–Nambu Green’s function [35]. Stimulated by the VZK theory, several authors studied the
charge transport in various junctions [36–44].

Recently one of the authors [45] developed the VZK theory for s-wave superconductors using more general
boundary conditions provided by the circuit theory of Nazarov [46]. The boundary conditions coincide with the KL
conditions when a connector is diffusive with low transparent coefficients, while the BTK theory [2] is reproduced in
the ballistic regime. The extended VZK theory [45] produced a crossover from a ZBCP to a zero bias conductance dip
(ZBCD). These phenomena are relevant for the actual junctions in which the barrier transparency is not necessarily
small.

The formation of the MARS at the interface of unconventional superconductors [47,3,48,49] also generates the
ZBCP as mentioned above. The generalized VZK theory was recently applied to unconventional superconducting
junctions [50–52]. The formation of the MARS is naturally taken into account in this approach. It was demonstrated
that the formation of MARS in DN/d-wave superconductor (DN/D) junctions strongly competes with the proximity
effect.

The above theories treat spin independent phenomena in diffusive junctions. Calculations of tunneling conductance
in the presence of the magnetic impurities in DN/S junctions were performed in [53,54,34]. Spin dependent transport
is also realized in ferromagnet/superconductor junctions.

In diffusive ferromagnet/superconductor (DF/S) junctions Cooper pairs penetrate into the DF layer from the S layer
and have a nonzero momentum by the exchange field [55–57]. This property produces many interesting phenomena
[58–72]. One interesting consequence of the oscillations of the pair amplitude is the spatially damped oscillating be-
havior of the density of states (DOS) in a ferromagnet predicted theoretically [73–76]. In the ferromagnet the exchange
field usually breaks the induced Cooper pairs. However, for a weak exchange field, the pair amplitude can be enhanced
and the energy dependent DOS can have a zero-energy peak [77]. The DOS has been studied extensively [74,77–79]
but the condition for the appearance of the DOS peak was not studied systematically. We studied the conditions for the
appearance of such anomaly, i.e., strong enhancement of the proximity effect and found two conditions corresponding
to weak proximity effect and strong one [80]. Since DOS is a fundamental quantity, this resonant proximity effect can
influence various transport phenomena.

Another purpose of the present article is to study the influence of the resonant proximity effect by the exchange field
on the tunneling conductance and the DOS in DF/s- and d-wave superconductor junctions with Nazarov’s boundary
conditions. A weak exchange field is realized in recent experiments with, e.g., Ni doped Pd [79] or magnetic semi-
conductor. Thus our results may be observed in experiments. In the latter part of this article we calculate the tunneling
conductance and the density of states in normal metal/insulator/diffusive ferromagnet/insulator/s- and d-wave super-
conductor (N/I/DF/I/S) junctions for various parameters such as the heights of the insulating barriers at the interfaces,
resistance Rd in DF, the exchange field h in DF, the Thouless energy ETh in DF, the transparencies of the insulat-
ing barriers and the angle between the normal to the interface and the crystal axis of d-wave superconductors α.
Throughout the article we confine ourselves to zero temperature.

The organization of this article is as follows. In Sections 2 and 3, we will provide the detailed derivation of the
expression for the normalized tunneling conductance and the results of calculations are presented for various types
of junctions, in ballistic and diffusive junctions respectively. In Section 4, the summary of the obtained results is
given.

2. Ballistic junctions

We consider F/S and F/d-wave superconductor (F/D) junctions. We use the same method as in [4] and the same
notations. In the following ↑ (↓) denotes majority (minority) spin. The F/US interface located at x = 0 (the y-axis) has
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an infinitely narrow insulating barrier described by the delta function U(x) = Hδ(x). As a model of the ferromagnet
we apply the Stoner model with the exchange potential U . The pair potential matrix we consider is given by

∆
�

(θ) =
(

0 ∆↑↓(θ)

∆↑↓(θ) 0

)
(1)

where θ denotes the direction of motions of quasiparticles measured from the normal to the interface. Below we con-
sider s- and d-wave superconductors. The pair potentials are given by ∆↓↑ = −∆↑↓ = ∆ for s-wave superconductors
and ∆↓↑ = −∆↑↓ = ∆ cos[2(θ − α)] for d-wave superconductors where α denotes the angle between the normal to
the interface and the crystal axis of d-wave superconductors. Here ∆ denotes the energy gap.

Applying the BTK method [2,4], we obtain the conductance σS↑(↓) for up (down) spin quasiparticle represented in
the form:

σS↑ = σN↑
1 − |Γ+Γ−|2(1 − σN↓) + σN↓|Γ+|2

|1 − Γ+Γ−
√

1 − σN↑
√

1 − σN↓ exp[i(ϕ↓ − ϕ↑)]|2 Θ
(
θC − |θ |)

+ σN↑
1 − |Γ+Γ−|2

|1 − Γ+Γ−
√

1 − σN↑ exp[i(ϕ↓ − ϕ↑)]|2 Θ
(|θ | − θC

)
(2)

σS↓ = σN↓
1 − |Γ+Γ−|2(1 − σN↑) + σN↑|Γ+|2

|1 − Γ+Γ−
√

1 − σN↑
√

1 − σN↓ exp[i(ϕ↑ − ϕ↓)]|2 Θ
(
θC − |θ |) (3)

exp(iϕ↓) = 1 − λ− + iZθ√
1 − σN↓(1 + λ− − iZθ)

, exp(−iϕ↑) = 1 − λ+ − iZθ√
1 − σN↑(1 + λ+ + iZθ)

(4)

Γ± = ∆±(θ)

E + √
E2 − |∆±(θ)|2 (5)

where Zθ = Z
cos θ

, Z = 2mH

h̄2kF
and θC = cos−1 √

U/EF with quasiparticle energy E, effective mass m, Fermi wavenum-

ber kF and Fermi energy EF . In the above, Θ(x) is the Heaviside step function and σN↑(↓) denotes the conductance
for up (down) spin quasiparticle in the normal state:

σN↑ = 4λ+
(1 + λ+)2 + Z2

θ

, σN↓ = 4λ−
(1 + λ−)2 + Z2

θ

Θ(θC − |θ |) (6)

with λ± =
√

1 ± U

EF cos2 θ
.

Normalized conductance is expressed as

σT =
∫ π/2
−π/2 dθ cos θ(σS↑ + σS↓)∫ π/2
−π/2 dθ cos θ(σN↑ + σN↓)

(7)

Next we consider a ballistic 2DEG/S junctions. The 2DEG/S interface located at x = 0 (along the y-axis) has an
infinitely narrow insulating barrier described by the delta function U(x) = Hδ(x). The effective Hamiltonian with
RSOC is given by

H =



ξk iλk−Θ(−x) 0 �Θ(x)

−iλk+Θ(−x) ξk −�Θ(x) 0
0 −�Θ(x) −ξk −iλk+Θ(−x)

�Θ(x) 0 iλk−Θ(−x) −ξk


 (8)

with k± = kx ± iky , ξk = h̄2

2m
(k2 − k2

F ), Fermi wave number kF , Rashba coupling constant λ.
The velocity operator in the x-direction is given by [15]:

vx = ∂H

h̄∂kx

=




h̄
mi

∂
∂x

iλ
h̄
Θ(−x) 0 0

− iλ
h̄
Θ(−x) h̄

mi
∂
∂x

0 0

0 0 − h̄
mi

∂
∂x

− iλ
h̄
Θ(−x)

iλ h̄ ∂


 (9)
0 0
h̄
Θ(−x) −

mi ∂x
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The wave function ψ(x) for x � 0 (2DEG region) is represented using eigenfunctions of the Hamiltonian:

eikyy


 1√

2
eik1(2) cos θ1(2)x




(−)i k1(2)−
k1(2)

1
0
0


 + a1(2)√

2
eik1 cos θ1x




0

0

i k1+
k1

1


 + b1(2)√

2
eik2 cos θ2x




0

0

−i k2+
k2

1




+ c1(2)√
2

e−ik1 cos θ1x




−i k1+
k1

1
0
0


 + d1(2)√

2
e−ik2 cos θ2x




i k2+
k2

1
0
0





 (10)

for an injection wave with wave number k1(2) where

k1 = −mλ/h̄2 +
√

(mλ/h̄2)2 + k2
F , k2 = mλ/h̄2 +

√
(mλ/h̄2)2 + k2

F

and k1(2)± = k1(2)e±iθ1(2) . a1(2) and b1(2) are AR coefficients. c1(2) and d1(2) are normal reflection coefficients. θ1(2) is
an angle of the wave with wave number k1(2) with respect to the interface normal.

Similarly for x � 0, ψ(x) (S region) is given by the linear combination of the eigenfunctions. Note that since the
translational symmetry holds for the y-direction, the momenta parallel to the interface are conserved: ky = kF sin θ =
k1 sin θ1 = k2 sin θ2.

The wave function follows the boundary conditions [15]:

ψ(x)|x=+0 = ψ(x)|x=−0 (11)

vxψ(x)|x=+0 − vxψ(x)|x=−0 = h̄

mi

2mU

h̄2




1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1


ψ(0) (12)

Applying BTK theory to our calculation, we obtain the dimensionless conductance represented in the form:

σs = N1

θC∫
−θC

1

2

[
K21 + |a1|2K21 + |b1|2K12λ21 − |c1|2K21 − |d1|2K12λ21

]
cos θ dθ

+ N2

π/2∫
−π/2

Re
1

2

[
K12 + |a2|2K21λ12 + |b2|2K12 − |c2|2K21λ12 − |d2|2K12

]
cos θ dθ (13)

with K12 = 1 + k1/k2,K21 = 1 + k2/k1 and

λ12 = k1 cos θ1

k2 cos θ2
; λ21 = k2 cos θ2

k1 cos θ1
; N1 = 1

1 + mλ

h̄2k1

; N2 = 1

1 − mλ

h̄2k2

(14)

N1 and N2 are normalized density of states for wave number k1 and k2 respectively. The critical angle θC is defined

as cos θC =
√

2mλ

h̄2k1
.

σN is given by the conductance for normal states, i.e., σS for ∆ = 0. We define normalized conductance as σT =
σS/σN and a parameter β as β = 2mλ

h̄2kF
.

First we study the difference between the effect of the Zeeman splitting and that of Rashba splitting. We plot the
tunneling conductance for superconducting states, σS for F/S junctions in (a)–(c) and for 2DEG/S junctions in (d)–(f)
of Fig. 2 with Z = 10 in (a) and (d), Z = 1 in (b) and (e), and Z = 0 in (c) and (f). The exchange field suppresses σS

independently of Z as shown in (a)–(c). This is because the AR probability is reduced by the exchange field. On the
other hand the dependence of σS on β at zero voltage is qualitatively different. In (d)–(f) we show the dependence of
σS on β at zero voltage for various Z. For Z = 10 it has an exponential dependence on β but its magnitude is very
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Fig. 2. Tunneling conductance for superconducting states at zero voltage as a function of the exchange field in F/S junctions (left panels) and RSOC
in 2DEG/S junctions (right panels) with Z = 10 in (a) and (d), Z = 1 in (b) and (e), and Z = 0 in (c) and (f).

Fig. 3. Normalized tunneling conductance in F/D junctions at α/π = 0.25 with Z = 10 in (a) and Z = 0 in (b).

small. For Z = 1 it has a re-entrant behavior as a function of β . For Z = 0 it decreases linearly as a function of β . The
AR probability is enhanced by the RSOC at Z = 10.

Next we will study the F/D junctions. The normalized tunneling conductance σT as a function of bias voltage V is
plotted in Fig. 3 for α/π = 0.25 and various exchange field with Z = 10 in (a) and Z = 0 in (b). For Z = 10 a ZBCP
appears due to the formation of the MARS as shown in (a). As the exchange field increases, σT is suppressed. Similar
plots at Z = 0 are shown in (b). We can find that σT decreases with the increase of the exchange field.

3. Diffusive junctions

We consider a junction consisting of normal and superconducting reservoirs connected by a quasi-one-dimensional
diffusive ferromagnet conductor (DF) with a length L much larger than the mean free path. The interface between the
DF conductor and the S electrode has a resistance Rb while the DF/N interface has a resistance R′

b . The positions of
the DF/N interface and the DF/S interface are denoted as x = 0 and x = L, respectively. We model infinitely narrow
insulating barriers by the delta function U(x) = Hδ(x − L) + H ′δ(x). The resulting transparency of the junctions
Tm and T ′

m are given by Tm = 4 cos2 φ/(4 cos2 φ + Z2) and T ′
m = 4 cos2 φ/(4 cos2 φ + Z′2), where Z = 2H/vF and

Z′ = 2H ′/vF are dimensionless constants and φ is the injection angle measured from the interface normal to the
junction and vF is Fermi velocity.
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We apply the quasiclassical Keldysh formalism in the following calculation of the tunneling conductance. The 4×4
Green’s functions in N, DF and S are denoted by Ǧ0(x), Ǧ1(x) and Ǧ2(x) respectively where the Keldysh compo-
nent K̂0,1,2(x) is given by K̂i(x) = R̂i(x)f̂i(x) − f̂i (x)Âi(x) with retarded component R̂i(x), advanced component
Âi(x) = −R̂∗

i (x) using distribution function f̂i (x) (i = 0,1,2). In the above, R̂0(x) is expressed by R̂0(x) = τ̂3

and f̂0(x) = fl0 + τ̂3ft0. R̂2(x) is expressed by R̂2(x) = gτ̂3 + f τ̂2 with g = ε/
√

ε2 − ∆2 and f = ∆/
√

∆2 − ε2,
where τ̂2 and τ̂3 are the Pauli matrices, and ε denotes the quasiparticle energy measured from the Fermi energy
and f̂2(x) = tanh[ε/(2T )] in thermal equilibrium with temperature T . We put the electrical potential zero in the
S-electrode. In this case, the spatial dependence of Ǧ1(x) in DF is determined by the static Usadel equation [33],

D
∂

∂x

[
Ǧ1(x)

∂Ǧ1(x)

∂x

]
+ i

[
Ȟ , Ǧ1(x)

] = 0 (15)

with the diffusion constant D in DF. Here Ȟ is given by

Ȟ =
(

Ĥ0 0
0 Ĥ0

)
(16)

with Ĥ0 = (ε + (−)h)τ̂3 for majority (minority) spin where h denotes the exchange field. Note that we assume a weak
ferromagnet and neglect the difference of Fermi velocity between majority spin and minority spin. The Nazarov’s
generalized boundary condition for Ǧ1(x) at the DF/S interface is given by [45,51]. We also use Nazarov’s generalized
boundary condition for Ǧ1(x) at the DF/N interface:

L

Rd

(
Ǧ1

∂Ǧ1

∂x

)∣∣∣∣
x=0+

= −R′
b
−1〈B〉′, B = 2T ′

m[Ǧ0(0−), Ǧ1(0+)]
4 + T ′

m([Ǧ0(0−), Ǧ1(0+)]+ − 2)
(17)

The average over the various angles of injected particles at the interface is defined as

〈
B(φ)

〉(′) =
∫ π/2
−π/2 dφ cosφB(φ)∫ π/2

−π/2 dφ T (′)(φ) cosφ
(18)

with B(φ) = B and T (′)(φ) = T
(′)
m . The resistance of the interface R

(′)
b is given by

R
(′)
b = R

(′)
0

2∫ π/2
−π/2 dφ T (′)(φ) cosφ

(19)

Here R
(′)
0 is Sharvin resistance, which in three-dimensional case is given by R

(′)−1
0 = e2k2

F S
(′)
c /(4π2), where kF is the

Fermi wave-vector and S
(′)
c is the constriction area. Note that the area S

(′)
c is, in general, not equal to the cross-section

area Sd of the normal conductor, therefore S
(′)
c /Sd is independent parameter of our theory. This allows us to vary

Rd/R
(′)
b independently of T

(′)
m . In the real physical situation, the assumption S

(′)
c < Sd means that only a part of the

actual flat DN/S interface (having area S
(′)
c ) is conducting whether it is a single conducting region or a series of such

regions. These conducting regions are not constrictions in a standard sense—we do not assume the narrowing of the
total cross-section, but rather that only the part of the cross-section is conducting.

The electric current per one spin is expressed using Ǧ1(x) as

Iel = −L

8eRd

∞∫
0

dε Tr

[
τ̂3

(
Ǧ1(x)

∂Ǧ1(x)

∂x

)K]
(20)

where (Ǧ1(x)
∂Ǧ1(x)

∂x
)K denotes the Keldysh component of (Ǧ1(x)

∂Ǧ1(x)
∂x

). In the actual calculation it is convenient to

use the standard θ -parameterization where the retarded Green’s function R̂1(x) is expressed as R̂1(x) = τ̂3 cos θ(x) +
τ̂2 sin θ(x). The parameter θ(x) is a measure of the proximity effect in DF.

The distribution function f̂1(x) is given by f̂1(x) = fl(x) + τ̂3ft (x). In the above, ft (x) is the relevant distribu-
tion function which determines the conductance of the junction we are now concentrating on. From the retarded or
advanced component of the Usadel equation, the spatial dependence of θ(x) is determined by the following equation

D
∂2

θ(x) + 2i
(
ε + (−)h

)
sin

[
θ(x)

] = 0 (21)

∂x2
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for majority (minority) spin, while for the Keldysh component we obtain

D
∂

∂x

[
∂ft (x)

∂x
cosh2θim(x)

]
= 0 (22)

At x = 0, since ft0 is the distribution function in the normal electrode, it is satisfied with

ft0 = 1

2

{
tanh

[
(ε + eV )/(2T )

] − tanh
[
(ε − eV )/(2T )

]}
(23)

Next we focus on the boundary condition at the DF/N interface. Taking the retarded part of Eq. (17), we obtain

L

Rd

∂θ(x)

∂x

∣∣∣∣
x=0+

= 〈F 〉′
R′

b

F = 2T ′
m sin θ0

(2 − T ′
m) + T ′

m cos θ0
(24)

with θ0 = θ(0+).
On the other hand, from the Keldysh part of Eq. (17), we obtain

L

Rd

(
∂ft

∂x

)
cosh2θim(x)|x=0+ = −〈Ib1〉′(ft0 − ft (0+))

R′
b

, Ib1 = T ′2
m Λ′

1 + 2T ′
m(2 − T ′

m)Real{cos θ0}
|(2 − T ′

m) + T ′
m cos θ0|2 (25)

Λ′
1 = (

1 + |cos θ0|2 + |sin θ0|2
)

(26)

After some calculations we obtain the following final result for the current:

Iel = 1

2e

∞∫
0

dε
ft0

Rb〈Ib0〉 + Rd

L

∫ L

0
dx

cosh2 θim(x)
+ R′

b〈Ib1〉′
(27)

Then the differential resistance R per one spin projection at zero temperature is given by

R = 2Rb

〈Ib0〉 + 2Rd

L

L∫
0

dx

cosh2 θim(x)
+ 2R′

b

〈Ib1〉′ (28)

with

Ib0 = T 2
mΛ1 + 2Tm(2 − Tm)Λ2

2|(2 − Tm) + Tm[g cos θL + f sin θL]|2 (29)

Λ1 = (
1 + |cos θL|2 + |sin θL|2)(|g|2 + |f |2 + 1

) + 4 Imag[fg∗] Imag[cos θL sin θ∗
L] (30)

Λ2 = Real
{
g(cos θL + cos θ∗

L) + f (sin θL + sin θ∗
L)

}
(31)

This is an extended version of the VZK formula [34]. In the above θim(x) and θL denote the imaginary part of
θ(x) and θ(L−), respectively. Then the total tunneling conductance in the superconducting state σS(eV ) is given by
σS(eV ) = ∑

↑,↓ 1/R. The local normalized DOS N(ε) in the DF layer is given by

N(ε) = 1

2

∑
↑,↓

Re cos θ(x). (32)

It is important to note that in the present approach, according to circuit theory, Rd/R
(′)
b can be varied independently

of T
(′)
m , i.e., independently of Z(′), since one can change the magnitude of the constriction area S

(′)
c independently. In

other words, Rd/R
(′)
b is no more proportional to T

(′)
av (L/l), where T

(′)
av is the averaged transmissivity of the barrier

and l is the mean free path in the diffusive region. Based on this fact, we can choose Rd/R
(′)
b and Z(′) as independent

parameters.
In the following, we will discuss the normalized tunneling conductance σT (eV ) = σS(eV )/σN(eV ) where σN(eV )

is the tunneling conductance in the normal state given by σN(eV ) = σN = 1/(Rd + Rb + R′
b).

Now we study the influence of the resonant proximity effect on tunneling conductance as well as the DOS in the DF
region. The resonant proximity effect was discussed in [80] and can be characterized as follows. When the proximity
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effect is weak (Rd/Rb 	 1), the resonant condition is given by Rd/Rb ∼ 2h/ETh due to the exchange splitting of
DOS in different spin sub-bands. When the proximity effect is strong (Rd/Rb � 1), the condition is given by ETh ∼ h

and is realized when the length of a ferromagnet is equal to the coherence length ξF = √
D/h. We choose Rd/Rb = 1

as a typical value to study the weak proximity regime. We also choose Rd/Rb = 5 to study the strong one. We fix
Z = Z′ = 3 because these parameters do not change the results qualitatively and consider the case of high barrier at
the N/DF interface, Rd/R′

b = 0.1, in order to enhance the proximity effect.
Let us first choose the weak proximity regime and relatively small Thouless energy, ETh/∆ = 0.01. In this case

the resonant condition is satisfied for h/ETh = 0.5. In Fig. 4 we show the tunneling conductance for Rd/Rb = 1,
ETh/∆ = 0.01 and various h/ETh in (a). The ZBCD occur due to the proximity effect for h = 0. For h/ETh = 0.5, the
resonant ZBCP appears and split into two peaks or dips at eV ∼ ±h with increasing h/ETh. The value of the resonant
ZBCP exceeds unity. Note that ZBCP due to the conventional proximity effect in DN/S junctions is always less than
unity [21,45] and therefore is qualitatively different from the resonant ZBCP in the DF/S junctions.

The corresponding normalized DOS of the DF is shown in (b) and (c) of Fig. 4. Note that in the DN/S junctions,
the proximity effect is almost independent on Z parameter [45]. We have checked numerically that this also holds for
the proximity effect in DF/S junctions. Fig. 4 displays the DOS for Z = 3, Rd/Rb = 1 and ETh/∆ = 0.01 with (b)
h/ETh = 0 and (c) h/ETh = 0.5 corresponding to the resonant condition. For h = 0, a sharp dip appears at zero energy
over the whole DF region. For nonzero energy, the DOS is almost unity and spatially independent. For h/ETh = 0.5
a zero energy peak appears in the region of DF near the DF/N interface. This peak is responsible for the large ZBCP
shown in (a). Therefore, the ZBCP in DF/S junctions has different physical origin compared to the one in DN/S
junctions.

Next we choose the strong proximity regime and relatively small Thouless energy, ETh/∆ = 0.01. In the present
case, the resonant ZBCP is expected for h/ETh = 1. Fig. 5 displays the tunneling conductance for Rd/Rb = 5 and
ETh/∆ = 0.01 and various h/ETh in (a). We can find resonant ZBCP and splitting of the peak as shown in (a). The
corresponding DOS is shown in (b) h/ETh = 0 and (c) h/ETh = 1. For h = 0, a sharp dip appears at zero energy.
For finite energy the DOS is almost unity and spatially independent. For h/ETh = 1 a peak occurs at zero energy in
the range of x near the DF/N interface. We can find a similar structure in the corresponding conductance as shown in
Fig. 5(a). The DOS around zero energy is strongly suppressed at the DF/S interface (x = L) compared to the one in
Fig. 4.

Fig. 4. Normalized tunneling conductance (a) and the DOS ((b) and (c)) with Rd/Rb = 1 and ETh/∆ = 0.01. (b) h/ETh = 0 and (c) h/ETh = 0.5.
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Fig. 5. Normalized tunneling conductance (a) and the DOS ((b) and (c)) with Rd/Rb = 5 and ETh/∆ = 0.01. (b) h/ETh = 0 and (c) h/ETh = 1.

Let us proceed to study the d-wave junctions both for weak and strong proximity regimes. In this case, depending on
the orientation angle α, the proximity effect is drastically changed: As α increases the proximity effect reduces [50,51].
For α = 0 we can expect similar results to those in the s-wave junctions since proximity effect exists while the
MARS is absent. In contrast, the tunneling conductance for large α is almost independent of h/ETh. Especially, the
conductance is independent of h for α/π = 0.25 due to the complete absence of the proximity effect. There exist two
different origins for ZBCP in DF/D junctions: the ZBCP by resonant proximity effect peculiar to DF and the ZBCP
by the MARS formed at DF/D interface. When α deviates from 0, the MARS are formed at the interface. At the same
time, the proximity effect is suppressed due to the competition between the proximity effect and the MARS. Therefore
the MARS provide the dominant contribution to the ZBCP compared to the resonant proximity effect in DF, as will
be discussed below.

First we choose the weak proximity regime where the resonant condition is h/ETh = 0.5. Fig. 6 displays the
tunneling conductance for Rd/Rb = 1, ETh/∆ = 0.01 and various α with (a) h/ETh = 0 and (b) h/ETh = 0.5. For
h = 0, ZBCD appears for α/π = 0 due to the proximity effect as in the case of the s-wave junctions while ZBCP
appears for α/π = 0.25 due to the formation of the MARS (Fig. 6(a)). For h/ETh = 0.5, the height of the ZBCP
by the resonant proximity effect for α = 0 exceeds the one by MARS for α/π = 0.25 (Fig. 6(b)) in contrast to the
ballistic junctions where the ZBCP for α/π = 0.25 is most enhanced [3].

We also study the DOS of the DF for the same parameters as those of Fig. 6(b) as shown in (c) α/π = 0 and
(d) α/π = 0.125 in Fig. 6. The line shapes of the LDOS near the DF/S interface are qualitatively similar to the
tunneling conductance. For α/π = 0 a zero-energy peak appears as in the case of s-wave junctions. With increasing
α, the DOS around the zero energy is suppressed due to the reduction of the proximity effect. The extreme case is
α/π = 0.25, where the DOS is always unity since the proximity effect is completely absent.

Next we look at the junctions for the strong proximity regime. In Fig. 7 we show the tunneling conductance for
Rd/Rb = 5, ETh/∆ = 0.01 and various α with (a) h/ETh = 0 and (b) h/ETh = 1. In this case we also find the ZBCP
for α = 0 by the resonant proximity effect. The height of the ZBCP is suppressed as α increases as shown in Figs. 7(b).

The corresponding DOS of the DF to the case of (b) in Fig. 7 is shown in Fig. 7 with (c) α/π = 0 and (d) α/π =
0.125. For α = 0 the structure of the DOS at x = 0 reflects the line shapes of the tunneling conductance. With
increasing α the zero energy peak of the DOS becomes suppressed. The DOS at the DF/S interface (x = L) are
drastically suppressed compared to those in Fig. 6.
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Fig. 6. Normalized tunneling conductance ((a) and (b)) and the DOS ((c) and (d)) for d-wave superconductors with Rd/Rb = 1 and ETh/∆ = 0.01.
(a) h/ETh = 0, (b) h/ETh = 1, (c) h/ETh = 1 and α/π = 0 and (d) h/ETh = 1 and α/π = 0.125.

Fig. 7. Normalized tunneling conductance ((a) and (b)) and the DOS ((c) and (d)) for d-wave superconductors with Rd/Rb = 5 and ETh/∆ = 0.01.
(a) h/ETh = 0, (b) h/ETh = 1, (c) h/ETh = 1 and α/π = 0 and (d) h/ETh = 1 and α/π = 0.125.

4. Conclusions

In this article we studied the tunneling conductance in F/S, F/D and 2DEG/S junctions in ballistic regime. We ex-

tended the BTK formula and calculated the tunneling conductance of the junctions. We clarified the following points:
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– The exchange field always suppresses the conductance in F/S and F/D junctions.
– In 2DEG/S junctions, for low insulating barrier the RSOC suppresses the tunneling conductance while for high

insulating barrier it can slightly enhance the tunneling conductance. We also found a re-entrant behavior of the
conductance at zero voltage as a function of RSOC for intermediate insulating barrier strength. The results give
the possibility of controlling the AR probability by a gate voltage. We believe that the obtained results are useful
for a better understanding of related experiments of mesoscopic F/S and 2DEG/S junctions.

In the latter part of the present article, a detailed theoretical study of the tunneling conductance and the density of
states in normal metal/diffusive ferromagnet/s- and d-wave superconductor junctions is presented. We clarified that
the resonant proximity effect strongly influences the tunneling conductance and the density of states. There are several
points which have been clarified in this article:

– For s-wave junctions, due to the resonant proximity effect, a sharp ZBCP appears for small ETh. We showed that
the mechanism of the ZBCP in DF/S junctions is essentially different from that in DN/S junctions and is due to
the strong enhancement of the DOS at a certain value of the exchange field. As a result, the magnitude of the
ZBCP in DF/S junctions can exceed unity in contrast to that in DN/S junctions.

– For d-wave junctions at α = 0, similar to the s-wave case, the sharp ZBCP is formed when the resonant condition
is satisfied. At finite misorientation angle α, the MARS contribute to the conductance when Rd/Rb 	 1 and
Z � 1. With the increase of α the contribution of the resonant proximity effect becomes smaller while the MARS
dominate the conductance. As a result, for sufficiently large α ZBCP exists independently of whether the resonant
condition is satisfied or not. In the opposite case of the weak barrier, Rd/Rb � 1, the contribution of MARS is
negligible and ZBCP appears only when the resonant condition is satisfied.

An interesting problem is a calculation of the tunneling conductance in normal metal/diffusive ferromagnet/p-wave
superconductor junctions because interesting phenomena were predicted in diffusive normal metal/p-wave supercon-
ductor junctions [52]. We will perform it in the near future.
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