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Abstract

The coupling between magnetic and superconducting degrees of freedom in magnetic superconductors leads to subgap res-
onances in the I–V characteristic. We study two mechanisms of coupling: the spin-assisted cotunneling (in layered magnetic
superconductors) and the interaction mediated by the ac magnetic field of a moving vortex lattice. The latter mechanism we study
in both layered and moderately anisotropic superconductors. At resonance conditions the dynamics of vortices in magnetic super-
conductors changes drastically, resulting in strong peaks in the dc I–V characteristic at voltages at which the washboard frequency
of vortex lattice matches the spin wave frequency ωs(g), where g are the reciprocal vortex lattice vectors. We show that for a high
enough washboard frequency, peaks in the I–V characteristic in borocarbides and cuprate layered magnetic superconductors are
strong enough to be observed on the quasiparticle background. To cite this article: M. Hruška, L.N. Boulaevskii, C. R. Physique
7 (2006).
 2006 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Effets des excitations magnétiques sur la propriété I–V des supraconducteurs magnétiques. Le couplage des degrés de
liberté magnétique et supraconducteur dans les supraconducteurs magnétiques conduit à des résonances sous le seuil dans la
caractéristique I–V. Nous étudions deux mécanismes de couplage : le cotunneling induit par spin (dans les supraconducteurs
magnétiques lamellaires) et l’interaction transportée par le champ magnétique alternatif d’un réseau de vortex en mouvement.
Ce dernier mécanisme est étudié à la fois dans les supraconducteurs lamellaires et modérément anisotropiques. A la résonance,
la dynamique des vortex dans les supraconducteurs magnétiques change brutalement, conduisant à des pics très marqués dans la
caractéristique I–V continue à des tensions pour lesquelles la fréquence du réseau de vortex atteint celle de l’onde de spin ωs(g)

(g désignant le champ de vecteurs position du réseau réciproque de vortex). Nous montrons que, pour une fréquence du réseau
de vortex assez haute, les pics dans la caractéristique courant-tension des supraconducteurs magnétiques lamellaires de carbure de
bore et cuivriques émergent suffisamment du bruit de fond de quasiparticules pour être observés. Pour citer cet article : M. Hruška,
L.N. Boulaevskii, C. R. Physique 7 (2006).
 2006 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction

Magnetic ordering can coexist with superconductivity without strong interference in the cases where spin density
varies on the scale much smaller than the superconducting correlation length and net magnetic moment vanishes
(for review see [1,2]). The coexistence of magnetism and superconductivity was observed in many crystals, such as
RMo6S8, RRh4B4, RBa2Cu3O7−δ and (R,A)CuO4−δ (A = Sr,Ce) with the temperatures of magnetic ordering TM

much smaller than the superconducting critical temperature Tc, and also in borocarbides RT2B2C and ruthenocuprate
RuSr2GdCu2O8 with TM of the same order as Tc. Here R is the rare earth element, while T = Ni, Ru, Pd, Pt. In
such crystals f -electrons of ions R give rise to localized magnetic moments, while conducting electrons exhibit
the Cooper pairing. In most of these crystals (exceptions are HoMo6S8 and ErRh4B4), magnetic moments order
antiferromagnetically below TM with a magnetic unit cell on a length scale much smaller than the superconducting
coherence length and the London penetration lengths.

In this review we consider effects of coupling between magnetic and superconducting excitations on the I–V
characteristic in magnetic superconductors. The interaction of the superconducting subsystem with the magnetic one
opens up an additional channel of energy dissipation beside the quasiparticles. The additional dissipation (as would
be evident from, e.g., the dc current) is the most prominent when conditions for a resonance between superconducting
and magnetic excitations are met. Thus, by measuring the I–V characteristics one encounters a new possibility to probe
magnetic excitations in magnetic superconductors. In particular we study the following two mechanisms of interaction
between superconducting and magnetic degrees of freedom: (1) the spin-assisted co-tunneling in layered magnetic
superconductors; and (2) interaction between a moving vortex lattice and magnetic moments via the ac magnetic
field induced by moving vortices. In the first mechanism, existing in layered magnetic superconductors, the matrix
element for superconducting tunneling from one layer to the next, depends on the spin of magnetic moments present
in-between layers. The second mechanism of coupling exists in both isotropic (and nearly isotropic) as well as layered
magnetic superconductors. The advantage of this mechanism to the techniques employed to probe nonsuperconducting
magnetic conductors (e.g., radio-frequency irradiation) lies in the intrinsic generation of the ac magnetic field inside
the superconductor. As a dc current is applied, the static spatially periodic magnetic field of the vortex lattice becomes
an ac magnetic field of the same spatial period (determined by the external dc magnetic field), since the vortex lattice
starts moving as a whole under the influence of the Lorentz force. The interaction of this intrinsic ac magnetic field and
the magnetic moments is strong enough to change drastically the dc I–V characteristic in the superconducting mixed
state when the ac magnetic field periodic in space is in resonance with spin waves of a corresponding momentum and
frequency. Then moving vortices excite spin waves and energy transfer from vortices to the magnetic system leads
to additional dissipation relative to that caused by quasiparticles. This results in strong current peaks in the dc I–V
characteristics at voltages at which the washboard frequency of vortex lattice [3,4] matches the spin wave frequency
ωs(k) and k matches the reciprocal vortex lattice vector g.

In Section 2 we consider slightly anisotropic superconductors, i.e., all systems mentioned above except layered
superconductors with intrinsic Josephson junctions SmLa1−xSrxCuO4−δ and RuSr2GdCu2O8 crystals, and probably
also Sm2−xCexCuO4−δ [5–9]. In this section we introduce the idea of using the electromagnetic coupling of mag-
netic moments to the ac magnetic field induced by the moving vortex lattice to extract information on the magnetic
excitations. In Section 3 we study the case of layered magnetic superconductors, where in the first subsection this
idea is followed for the case of magnetic field applied parallel to the layers, while in the second subsection the effects
of spin-assisted cotunneling are considered. We conclude in Section 4, proposing to probe low-frequency magnetic
excitations in magnetic superconductors by measuring the I–V characteristics in the mixed state with a moving vortex
lattice.

2. Spectroscopy of magnetic excitations in moderately anisotropic magnetic superconductors using vortex
motion

To introduce spectroscopy of magnetic excitations in moderately anisotropic superconductors we follow [3] in
this section. We assume, for simplicity, a uniaxial crystal structure with the principal axis along z. The dc magnetic
field is applied along the z-axis and we assume that the magnetic induction B(r), r = x, y, inside the superconductor
corresponds to the ideal Abrikosov square vortex lattice (such a lattice is realized in clean borocarbide crystals in
field B ‖ c in some field intervals [1]; our calculations are however trivially modified in the case of a triangular vortex
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Fig. 1. Vortex lattice moving with the velocity v induces an ac magnetic field h(x, t) which excites the system of magnetic moments shown by
thick arrows. This additional dissipation results in the current peaks in I–V characteristics. Shown are the geometries discussed for nearly isotropic
(left) and layered (right) superconductors.

lattice). The sublattice magnetization is assumed to be oriented in the (x, y) plane. The dc transport current with the
density j is along the y-axis which, due to the Lorenz force, causes motion of the vortex lattice with the velocity v
along the x-axis (Fig. 1).

We use the quasistatic approach assuming that at every moment in time the space structure of the magnetic induc-
tion is the same as in the static vortex lattice for the position given at that moment. Thus the magnetic induction B has
the dependence on coordinates and time in the combination (r − vt), moving in the same way as the vortex lattice. In
the field interval B � Hc2 the magnetic induction is found from the London equations [10,11,2]

curl B = 4π

c
js + 4π curl M (1)

js = cΦ0

8π2λ2⊥

(
∇φ − 2π

Φ0
A

)
, B = curl A (2)

curl∇φ =
∑
n

2πδ(r − rn) (3)

where js is the supercurrent, A is the vector potential, φ is the phase of the superconducting order parameter, M is the
local magnetization, Φ0 is the flux quantum and λ⊥ = λx = λy is the London penetration length for currents in the
(x, y) plane in the absence of magnetic moments. Further, rn(t) = rn(0) + vt are the coordinates of vortices in the
xOy plane and rn(0) form a regular vortex lattice. From Eqs. (1)–(3) we obtain

curl curl(B − 4πM) + 1

λ2⊥
B = Φ0

λ2⊥

∑
n

δ(r − rn) (4)

To relate the Fourier components of Mz(r, t) ≡ M and Bz(r, t) ≡ B we use the linear response approximation in
which supercurrents induce the ‘external’ magnetic field, H(k,ω) = B(k,ω) − 4πM(k,ω), acting on the magnetic
moments, where M(k,ω) = χ(k,ω)H(k,ω) and χ(k,ω) ≡ χzz(k,ω) is the susceptibility of the magnetic system.
This approach is valid for the magnetization harmonics gx �= 0 satisfying the condition∣∣M(g, gxv)

∣∣2
/(µnM)2 � 1 (5)

where nM is the density of magnetic ions and their magnetic moment is µ. For an antiferromagnet with two sublattices
the magnetic susceptibility is given [12] by

χ(k,ω) = ωMωs(k)

ω2
s (k) − ω2 − iωνs

(6)

Here ωM = µ2nM/(2h̄) at µB � kBTM , ωs(k) is the magnetically active spin wave dispersion renormalized by
superconductivity [2], while νs is the relaxation rate of spin waves due to the interaction with phonons. Using Eq. (4),
we obtain for the Fourier components k = g = 2π(B0/Φ0)

1/2(n,m,0) of the magnetic field[
1 + λ2⊥k2

1 + 4πχ(k,ω)

]
B(k,ω) = (2π)4

∑
g

B0δ(k − g)δ(ω − gxv) (7)

where B0 is the average induction, and n,m are integer. From Eq. (7) we see that magnetic moments renormalize
the London penetration length so that the effective penetration length in magnetic superconductors is given [2] by
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Λ⊥(k,ω) = λ⊥[1 + 4πχ(k,ω)]−1/2. Solving Eq. (7) we obtain the Fourier components of the ‘external’ field H at
the washboard frequency ω = gxv as

H(k,ω) = (2π)4B0
δ(k − g)δ(ω − gxv)

1 + 4πχ(g,ω) + λ2⊥g2
(8)

Thus the moving vortex lattice induces a spatially periodic ac ‘external’ magnetic field h(r, t) = H(r, t)−B0 along the
z-axis characterized by momenta g and washboard frequencies ω = vgx . The moving vortex lattice induces also an
electric field E = [v × B]/c along the current direction.

The alternating magnetic field h(r, t) of a vortex lattice moving with velocity v is characterized by the washboard
frequency in direction g given by ωw(g) = g · v. This ac magnetic field excites spin waves of momenta k = g and
the frequencies ωs(g) = ωw provided v exceeds some critical velocity determined by the spin wave velocity, as in the
case of the Cherenkov radiation. (We will discuss this condition in more detail at the end of this section.)

Assuming that sublattice magnetizations are almost perpendicular to the applied magnetic field, we obtain for the
power per unit volume transmitted from the vortex lattice to the magnetic system [12]

PM = −
〈
M(r, t) · ∂h(r, t)

∂t

〉
=

∑
g(gx>0)

2gxv
∣∣h(g, gxv)

∣∣2 Im
[
χ(g, gxv)

]
(9)

where brackets denote time and space average and h(g, gxv) = B0/[1 + 4πχ(g,ω) + λ2⊥g2]. At χ = 0 for λ⊥ =
1300 Å, typical for borocarbides, the amplitude of the main harmonic, n = 1, m = 0, is about 20 G.

To find the velocity of the vortex lattice at a given transport current density j we equate the power per unit volume
performed by the battery, jE, to the sum of the power dissipated by quasiparticles, ηv2, and that transmitted to the
magnetic system, PM . Here η is the viscous drag coefficient due to quasiparticles in normal vortex cores. It is given
by the Bardeen–Stephen expression η = B0H

∗
c2σn/c

2, where σn is the normal state conductivity, H ∗
c2 = Φ0/(2πξ2⊥)

is the orbital upper critical field and ξ⊥ is the superconducting correlation length in the direction perpendicular to the
applied magnetic field. Taking into account that E = vB0/c and ω = vgx = cEgx/B0, we find v and finally j–E (i.e.,
I–V) characteristics in the intervals of E, where inequality Eq. (5) is fulfilled:

j (E) = c2η

B2
0

E +
∑
g�=0

2gxcB0 Im[χ(g, cEgx/B0)]
|1 + 4πχ(g, cEgx/B0) + g2λ2⊥|2 (10)

From this equation we see that the current density as a function of E has peaks corresponding to the resonances
in magnetic susceptibility, i.e., the resonances between the ac magnetic field and spin waves, when ωs(n,m) =
2πv(B0/Φ0)

1/2n.
To discuss the behavior of j (E) near the resonances we introduce the frequency deviation �ω = ωs(g) − ω such

that νs � �ω � ωs(n,m). Then we obtain χ(g,ω) ≈ ωM/(2�ω) and Im[χ(g,ω)] ≈ ωMνs/(2�ω)2. We consider
the interval of frequency deviations �ω where λ2⊥g2 	 4πχ(g,ω). In this interval we estimate

M(g,ω)

µnM

≈ µΦ0

16π2(n2 + m2)λ2⊥h̄�ω
(11)

Due to the condition Eq. (5) our approach is valid for h̄�ω > µΦ0/(4πλ⊥)2. The ratio of the additional current
caused by spin waves over the current background is given as

�j(n,m)

j
≈ ωMνsΦ0B0

8π2ωη(�ω)2λ4⊥

n2

(n2 + m2)2
(12)

In the frequency interval h̄�ω > µΦ0/(4πλ⊥)2 we derive

�j(n,m)

j
<

16π2h̄nMνsB0

ωηΦ0

n2

(n2 + m2)2
(13)

In magnetic insulators νs is typically of order 106 s−1. One can anticipate the same value in magnetic super-
conducting crystals, as conducting electrons are gapped. For HoNi2B2C, taking H ∗ ≈ 10 T, nM = 1022 cm−3,
c2
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σn = 105 �−1 cm−1 at ω = 1010 s−1 we derive �j(n,m)/j < 0.8n2/(n2 + m2)2. Thus, the peak n = 1, m = 0 is
observable even in the frequency interval where our linear response approach is valid. Here the magnetic system
deviates only slightly from equilibrium as energy is transformed further to the phonon bath.

Closer to the resonance the linear response approach breaks down. Here the dominant contribution to dissipation
comes from generation of spin waves by vortices which leads to a strong deviation of the magnetic system from
equilibrium. For quantitative description of the j–E characteristics close to resonances the full dynamic approach for
vortices and magnetic system is necessary.

Based on Eq. (10) we see that measurements of the I–V characteristics at different magnetic fields and currents
may provide information on the spin wave dispersion ωs(g). The washboard frequency ω and the reciprocal vortex
lattice vectors g may be changed independently, but an important question is what are limitations on their variations.
Momentum k ∼ 2π(B0/Φ0)

1/2 is of order 106 cm−1 in fields B � 1 T and increases as one approaches Hc2, but
then harmonic amplitudes h(g,ω) drop. Limitations on frequency are due to limitations on j , which should be lower
than the depairing current density, and also should not lead to excessive heating. From Eq. (10), to reach frequency
ω one needs current density j (ω) � σnωH ∗

c2/cgx and the electric field E(ω) = ωB0/cgx . For B = 1 T we obtain
j (ω) ≈ 107n−1(h̄ω/1K) A/cm2 if the lowest harmonics are used, while for higher harmonics higher frequencies may
be reached. The depairing current density for borocarbides is of order 107 A/cm2 and thus spin waves with energies
h̄ω � 1 K may be probed. For the dissipation power per unit volume, Pdis = jE � σnω

2Φ0H
∗
c2/4π2c2, we estimate

Pdis ∼ 108n−2(h̄ω/1 K)2 W/cm3. To diminish heating the pulse technique may be used as in I–V measurements by
Kunchur [13].

As energies that may be probed by I–V measurements in this way are limited from above, an important ques-
tion is what the minimum spin wave energy is. Neglecting effects of magnetic field (which are small for µB � SJ ,
where J is the exchange interaction of order of the Neel temperature), the spectrum of magnetic excitations is de-
termined solely by the direct exchange of magnetic ions, by their RKKY interaction via the conducting electrons
and by the magnetic anisotropy. When the magnetic anisotropy is absent, the dispersion in a two-sublattice anti-
ferromagnet is linear at small momenta (k � 1/a), ωs(k) = vsk, where vs = Ja/h̄ z is the coordination number,
S is the ion spin and a is the magnetic correlation length (of order of the nearest neighbour spacing). Then the
generation of spin waves by the moving vortex lattice occurs if v � vs , as in the case of generation of sound by
the moving vortex lattice due to the ac electric field [23,24]. The magnetic anisotropy introduces a gap ∆ giv-
ing the dispersion of the form ωs(k) = √

(∆/h̄)2 + (vsk)2. Then the condition for spinwave excitation by the ac
magnetic field of the moving vortex lattice is given by v2 > v2

s + (∆a/h̄)2 (see also Fig. 2). Neither experimental
nor theoretical information on the strength of magnetic anisotropy or the structure of excitations in these materi-
als is available to date. Thus we cannot predict yet whether resonance conditions for the lowest harmonics will be
fulfilled in borocarbides. However, we can anticipate that higher harmonics will be effective in the case of weak
pinning.

Fig. 2. (Rescaled) momentum dependence of the spinwave frequency (the light curve, with a dashed asymptote) and the washboard frequency at
large (dark straight line) and small (light straight line) velocities.
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3. Spectroscopy of magnetic excitations in layered magnetic superconductors

The c-axis transport in many layered superconductors (intercalated dichalcogenides, cuprates and organic super-
conductors) is well described by modeling them as a stacked array of two-dimensional superconductors coupled by
Josephson tunneling between adjacent layers [25,2]. The intrinsic Josephson effect between the copper-oxide layers
has been demonstrated in several ways. Josephson plasma resonance measurements [26] for the direction perpendic-
ular to the layers show that the energy of this collective mode is much smaller than the superconducting gap in these
materials. This is in contrast to the high energy plasma mode for the electric field along the layers and in bulk isotropic
superconductors [27]. The difference is due to the fact that plasma oscillations are gapless when electrons are almost
constrained to move in 2D layers causing the screening of their Coulomb interaction to be strongly anisotropic [28].
In the case of weak interlayer coupling plasmon for the electric field perpendicular to the layers acquires small gap
known as the Josephson plasma frequency. Another confirmation of the Josephson type of interlayer coupling comes
from the multibranch structure of the current-voltage characteristic, with each branch corresponding to a well defined
number of Josephson junctions in the resistive state [29]. In addition, one can calculate the coherence length in the
direction perpendicular to the layers (along the c-axis) from the knowledge of the anisotropy ratio γ and thus demon-
strate the applicability of the Lawrence–Doniach tunneling model [25] which is valid when the coherence length
perpendicular to the layers is much smaller than the interlayer spacing s.

The Josephson oscillations generate time-dependent electromagnetic field which couples to the electromagnetic
cavity modes of the junction structure. As a result, the current-voltage characteristic exhibits current peaks or multiple
branches at voltages related to the corresponding mode frequencies by the Josephson relation [31,32].

In addition to excitation of electromagnetic cavity modes, other degrees of freedom which interact with the su-
perconducting phase difference could influence the shape of the I–V characteristic of the junction in the same way.
Recently, specific subgap structures in the form of current anomalies at some voltages were observed in the I–V char-
acteristics of intrinsic Josephson junctions in Bi2Sr2CaCu2O8 and Tl2Ba2Ca2Cu3O10 with the tunneling current in the
c-direction [30]. The specific subgap structures in the I–V characteristics of Bi2Sr2CaCu2O8 and Tl2Ba2Ca2Cu3O10
were explained as stemming from two different mechanisms of coupling between Josephson oscillations and phonons:
the electromagnetic interaction between the ionic charges of the dielectric layer and the charges of conduction elec-
trons [16] and the phonon assisted tunneling as due to the dependence of the tunneling matrix element on lattice
displacements [17]. It was demonstrated that also two-level systems may be excited inside the junction due to cou-
pling to the phase oscillations [33,34].

In electron-doped cuprates Ln2−xCexCuO4−δ with Ln = Nd, Sm, the antiferromagnetic ordering of the rare-earth
ions has been found to coexist with superconductivity at low temperatures within a narrow range of doping near
x = 0.15 [9,35]. The SmLa1−xSrxCuO4−δ compound is especially interesting because its T ∗ structure leads to a
two-dimensional character of the magnetic system. Here magnetic Sm2O2 and nonmagnetic La2−xSrxO2−δ layers
alternate in the barriers between the superconducting CuO2 layers. The Josephson nature of the interlayer coupling in
this crystal has been confirmed by observation of the double Josephson plasma resonance stemming from two layers
in a unit cell [5,6]. According to specific heat measurements [7], magnetic ordering is absent down to a temperature
of 0.3 K and a magnetic gap, if any, lies below 0.3 K. They reveal a broad peak near the temperature 1 K and the
height of this peak indicates the presence of competing interactions that might be described by the two-dimensional
J1–J2 Heisenberg model with J2/J1 > 0.4 [7,14]. Such a model has very complex dynamics and contains a variety of
transitions down to zero temperature, making it an ideal testing ground for the theory of quantum phase transitions.
The most interesting part of the phase diagram is in the region 0.4 � J2/J1 � 0.55, where a gapped phase without
magnetic ordering is likely to be taking place. However, its characterization has been one of the most intriguing
puzzles of the physics of strongly correlated systems [15].

We discern two main mechanisms of coupling between the superconducting phase difference and additional degrees
of freedom:

(1) the electromagnetic mechanism, when the ac magnetic or electric field of Josephson oscillations couples to other
degrees of freedom, as in the case of the ac electric field of the Josephson oscillations coupling to the optically
active phonons [16]; and

(2) the cotunneling mechanism, when the tunneling matrix element depends on the additional degrees of freedom,
e.g., on lattice displacements in the phonon-assisted tunneling [17] or on spins.
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The latter mechanism we study in Section 3.2. whereas in Section 3.1. we study the electromagnetic mechanism of
coupling in the presence of a strong magnetic field applied parallel to the layers. We will show that the spin-assisted
cotunneling leads to enhancement of the dc current at voltages corresponding to singlet magnetic excitations, and
that the moving vortex lattice leads to peaks in the dc I–V characteristic at voltages corresponding to triplet spinwave
excitations with momenta determined by the applied magnetic field and the interlayer spacing. These two mechanisms
of coupling of the phase difference to the spin degrees of freedom provide an alternative tunneling spectroscopy that
may be important in the cases when the inelastic neutron scattering spectroscopy cannot be applied (as for example is
the case for Sm compounds due to a high scattering cross-section for neutron capture).

3.1. Spectroscopy using vortex motion in layered superconductors

If the magnetic field is applied perpendicular to the layers (along the c-axis), it induces pancake vortices which do
not form regular lattice in the magnetic fields above 20 G as they order along the c-axis only due to weak Josephson
and magnetic interactions [18]. This makes excitation of spin waves ineffective by moving vortex lattice induced
by a perpendicular magnetic field. When a magnetic field is applied parallel to the layers (in the ab-plane, along
the y-axis), the situation is drastically different, because now Josephson vortices [19–22] are induced. In high fields
they form a lattice which is quite regular in the x-direction (parallel to the layers). Josephson vortices do not have
normal cores and so only thermally induced quasiparticles (or those near the nodes in the case of d-wave pairing)
cause dissipation. A weak interlayer tunneling transport current, which leads to vortex motion in the x-direction,
cannot destroy superconductivity and produces much less heating than in the case of isotropic or weakly anisotropic
superconductors. An ac magnetic field in the direction of the applied dc magnetic field parallel to the layers results
naturally from the motion of a regular vortex lattice. The spatial periodicity of this field is determined by the periodicity
of the vortex lattice while the time periodicity is determined by the Josephson frequency.

In the absence of magnetic moments, the distribution of the magnetic induction B(r) inside intrinsic Josephson
junctions has been found as a solution to coupled finite-difference differential equations for the phase difference ϕn and
for the magnetic induction Bn inside the junction n between layers n and n+1 [22,20]. These equations can be derived
from Maxwell equations expressing fields and currents in terms of the gauge-invariant phase-difference between
layers, ϕn = φn+1 −φn − (2πs/Φ0)Azn and the in-plane superconducting momentum pxn = ∂φn/∂x − (2π/Φ0)Axn.
In the presence of magnetic moments, we account for magnetization Mn of ions inside intrinsic Josephson junction n

in the linear response approximation. Taking the direction of the magnetic induction to be parallel to the layers (along
y-axis) and the applied current along the c-axis in the z-direction, the local magnetic field between layers n and n + 1
can be expressed as

Hn = Ax,n+1 − Ax,n

s
− ∂Azn

∂x
− 4πMn = Φ0

2πs

(
∂ϕn

∂x
− px,n+1 + px,n

)
− 4πMn (14)

The components of the electric field can be approximated as

Exn � Φ0

2πc

∂pxn

∂t
, Ezn � Φ0

2πcs

∂ϕn

∂t
(15)

The components jxn and jzn of electric currents containing the normal and superconducting currents are given by

jxn = σab

Φ0

2πc

∂pxn

∂t
+ cΦ0

8π2λ2
ab

pxn, jzn = σz

Φ0

2πcs

∂ϕn

∂t
+ jJ sinϕn (16)

where σc and σab are quasiparticle conductivities along the c-axis and in the ab-plane, respectively, λc and λab are
the corresponding London penetration lengths and jJ = cΦ0/8π2sλ2

c is the Josephson current density. Using these
relations we can rewrite the z and x components of the Maxwell equation ∇ × H = (4π/c)j + ∂D/∂t :

2σcΦ0

c2s

∂ϕn

∂t
+ 4π

c
jJ sinϕn + εcΦ0

2πc2s

∂2ϕn

∂t2
= ∂Hn

∂x
(17)

2σabΦ0

c2

∂pxn

∂t
+ Φ0

2πλ2
ab

pxn = −Hn − Hn−1

s
(18)

where in the second equation the displacement current was neglected (as its typical frequency is assumed to be much
smaller than the in-plane plasma frequency c/λab) and the derivative ∂H/∂z is replaced by the discrete derivative
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(Hn − Hn−1)/s instead by (Hn+1 − Hn)/s. (This procedure prevents a drift of the discrete derivative indices to the
neighbouring layer indices in the following step of the derivation when the second derivative is taken.) Taking a
discrete derivative of Eq. (18) and making use of Eq. (14) we obtain(

4πσab

c2

∂

∂t
+ 1

λ2
ab

)(
Φ0

2πs

∂ϕn

∂x
− Hn − 4πMn

)
= −Hn+1 + Hn−1 − 2Hn

s2
(19)

Eqs. (17) and (19) together with the linear response approximation describe the phase dynamics in terms of
phases, magnetic field and magnetization. In terms of dimensionless variables ϕn, bn = Bn2πλabλc/Φ0, mn =
Mn2πλabλc/Φ0 and hn = bn − 4πmn, we have:

∂2ϕn

∂τ 2
+ νc

∂ϕn

∂τ
+ sinϕn − ∂hn

∂u
= 0 (20)

∇2
nhn − bn

�2
+ ∂ϕn

∂u
+ νab

∂

∂τ

(
∂ϕn

∂u
− bn

�2

)
= 0 (21)

where u = x/λJ , τ = tωp , λJ = γ s, s is the interlayer distance, γ = λc/λab is the anisotropy ratio, ωp =
c/(λc

√
εc ) is the Josephson frequency, εc is the dielectric function along the c-axis, νc = 4πσc/(ωpεc) and

νab = 4πσab/(γ
2εcωp). We use the linear response approximation

mκ,q,ω = χκ/λJ ,q,ω·ωpbκ,q,ω/(1 + 4πχκ/λJ ,q,ω·ωp) (22)

where we introduced Fourier transformed quantities mκ,q,ω and bκ,q,ω with respect to dimensionless variables u,
n and τ (thus the indices κ and ω are also dimensionless, obtained from the usual momentum and frequency by
rescaling by 1/λJ and ωp), while the Fourier transform of magnetic susceptibility χ ≡ χyy is done with respect to
usual variables of space and time coordinates (and thus given by expression (6)) to keep the usual form of the linear
response approximation. Substituting Eq. (22) into the Fourier-transformed Eq. (21) we obtain how the magnetic field
depends on the phase:

bκx,0,q,ω = iκxl
2(1 + iνabω)ϕκx,0,q,ω

1 + iνabω + 2(1 − cosq)l2/(1 + 4πχκx/λJ ,0,q,ω·ωp)
(23)

and see that hκx,0,q,ω = bκx,0,q,ω/(1+4πχκx/λJ ,0,q,ω·ωp) satisfies the same equations as bκx,0,q,ω at χ = 0, but with the

renormalized parameter �̃−2 = (1 + 4πχκx/λJ ,0,q,ω·ωp)�−2. For SmLa1−xSrxCuO4−δ we estimate �̃−2 � 1 because
ωM ≈ 1.8 × 108 s−1, �2 ≈ 2 × 104 at µ = 0.8µB , nM = 5 × 1021 cm−3 and λab ≈ 2000 Å.

It is essential to keep the terms describing normal currents or dissipation in the spin system (which we will in-
clude in the expression for the magnetization via the magnetic susceptibility) in the equation for the phase because
a nonvanishing DC current appears only if the dissipation is accounted for. We neglected deviations of the electron
distribution from equilibrium (for more details see Ref. [20]).

The magnetic induction (23) acting on the localized moments has a DC component accounting for the applied
dc magnetic induction B and also the AC component induced by the moving vortex lattice. Substituting (23) into
the Fourier transformed Eq. (20) we obtain the equation of motion for the Fourier transformed phase difference of a
layered superconductor containing magnetic moments in parallel magnetic field and applied current perpendicular to
the layers:[

ω2 − iνcω − κ2
x (1 + iνabω)/(1 + 4πχκx/λJ ,0,q,ω·ωp)

(1 + iνabω)/l2 + 2(1 − cosq)/(1 + 4πχκx/λJ ,0,q,ω·ωp)

]
ϕκx,0,q,ω = (sinϕn)κx,0,q,ω (24)

In the following we consider large enough fields B > BJ ≡ Φ0/(2πsλJ ). Then the Josephson vortices fill all
intrinsic junctions, overlap strongly and form a regular triangular lattice [19–22]. In this regime the Josephson coupling
can be treated perturbatively. Dropping the sin term in the RHS of (24) the phase is given by

ϕ(0)
n (x, t) = ωEτ + kBu + φn (25)

where ωE = 2eV/(h̄ωp) = 2πcEzs/(Φ0ωp), kB = 2πBsλJ /Φ0 and φn is a constant phase shift between the layers.
We substitute this zeroth-order result into the Josephson term and solve the resulting equation by the Green’s function
method:

ϕ(1)
n (u, τ ) =

∫
du′

∫
dτ ′ ∑Gn−m(u − u′, τ − τ ′) × sin(ωEτ ′ + kBu′ + φm) (26)
m
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where the Green’s function is given as a Fourier transform

Gn(u, τ) =
∫ ∫

dκdω

(2π)2

π∫
−π

dq

2π
eiκx+iqn+iωτGκqω

Gκqω =
{
ω2 − iνcω − κ2(1 + iνabω)

(1 + iνabω)(1 + 4πχκ/λJ ,q,ω·ωp)/ l2 + 2(1 − cosq)

}−1

(27)

Since the magnetic susceptibility is a real quantity, we have χk,q,ω = χ∗−k,−q,−ω . We will also assume that the magnetic
system possesses the symmetry under z-axis inversion, so χk,q,ω = χk,−q,ω . Hence χk,q,ω = χ∗−k,q,−ω and we obtain
that the expression (26) is a difference of two quantities complex conjugate to each other, giving

ϕ(1)
n (u, τ )

=
∑
m

π∫
−π

dq

2π
eiq(n−m) Im

{
ei(kBu+ωEτ+φm)

(ω2
E − iνcωE − k2

Bl2/[1 + 4πχkB/λJ ,q,ωEωp + 2(1 − cosq)l2/(1 + iνabωE)]
}

≡
∑
m

π∫
−π

dq

2π
eiq(n−m)

[
CkBqωE

cos(ωEτ + kBu + φm) + SkBqωE
sin(ωEτ + kBu + φm)

]
In the absence of magnetic moments, the triangular lattice (φn = nπ ) was found to take place in an infinite sample

at low lattice velocities v = cEz/B [36]. (The case of finite samples has also been investigated recently [37].) In the
presence of magnetic moments, the triangular lattice is still stable in an infinite sample in the static case, because the
Zeeman energy is only of order 1/l2 of the energy difference of the triangular and rectangular (φn = 0) configuration.
For simplicity, we limit ourselves here to the study of the triangular configuration.

For SmLa1−xSrxCuO4−δ we have γ ≈ 500, ωp ≈ 1012 s−1 and BJ ≈ 0.5 T. In a Josephson system the washboard
frequency is the Josephson frequency ω = ωJ = 2eV/h̄, where V is the voltage between neighboring layers. For a
triangular lattice at frequencies and magnetic fields satisfying the conditions �2 	 (1+4πχ) and |2ω̃− b̃| � 1, where
ω̃ = ω/ωp and b̃ = B0/BJ , the magnetic field Eq. (23) has the form

hn(u, τ ) ≈ −h cos(ω̃τ − b̃u + πn), h ≈ b̃

4ω̃2 − b̃2

neglecting νc and νab . We estimate h = Φ0/(2πλ2
abγ ) ≈ 0.16 G at ω = 0.1ωp and B = BJ . Near the Eck res-

onance, 2ω̃ ≈ b̃, the amplitude of the magnetic field h is larger. For the reciprocal lattice vector we have g =
(2πsB/Φ0,0,π/s). So gx = 1/λJ ≈ 104 cm−1 at B = BJ .

Assuming that sublattice magnetization is almost perpendicular to the applied magnetic field or that magnetic
ordering is absent we obtain for the I–V characteristics

j (V ) = σeff
V

s
+ esh2

h̄
Im

[
χyy

(
g,

2eV

h̄

)]
(28)

where σeff = σc + 2σabB
2
J /(γB)2 describes dissipation due to quasiparticles. At the resonance, ωJ = ωs(g), we

estimate �j/j ≈ 2π2c2s2h2
0ωM/(ωJ σeffνsΦ

2
0 ). This gives �j/j ≈ 4 and |M(g,ωJ )|/(µnM) ≈ 0.3 at ω = 1012 s−1

and B = BJ and bigger values near the Eck resonance. Certainly, such frequencies are sufficient to probe almost
complete spectrum in SmLa1−xSrxCuO4−δ .

3.2. Tunneling spectroscopy of magnetic excitations via spin-assisted cotunneling

While the electromagnetic mechanism leads to triplet magnetic excitations of a small nonzero momentum deter-
mined by the applied magnetic field and the interlayer spacing, we show that the spin-assisted cotunneling gives rise
to singlet magnetic excitations (since the Cooper pair carries no spin) of small momentum determined by the period
of the vortex lattice,
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The spin-assisted cotunneling between adjacent layers is described by the following tunneling Hamiltonian:

ĤT =
∑
niαβ

γ †
nα(rni)(T0 + TSσαβ · Sni)γn+1,β(rni) + h.c.

Here γ
†
n,α(ri ) (γn,α(ri )) creates (annihilates) an electron in the plane n at point (ri ) with spin α, i runs over spin sites,

Sni is the spin operator at site i of the magnetic sublattice in layer n, T0 and TS are the tunneling coefficients due
to spin-independent and spin-dependent tunneling, respectively, and σ are three Pauli matrices representing the spin
of a tunneling electron; we assumed for simplicity that the magnetic atom lattice coincides with the conduction layer
one. The interaction HT can be treated perturbatively to exclude all degrees of freedom except the phase difference
ϕn(r, t) and spins. Thus an effective Hamiltonian H̃ct is obtained, after averaging over electronic degrees of freedom
with characteristic frequencies much higher than the superconducting energy gap ∆ [38],

H̃ct (t) = −2i

h̄

∑
n,i,j

Λij

(−T 2
0 + T 2

S Sni · Snj

)
cosϕn(rni, t), Λij =

∫
dt F+(ri − rj , t)F (ri − rj , t) (29)

where indices i, j run over all spins in the junction n, the kernel Λij couples the spins on the range of the supercon-
ducting coherence length and Fn(r, r′; t − t ′) = −i〈Tγn↑(r)γn↓(r′)〉 is the anomalous Green’s function (in momentum
space given by Fp(t) = −ia2 ∆

2εp
e−iεp |t |, where the momentum p resides in the plane of conduction layers, a is the

lattice constant, εp ≡
√

∆2 + ξp and ξp = p2/2m − µ measures the energy from the chemical potential µ). Here T
denotes time-ordering. The spin operators were taken in (29) at the same moment in time because their dynamics is
slow on the characteristic timescale h̄/∆ of oscillations in the product of anomalous Green’s functions.

The interaction described by HT and Hct preserves the total spin and hence leads to singlet spin excitations because
the ground state in an antiferromagnet or a spin-liquid is a singlet. While neutron scattering techniques and the elec-
tromagnetic mechanism yield, e.g., information on single spinwave excitations, the spectroscopy of singlet magnetic
excitations based on spin-assisted cotunneling provides a comparison of the energy of singlet magnetic excitations to
the energy of two spinwaves.

The dissipated power at given voltage can be found for the tunneling mechanism as the probability per unit time for
transition under the perturbation H̃ct = Hct cos(2eV t/h̄) (from the ground state to an excited state |Φ(0)

j 〉 of energy
εj and momentum κ) times the energy (εj ) absorbed in each transition. Taking into account that the excitation energy
is connected to the voltage by the Josephson relation, we obtain the dc current

Idc � 4πe

h̄Nn

∑
j

∣∣〈Φ(0)
j

∣∣H̃ct

∣∣Φ(0)
0

〉∣∣2
δ(εj ± 2eV ) (30)

where Nn is the total number of layers and the momentum selection rule kx = κ is contained in the matrix element. We
see that only the spin-phase interaction that does not commute with the unperturbed Hamiltonian can give a nonzero
contribution to the dc current. This effect is of fourth order in tunneling amplitude, since it represents a back-action
of magnetic excitations on the tunneling current.

We describe the magnetic system by the anisotropic antiferromagnet Heisenberg model in the absence of magnetic
field, by

Hs =
∑
nn′ij

J
ij

nn′Sni · Sn′j −
∑
ij

D
ij

nn′S
z
niS

z
n′j (31)

where the site-dependent nearest-neighbour antiferromagnetic coupling J is of order 1 K. The nearest-neighbour
interaction Hs does not commute with the large-range interaction Hct , and thus the spin-phase interaction via the
cotunneling mechanism can excite the magnetic system.

At low temperatures and in the absence of magnetic field, the spin lattice is assumed to be in a state that differs little
from the classical Néel state and can be described by spinwave excitations. (In the case of Sm1.85Ce0.15CuO4−δ under
the above assumptions on the relative strength of the coupling constant among nearest neighbours in the same and
different layers, atoms in one layer are ferromagnetically ordered and belong to the same sublattice.) In the presence
of external magnetic field, the equilibrium directions of spins on the two sublattices are not antiparallel but both tilted
with respect to the easy axis. To find the spectrum of spinwave excitations we diagonalize the Hamiltonian (31) with
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Fig. 3. The structure of Sm1.85Ce0.15CuO4−δ (left) and SmLa1−xSrxCuO4−δ (right). Assuming the antiferromagnetic coupling between nearest
neighbours from separate layers is much stronger than that between the neighbours in the same plane, the lattice of magnetic atoms can be described
by a triclinic Bravais lattice with a two-point basis (the elements of which are one atom from the A and one from the B sublattice).

respect to small deviations of spins (as classical vectors) from their equilibrium directions. We first transform spin
operators on A and B sublattice to two respective kinds of Holstein–Primakoff bosons [39], keeping only the terms of
lowest order in 1/S:

S′+
Aj = √

2Saj , S′−
Aj = √

2Sa+
j , S′′+

Bl = √
2Sb+

l

S′′−
Bl = √

2Sbl, S′ z
Aj = S − a+

j aj , S′′ z
Bl = −S + b+

l bl (32)

where the prime and double prime denote tilting of the preferred orientation axis. This axis for the tilted vectors S′
A

and S′′
B is obtained from the easy axis z by a rotation around ŷ = ẑ × (B/B) axis for angle θ and −θ respectively.

Thus the original spin vectors are represented via the tilted ones by a transformation

Sx
A = S′x

A cos θ + S′ z
A sin θ, Sz

A = −S′ z
A sin θ + S′x

A cos θ

Sx
B = S′′x

B cos θ − S′′ z
B sin θ, Sz

B = S′′ z
B sin θ + S′′x

B cos θ

After these transformations the Hamiltonian (31) is represented as

Hs = E0(θ) + S
∑
j∈A

∑
δ〈nn〉

{
gj

(
aj + a+

j + bj + b+
j

) + (
a+
j aj + b+

j bj

)[
J (δ)

z + µB

νS
sin θ − (

J (δ)
xy + J (δ)

z

)
sin2 θ

]

+ ({
ajbj+δ

[
J (δ)

xy − (
J (δ)

z /2 + J (δ)
xy /2

)
sin2 θ

] − a+
j bj+δ

(
J (δ)

z /2 + J (δ)
xy /2

)
sin2 θ

} + h.c.
)}

where ν is the number of nearest neighbours, the coupling is dependent on the nearest neighbour relative position
vector as

J (δ)
xy = J ′ for n.n. in shifted layers and J otherwise

(and similarly for J
(δ)
z ), and we omitted the competing smaller antiferromagnetic coupling among nearest neighbours

in the same plane. In the classical ground state, the angle θ satisfies the minimization condition ∂E0/∂θ = 0:

sin θ = µB

S
∑

δ(J
(δ)
z + J

(δ)
xy )

and the terms linear in a, b, a+, b+ vanish. After performing a Fourier transform

c+
k = 1√

N

∑
e−ik·ja+

j , d+
k = 1√

N

∑
e−ik·jb+

j (33)

j∈A j∈B
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where N is the total number of spins on each sublattice in the layer and k are reciprocal lattice vectors for each
sublattice, the Hamiltonian for small deviations around the classical ground state is represented as

Hs = E0(θ) + x
∑

k

[
c+

k ck + d+
k dk + ηk

(
ckd−k + c+

−kd+
k

) − µk
(
c+
−kd−k + ckd+

k

)]
, (34)

where

x = S
∑

δ∈〈nn〉
J (δ)

z = S(4J ′
z + Jz), ηk = S

x

∑
δ

[
J (δ)

xy − J
(δ)
z + J

(δ)
xy

2
B1

]
eik·δ ≡ γk − µk and

µk = S

x

∑
δ

J
(δ)
z + J

(δ)
xy

2
B1eik·δ, B1 =

[
µB

S
∑

δ(J
(δ)
xy + J

(δ)
z )

]2

(35)

We diagonalize Hs by a canonical transformation

αk = ukck + wkc+
−k − tkdk − vkd+

−k, βk = u′
kc+

−k − w′
kck + t ′kd+

k − v′
kd−k (36)

(with analogous expressions for α+
k , β+

k ) where we require [αk,Hs] = λ+
k αk and [αk,Hs] = λ−

k αk; [αk, α+
k′ ] = δk,k′

(with the analogous commutation relation for βk, βk′ ). Here λ±
k is the excitation energy of a spinwave of momentum

k (with the sign denoting the spectrum branch) and it is determined by the condition for the existence of nontrivial
solutions for the coefficients of the canonical transformation:

λ±
k ≡ h̄ω±

sk = x

√
1 − |ηk|2 + |µk|2 ± √

2
√

2|µk|2 − |ηk|2|µk|2 + Re
(
η2

kµ2
k

)
(37)

In the absence of external magnetic field the canonical transformation (36) simplifies to

αk = ukck − vkd+
−k, α+

k = u∗
kc+

k − v∗
kd−k

βk = u′
kdk − v′

kc+
−k, β+

k = u′∗
k d+

k − v′∗
k c−k

where |uk|2 − |vk|2 = 1, |u′
k|2 − |v′

k|2 = 1 (to preserve bosonic commutation relations) and

uk = ηk

λk/x − 1
vk ≡ ykvk, u′

k/v′
k = u−k/v−k = (uk/vk)∗, ηk = S

x

∑
δ

J (δ)
xy eik·δ (38)

and the excitation energy is given by

λ+
k = λ−

k = x

√
1 − |ηk|2 (39)

Since the effective Hamiltonian H̃ct does not commute with the spin Hamiltonian Hs (as the domain of the kernel
Λij is not restricted to nearest neighbours), it is not diagonalized in the representation (36). In the spinwave represen-
tation in the absence of magnetic field, the effective operator H̃ct can be written as

H̃ct = −(TS)2S
∑

k

{(∑
δj

′
Λδje

ik·δj

)(
ckd−k + c+

−kd+
k

)

+
[(∑

δj

′
Λδj

)
− 2

(∑
δj

′′
Λδj

)](
c+

k ck + d+
k dk

)}
cos(2V t)

= cos(2V t)
∑

j∈A,B

∑
k

(
Akjα

+
k αk + Bkjβ

+
k βk + Ckjα

+
k β+

−k + Dkjαkβk
)

(40)

where only the magnetic excitation dependent contribution was kept and summations with a single and double prime
are taken over relative position vectors of all spins from opposite and the same sublattice in one junction, respectively.
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Here Λδj
= Λi,i+δj

. The sum over spins in the same sublattice is taken twice so as to account for both A–A and B–B
spin interactions. Therefore Eq. (30) amounts to

Idc � 4πe

h̄Nn

∑
k

∣∣∣∣∑
j

′
Ckj

∣∣∣∣2

δ
(
λ+

k + λ−
−k − 2V

)
where we approximated the double-prime sum by a corresponding single prime one. Using the expressions

c+
k = u′

−kα+
k + vkβ−k

uku′
−k − vkv′

−k
, d+

k = v′
kα−k + u−kβ+

k

u−ku′
k − v−kv′

k

we obtain

Idc � 4πeT 4
S

h̄Nn

∑
k,λk+λ′

k=2V

∣∣∣∣∑
δj

′
Λδj

[
u′

−kvk

|u∗
ku′

−k − v∗
kv′

−k|2 + ukv′
−k

|u∗
−ku′

k − v−kv′∗
k |2 − eik·δjvkv′

−k + e−ik·δjuku′
−k

|u∗
ku′

−k − v∗
kv′

−k|2
]∣∣∣∣2

where the first term stems from Sz
i S

z
j and the second one from S+

i S−
j + S−

i S+
j .

Using (38) we have |u∗
ku′

−k − v∗
kv′

−k|2 = |u−k(u′
−k)∗ − v−k(v′

−k) ∗ |2 = 1 and u′
−kvk = ukv′

−k, and thus obtain

Idc � −T 4
S

4πe

h̄Nn

∑
k

fkδ
(
λ+

k + λ−
−k − 2V

)
where

fk =
∣∣∣∣∑

δj

′
Λδj

−2yk + eik·δj + y2
ke−ik·δj

y2
k − 1

∣∣∣∣2

The smallest voltage at which a DC component appears in the Josephson current is given by the energy gap for
magnetic excitations, which is given by

∆s = x

√
1 − |ηk|2∣∣k=0

In the absence of magnetic field we obtain a jump in the dc current density Jdc that appears at the spin gap ∆s ,

Jdc|V →∆s+ = 2πe

h̄
ρ(∆s)

[
N2(0)T 2

S

]2 (41)

where N2(0) is the two-dimensional electronic density of states per spin and ρ(∆s) is the two-dimensional spin
density of states at the spin gap.

Expressed in terms of the amplitude of the spin-independent current density J0, the contribution of magnetic
excitations to the excess dc current density is given by

Jdc = 4πJ0

(
TS

T0

)4

εJ ρa(∆s) (42)

where εJ = a2Φ0J0/2πc and ρa = a2ρ(∆s). Experimental data on TS are unavailable to date. Taking TS � 0.4T0,
we estimate Jdc ∼ 10−2 A/cm2 which gives a measurable effect comparable to the effect of phonons [30]. This effect
is of fourth order in tunneling amplitude, since it represents a back-action of magnetic excitations on the tunneling
current.

4. Conclusion

In conclusion, we propose to probe low-frequency magnetic excitations in magnetic superconductors by measuring
I–V characteristics in the mixed state with a moving vortex lattice. Coupling of such a lattice to magnetic moments is
due to an ac magnetic field which is inherent to vortex motion. The energy interval of spin waves which can be probed
in isotropic and moderately anisotropic superconductors is limited by the depairing current and heating. If spin wave
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energies fall in this interval, they affect the vortex motion strongly and should be easily seen in the I–V characteristics
as current peaks at corresponding voltages. Such an effect may be observed in borocarbides if they have spin waves
with energies below 1 K. For highly anisotropic layered superconductors in parallel magnetic fields, higher spin wave
energies may be probed by use of moving Josephson vortices. This is sufficient to study almost complete spin wave
spectrum in SmLa1−xSrxCuO4−δ with exotic magnetic ordering. For obtaining solely the information on the magnetic
gap in layered superconductors one can also use tunneling spectroscopy in the absence of magnetic field. Using the
Josephson relation, the gap is then obtained from the voltage at which the dc current experiences a jump.
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