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Abstract

We study the proximity effect in diffusive superconductor–ferromagnet structures. In particular we show that a triplet component
of the condensate appears. This component is an odd function of the Matsubara frequency and an even function of the momentum.
Therefore it is insensitive to the scattering by non-magnetic impurities. If the exchange field of the ferromagnet is homogeneous
in space, only the triplet component with spin projection Sz = 0 appears. The latter penetrates into the ferromagnet over the short
length ξh = √

D/h (D is the diffusion coefficient and h the exchange field) like the singlet component. However, if the exchange
is not homogeneous the condensate has also the components with projections Sz = ±1. These are long-range components which
penetrate the ferromagnet over the ξT = √

D/T (T is the temperature). We propose some experiments in order to detect the odd
triplet component. To cite this article: F.S. Bergeret et al., C. R. Physique 7 (2006).
 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Superconductivité triplet impaire dans les structures hybrides supraconducteur–ferromagnétique. Nous étudions l’effet
de proximité dans des structures supraconducteur–ferromagnétique diffusives. Nous montrons en particulier qu’une composante
triplet du condensat apparaît. Cette composante est fonction impaire de la fréquence de Matsubara et fonction paire du moment.
Elle est donc insensible à la diffusion par les impuretés non magnétiques. Si le champ d’échange du matériau ferromagnétque est
spatialement uniforme, seule apparaît la composante triplet de spin projeté Sz = 0. Elle pénètre dans le ferromagnétique sur la
courte distance ξh = √

D/h (où D est le coefficient de diffusion et h le champ d’échange), tout comme la composante singulet.
Cependant, si l’échange n’est pas uniforme, le condensat possède aussi les composantes avec projections Sz = ±1. Ces dernières
sont des composantes à longue portée qui pénètrent le ferromagnétique sur la distance ξT = √

D/T (où T est la température).
Nous proposons plusieurs expériences destinées à détecter la composante triplet impaire. Pour citer cet article : F.S. Bergeret et
al., C. R. Physique 7 (2006).
 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction

The study of the interplay between superconductivity and ferromagnetism in superconductor–ferromagnet (S/F )
hybrid structures has attracted a great attention of researches (for review see [1–3] and references therein). As it is
nowadays well known the proximity effect in such structures leads to the penetration of the superconducting con-
densate function into the F region over a distance of the order of ξF ∼ √

D/h, where h is the exchange field in the
ferromagnet and D the diffusion coefficient (we consider the so called dirty limit when the mean free path l is the
shortest length involved in the problem except for the Fermi wave length). Notice that for a strong ferromagnet with
a large exchange field this length is very small (few Angstroms). The exponential decay of the condensate function
into the ferromagnet is accompanied by oscillations in space. These oscillations lead, for example, to oscillations of
the critical superconducting temperature Tc and the critical Josephson current Ic in S/F structures as a function of
the thickness dF . Such oscillatory behaviour, being predicted in Refs. [4,5], was observed in many works [6–11] on
different S/F structures. Another manifestation of the oscillatory behavior of the condensate in the ferromagnet is
the change of sign of the Josephson critical current through a S/F/S junction (π -junction) [12]. This effect has been
observed recently in many experiments [13–18].

The effects mentioned above were studied under the assumption that the exchange in the ferromagnet is homoge-
neous in space. In this case the condensate has a simple spin structure. However, it turns out that a non-homogeneous
alignment of the exchange field leads to a complicated spin structure of the superconducting condensate [19,20]. As
a result, not only the singlet component of the condensate exists but also a triplet one with all projections of the total
spin of the Cooper pair (Sz = 0,±1). In contrast to the singlet component, the spins of the electrons in the triplet
state with S = ±1 are parallel to each other. Therefore, when generated, this triplet component is not destroyed by the
exchange field and can penetrate the ferromagnet over long distances of the order of ξN = √

DF /2πT .
We will also show that the condensate function of the triplet state is an odd function of the Matsubara frequency

and therefore this type of superconductivity is called odd triplet superconductivity. The singlet part is, as usual, an
even function of ω but it changes sign when interchanging the spin indices. Both components are insensitive to the
scattering by non-magnetic impurities and hence survive in the S/F structures even if the mean free path l is short.

The aim of this article is to review the properties and effects related to the odd triplet component (TC) of the
condensate in S/F structures. In the first part we will study the structure of the condensate in the spin space and
describe how to distinguish the triplet component from the usual BCS singlet one. Afterwards we will discuss the
manifestation how the TC manifests itself in different physical properties of the system. Our analysis is based on the
microscopic formalism for quasiclassical Green’s functions (GF) [21,22]. Throughout this article the dirty limit is
assumed.

2. The condensate function in a S/F structure

Consider a dirty S/F structure. Assuming that all energies are smaller than the Fermi energy and that all quantities
vary over length scales larger than the Fermi wave length we can use the quasiclassical approach. In the dirty limit the
GFs satisfy the Usadel equation [23], which in a 4 × 4 notation has the form [24]

D∂(ǧ∂ǧ/∂r)/∂r − iωn[τ̂3, ǧ] + [∆̌, ǧ] + [hŠ, ǧ] = 0 (1)

where ωn are the Matsubara frequencies, ∆̌ = i∆τ̂2σ̂3 is a matrix of the order parameter which is not zero only in the
superconductor, Š is the matrix vector Š = (σ̂1, σ̂2, τ̂3σ̂3), τ̂i and σ̂i , i = 1,2,3, are the Pauli matrices in particle-hole
and spin space ‘hat’ 2 × 2 matrices. The GF is the sum of the normal component g and the condensate function f

ǧ = ĝτ̂3 + f̂ iτ̂2

Solutions for the Usadel equation satisfy the normalization condition

ǧ2 = 1 (2)

The Usadel equation is complemented by the boundary conditions presented in [25] on the basis of the Zaitsev’s
boundary conditions [26]. In the absence of spin-flip processes at the interface they take the form:

ǧ1∂xǧ1 = 1 [ǧ1, ǧ2] (3)

2γa
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where γ1 = Rbσ1, σ1 is the conductivity of the conductor 1 and Rb is the interface resistance per unit area, the
x-coordinate is assumed to be normal to the plane of the interface.

First we consider the case of a homogeneous magnetization h = h(0,0,1). Assuming a weak proximity effect one
can linearize Eq. (1) and obtain a simple equation for the condensate function f̂

(
∂2f̂ /∂x2) − κ2

ωf̂ + iκ2
hσ3f̂ = 0 (4)

where κ2
ω = 2|ω|/DF and κ2

h = 2h sgnω/DF . One can easily check that the condensate functions obeying Eq. (4) has
the following form in spin space

f̂ = f0σ̂0 + f3σ̂3 (5)

The amplitudes of the singlet and triplet components are related to the correlation functions 〈ψαψβ〉 as follows [27]

f3(t) ∼ 〈
ψ↑(t)ψ↓(0)

〉 − 〈
ψ↓(t)ψ↑(0)

〉

f0(t) ∼ 〈
ψ↑(t)ψ↓(0)

〉 + 〈
ψ↓(t)ψ↑(0)

〉
(6)

Thus, the amplitude f3 corresponds to the singlet component, while f0 corresponds to the amplitude of the triplet
component with zero projection of the magnetic moment of Cooper pairs on the z axis (Sz = 0). In the case of a
non-ferromagnetic normal metal the condensate function has a singlet structure only, i.e., it is proportional to σ̂3.
The exchange field breaks the spin symmetry and leads to the appearance of the triplet term proportional to σ̂0. This
is an important point, since once one has understood the structure of the condensate (Eq. (5)), one can guess that a
nonhomogeneous exchange field might lead to the appearance of the other two projections (Sz = ±1) of the triplet
component. This will be discussed in the next section.

3. Triplet component of the condensate in F/S/F structure

We consider the F/S/F structure of Fig. 1. The system consists of one S layer and two F layers with magneti-
zations inclined at the angle ±α with respect to the z-axis (in the yz plane). From the above analysis we know that
each F layer generates the triplet component with projection Sz = 0, on the direction of the exchange field. If the
magnetic moments of the layers are collinear (parallel α = 0 or antiparallel α = π/2), the total projection Sz remains
equal to zero. However, if the moments of the ferromagnetic layers are not collinear the superposition of both triplet
components may lead to a triplet component of the condensate with all possible projections, i.e., Sz = 0,±1. Let us
analyze this case.

The linearized Usadel equation in the F layer is now given by
(
∂2f̌F /∂x2) − κ2

ωf̌F + iκ2
h[σ̂3, f̌F ]+ cosα ± τ̂3[σ̂2, f̌F ] sinα = 0 (7)

The sign ‘+’ (‘−’) corresponds to the right (left) F film.
The linearization may be justified in the two limiting cases: (a) T is close to the critical temperature of the structures

T ∗
c (the latter can be different from the critical temperature of the bulk superconductor Tc); and (b) the resistance of

the S/F interface Rb is not small. In the latter case the condensate function in the S layer is weakly disturbed by the
F film and the function

f̌S = f̌BCS + δf̌S (8)

Fig. 1. Trilayer geometry. The magnetization of the left (right) F layer makes an angle α (−α) with the z-axis.
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where f̂BCS = iτ̂2σ̂3∆/iEω is the bulk solution, Eω = √
ω2 + ∆2 and δǧS a small correction. Thus, the linearized

Usadel equation for δf̌S has the simple form

∂2
xxδf̌S − κ2

Sδf̌S = 0 (9)

Here κ2
S = 2Eω/DS .

It turns out that the form of the condensate function in the F layer is given by

f̌F = f̂1iτ̂1 + f̂2iτ̂2 (10)

The functions f̂i are matrices in the spin-space. They can be represented in the form

f̂2(x) = f0(x)σ̂0 + f3(x)σ̂3 (11)

f̂1(x) = f1(x)σ̂1 (12)

We see that in this case the condensate has an additional term, f̂1 which is related to the correlation functions
〈ψ↑ψ↑〉, 〈ψ↓ψ↓〉, and therefore corresponds to the triplet component with projection Sz = ±1. Notice that in the case
of a homogeneous magnetization this component is absent (cf. Eq. (5)).

Solutions for Eqs. (7)–(9) can be written as a sum of exponential functions exp(±κx), where the κ’s are the
eigenvalues of these equations. In the S layer the equations for δf3,f0,1 are decoupled and there is only one eigenvalue
κ = κS . In the F -layers the equations are coupled and there are three different eigenvalues [28]

κ1,2 ≡ κ± 	 √
h/DF (1 ± i) (13)

κ3 ≡ κω = √
2|ω|/DF (14)

It is assumed that h 
 T . We see from these equations that two completely different lengths ξh ∼ √
DF /h and

ξT ∼ √
DF /T determine the decay of the condensate in the F layers. Usually h > TC and therefore at all temperatures

T < T ∗
c the length ξT exceeds ξh. As expected, the triplet component with spin projection Sz = ±1 is long-ranged. Its

decaying length is the same as the decay of the standard singlet condensate in a normal metal.
The solution in the right F layers for the condensate function is (for the detailed calculation see [29])

f1(x) = b1
coshκω(x − dS − dF )

cosh(κωdF )
+ sgnω sinα

[−b3+eκ+(x−ds) + b3−e−κ−(x−ds)
]

(15)

f0(x) = − tanαb1
coshκω(x − dS − dF )

cosh(κωdF )
+ sgnω cosα

[−b3+e−κ+(x−ds) + b3−e−κ−(x−ds)
]

(16)

f3(x) = b3+e−κ+(x−ds) + b3−e−κ−(x−ds) (17)

where

b̃3± = b3±(gs + γbξhκ±) = fBCS
κ̃S tanhΘSM∓

M+T− + M−T+
(18)

b̃1 = b1(gBCS + γbξhκω tanhΘF ) = −fBCS sinα
κ̃2
S(κ̃+ − κ̃−) sgnω

cosh2 ΘS(M+T− + M−T+)
(19)

and ΘS = κsdS , ΘF = κωdF , κ̃± = κ±/(gBCS + γbξhκ±), κ̃ = κω/(gBCS + γbξhκω tanhΘF ), κ̃S = κS/(gBCSγ ),
gBCS = ω/Eω, and

M± = T±(κ̃S cothΘS + κ̃ tanhΘF ) + tan2 α,C±(κ̃S tanhΘS + κ̃ tanhΘF )

T± = κ̃S tanhΘS + κ̃±, C± = κ̃S cothΘS + κ̃±
The solutions in the left F layer can be easily obtained recalling that the function f1(x) is odd and f0,3(x) are even

functions of x.
Thus, we see that the singlet component f3 is an even function of ω and decays sharply in the ferromagnet over the

short distance ξh. In contrast, the amplitudes of the triplet component f0 and f1 are odd functions of ω and penetrate
the ferromagnet over the longer distance ξT = √

DF /2πT . The long-range part of TC determined by the amplitude
b1 has the maximum at α = π/4. This value of α corresponds to a perpendicular orientation of the magnetizations in
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Fig. 2. The spatial dependence of Im(SC) (dashed line) and
the long-range part of Re(TC) (solid line). We have chosen
σF /σS = 0.2, h/TC = 50, σF Rb/ξF = 0.05, dF

√
TC/DS = 2,

dS
√

TC/DS = 0.4 and α = π/4. The discontinuity of the TC at the
S/F interface is because the short-range part is not shown in this
figure. Taken from [29].

Fig. 3. Schematic: Measurement of the change of the density of
states at the outer F interface by tunnelling spectroscopy. [14] per-
formed such experiments on S/F structures.

the F layers. For a parallel (α = 0) or antiparallel alignment of the magnetizations (α = π/2) this amplitude decays to
zero. In Fig. 2 we plot the spatial dependence of the SC and the long-range part of the TC. We see that both amplitudes
are comparable at the S/F interface but the SC decays faster than the TC.

Finally, it is worth mentioning that in [19,20] the conductance of a ferromagnetic wire attached to a superconductor
was calculated. It was assumed that the F wire had a domain wall located at the S/F interface. This inhomogeneity
of the magnetization induces the long-range triplet component studied here. The latter leads to an increase of the
conductance for temperatures below Tc as observed in the experiments of [31,30]

4. How to detect the triplet component of the condensate?

In order to verify the existence of the triplet component it is necessary to separate it from the singlet one. Some
experimental realizations were presented in [28,29].

For example, one can consider the system shown in Fig. 3. It is clear that, for distances from the S/F interface
larger than ξh, only the TC leads to a variation of the local DoS. Thus, if the thickness dF is much larger than ξh

one can detect directly the presence of the TC performing measurements of the DoS at the outer side of one of the F

layers. Any deviation from the normal value would be only due to the TC. Similar measurements as those of [14] can
be performed. In this experiments the DoS was determined with the help of a planar tunneling spectroscopy.

From the results of the previous section it is easy to determine the DoS at x = dS + dF . The expression for the
normalized DoS is (we ignore the difference in the DoS for the up and down spin directions in the ferromagnet above
the critical temperature Tc)

δν = 1

8
Tr(τ̂3σ̂0)

(
ǧR − ǧA)

(20)

Here the indices ‘A’ and ‘R’ denote advanced and retarded. As it was mentioned before, in the case dF 
 ξh only the
TC (i.e., the functions f0(x) and f1(x)) contributes to the DoS. For the DoS one obtains [29]

δν = 1

2
Re

(bR
1 )2

cos2 α cosh2 ΘR
F

(21)

where ΘR
F = √−2iε/DF dF , and bR

1 is the amplitude of the retarded Green’s function in Eqs. (15)–(16). It is obtained
from b1 by replacing ω by −iε. In Fig. 4 the dependence of δν on ε for different α is shown.

Another system suitable for detecting the triplet component of the condensate is shown in Fig. 5. The idea is to
measure the Josephson current between the S layers of the FSFSF structure. The thickness of the F layers dF is
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Fig. 4. The normalized DoS δν as a function of the energy
for α = 3π/8 (solid line), α = π/8 (dashed line) and α = π/4
(point-dashed line). Note that for α = 0,π/2 δν = 0. We have cho-
sen σF /σS = 0.05, h/∆ = 25, σF Rb/ξh = 0.5, dF /ξ∆ = 0.5, and
dS/ξ∆ = 0.4. Here ξ∆ = √

DS/∆ and ∆ is the BCS order parame-
ter. Taken from [29].

Fig. 5. The multilayered structure considered. The arrows show the
bias current. In the case of positive (negative) chirality the magne-
tization vector M of the layer F3 makes an angle 3α (−α) with the
z-axis, i.e., in the case of positive chirality the vector M rotates in
one direction if we go over from one F layer to another whereas it
oscillates in space in the case of negative chirality. Taken from [29].

much larger than ξh. According to the previous sections it is clear that in this case the Josephson coupling between
the S layers is due to the long range part of the TC. Therefore the supercurrent in the transverse direction is caused
by the triplet component of the condensate, while the in-plane superconductivity is caused mainly by the ordinary
singlet component. Thus, the macroscopic superconductivity due to the Josephson coupling between the layers is an
interesting combination of the singlet superconductivity within the layers and the odd triplet superconductivity in the
transversal direction. The critical Josephson current was calculated in [29,28] and is given by the expression

eRF Ic = ±2πT
∑

ω

κωdF b2
1(α)

(
1 + tan2 α

)
e−dF κω , (22)

where b1(α) is given in Eq. (19) and the sign ‘+’ (‘−’) corresponds to the positive (negative) chirality. In the case of
negative chirality the critical current is negative (π -contact). Thus, experimentally one can switch between the 0 and
π -contacts by changing the angles of the mutual magnetization of the layers.

In Fig. 6 we plot the dependence of Ic on the angle α. If the orientation of M is parallel (α = 0) or antiparallel
(α = π/2), the amplitude of the triplet component is zero and therefore there is no coupling between the neighboring
S layers, i.e., Ic = 0. For any other angle between the magnetizations the amplitude of the triplet component is finite.
This leads to a non-zero critical current. At α = π/4 (perpendicular orientation of M) Ic reaches its maximum value.

Fig. 6. Dependence of the critical current (normalized with respect to the maximum value) on the angle α. We have chosen the same values as in
Fig. 4. Taken from [29].
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Finally, we would like to mention that the influence of the triplet component on the variation of the critical temper-
ature of a F/S/F structure studied in [32].

5. Discussion and summary

We have shown that in S/F hybrid structures the appearance of a triplet component of the condensate is inevitable.
If the system has only one quantization spin axis, i.e., an homogeneous exchange field, then only the triplet component
with spin projection Sz = 0 appears. If the exchange field is not homogeneous then the other projections, Sz = ±1
also are generated. Obviously these are not affected by the exchange field and therefore the condensate may penetrate
over large distance of the order of ξT = √

D/T .
The triplet component of the condensate is an odd function of the Matsubara frequency and an even function of the

momentum. The latter property make it insensitive to the scattering by non-magnetic impurities.
Historically, such odd triplet superconductivity was suggested by Berenziskii as a possible phase in superfluid

3He [33]. However, this hypothetical condensate function is not realized. In 3He the condensate function is odd
in momenta, but not in frequency. The possibility to realize this type of superconductivity in bulk superconductors
(mainly in high Tc materials)was discussed in [34–37].

Note an important fact. The quasiclassical Green’s function in the diffusive case can be expanded in spherical
harmonics. In the present approach only the first two terms of this expansion are taken into account, thus

ǧ = ǧ0 + ǧ1 cosϑ (23)

where ϑ is the angle between the momentum p and the x-axis, and ǧ1 = −lǧ0∂ǧ0/∂x. The first term is symmetric
respect to the momentum while the second term is antisymmetric. The antisymmetric part of ǧ determines the electric
current in the system. Higher order terms in the expansion of ǧ are, in the diffusive limit, small and can be neglected.
In the case of a weak proximity effect the antisymmetric part of the condensate function in the F region can be written
as

f̌1 cosϑ ≈ −lτ̂3 ⊗ σ̂0 sgnω∂f̌0/∂x cosϑ (24)

This expression follows from the fact that eǧ0 ≈ −lτ̂3 ⊗ σ̂0 sgnω (corrections to ǧ0 are proportional to f̌ 2
0 ). Eq. (24)

holds for both the singlet and triplet component. Consider the triplet component. As we noted above, the symmetric
part f̌0 is an odd function of ω and therefore the antisymmetric part is an even function of ω so that the total condensate
function f̌ = f̌0 + f̌1 cosϑ is neither odd or even function of ω. However, in the diffusive limit it is valid to speak
about odd superconductivity since the symmetric part is much larger than antisymmetric part of f̌ . If the parameter
hτ is not small, i.e., the system is not diffusive, the symmetric and antisymmetric parts are comparable, and one
cannot say about odd superconductivity. All this distinguishes superconductivity in S/F structures from the odd
superconductivity suggested by Berenziskii who assumed that the order parameter ∆(ω) is an odd function of ω.
In our discussion it is assumed that the order parameter ∆ is an ω-independent quantity and it is determined by the
singlet component of the condensate function f̌0.

As to experimental studies, one has to note that convincing experimental evidences in favour of the odd long-range
triplet component are still lacking. In [38–41] the conductance of a S/F mesoscopic structure was measured. It was
found that the influence of the superconductor on the conductance spreads over a length exceeding essentially the
exchange length ξh. This long-range effect may be related to the long-range triplet component [40,41].

In another experiment [42] a multilayered S/F/S . . . structure was studied. It consists of the high Tc material
YBa2Cu3O7 and the ferromagnetic half metal La0.7Ca0.3MnO3. It was established that the superconducting coupling
between neighboring S layers exists even if the thickness of the F layer exceeds the exchange length ξh. The authors
assumed that a possible mechanism for this long-range effect may be again related with the triplet component. It
may arise at the spin-active S/F interface [43]. However further experiments are needed in order to get more direct
evidences which would confirm the existence of the odd long-range triplet component.

Acknowledgements

We would like to thank SFB 491 for financial support. F.S.B. would like to thank the E.U. network DIENOW for
financial support.



F.S. Bergeret et al. / C. R. Physique 7 (2006) 128–135 135
References

[1] A.A. Golubov, M.Y. Kupriyanov, E. Il’ichev, Rev. Mod. Phys. 76 (2004) 411.
[2] A. Buzdin, Rev. Mod. Phys. 77 (2005) 935.
[3] F.S. Bergeret, A.F. Volkov, K.B. Efetov, Rev. Mod. Phys. 77 (2005) 1321.
[4] A.I. Buzdin, M.Y. Kupriyanov, Pis’ma Zh. Eksp. Teor. Fiz. 52 (1990) 1089;

JETP Lett. 52 (1990) 487.
[5] Z. Radovic, L. Dobrosavljevic-Grujic, A.I. Buzdin, J.R. Clem, Phys. Rev. B 44 (1991) 759.
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