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Abstract

We discuss the particularities of the proximity effect in superconductor–ferromagnet systems: the damped oscillatory behavior
of the Cooper pair wave function, the oscillations of the critical temperature in S/F bilayers and multilayers and the conditions for
the π -Josephson junctions formation. Also we outline the possibility of the formation of the novel type of the Josephson junction,
intermediate between the 0 and π junctions. To cite this article: A.I. Buzdin, V.V. Ryazanov, C. R. Physique 7 (2006).
 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

L’effet de proximité dans les hétérostructures supraconductrices–ferromagnétiques. Nous discutons les particularités de
l’effet de proximité dans les systèmes supraconducteurs–ferromagnétiques : le comportement oscillatoire amorti de la fonction
d’onde des paires de Cooper, les oscillations de la température critique dans les bicouches et multicouches S/F, et les conditions de
formation de jonctions Josephson π . En outre, nous soulignons la possibilité de formation de jonctions Josephson intermédiaires
entre les jonctions 0 et les jonctions π . Pour citer cet article : A.I. Buzdin, V.V. Ryazanov, C. R. Physique 7 (2006).
 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction

The coexistence of singlet superconductivity with ferromagnetism is very unlikely in bulk compounds, but it may
be easily achieved in artificially fabricated layered ferromagnet/superconductors (F/S) systems. Due to the proximity
effect, the Cooper pairs can penetrate into the F layer and induce superconductivity there. In such case we have the
unique possibility to study the properties of superconducting electrons under the influence of a huge exchange field
acting on the electron spins. In addition, it is possible to study the interplay between superconductivity and magnetism
in a controlled manner, since by varying the layer thicknesses and magnetic content of F layers we change the rela-
tive strength of two competing orderings. The behavior of the superconducting condensate under these conditions is
quite peculiar. Here we present the outlook of the particularities of the F/S systems, for more details see the recent
reviews [1,2].
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Some years ago, Larkin and Ovchinnikov [3], and Fulde and Ferrell [4] demonstrated that in a pure ferromagnetic
superconductor, at low temperature, the superconductivity may be non-uniform (this is the so-called FFLO or LOFF
state). Due to the incompatibility of ferromagnetism and superconductivity it is not easy to verify this prediction
by experiment. Moreover, the electron scattering on the impurities destroys the FFLO state very quickly and its
observation is possible only in the clean limit [5]. It occurs that in a ferromagnet in contact with a superconductor
the Cooper pair wave function has a damped oscillatory behavior [6–8] which may be considered, in some sense, as
analogous to the decaying non-uniform FFLO superconducting state. This phenomenon, however, is quite general,
and must be present in both clean and dirty limits. It results in many interesting effects: the spatial oscillations of
the electron’s density of states, the non-monotonous dependence of the critical temperature of S/F multilayers and
bilayers on the ferromagnet layer thickness, the realization of the Josephson ‘π ’-junctions in S/F/S systems.

Note that practically all interesting effects related with the interplay between the superconductivity and the mag-
netism in S/F structures occur at the nanoscopic range of layer thicknesses. The observation of these effects became
possible only recently due to the great progress in the preparation of high-quality hybrid F/S systems.

2. Generalized Ginzburg–Landau functional

Qualitatively, the phenomenon of the FFLO phase formation and the particularities of the proximity effect in S/F
systems may be described if we generalize the standard Ginzburg–Landau expansion (see, for example, [9]):

F = a|ψ |2 + γ
∣∣−→∇ψ

∣∣2 + b

2
|ψ |4 (1)

where ψ is the superconducting order parameter, and the coefficient a vanishes at the transition temperature Tc. At
T < Tc , the coefficient a is negative and the minimum of F in Eq. (1) is achieved for a uniform superconducting state
with |ψ |2 = − a

b
. If we consider also the paramagnetic effect of the magnetic field, all the coefficients in Eq. (1) will

depend on the energy of the Zeeman splitting µBH , or an exchange field h in the ferromagnet. Usually, the orbital
effect is much more important for the superconductivity destruction than the paramagnetic one. It explains why in
the standard Ginzburg–Landau theory there is no need to take into account the field and temperature dependence
of the coefficients γ and b. However, when the paramagnetic effect becomes predominant, this approximation fails.
The qualitatively new physics emerges due to the fact that the coefficient γ changes its sign for relatively large h/T

ratio. The negative sign of γ means that the minimum of the functional no longer corresponds to an uniform state. To
describe such a situation it is necessary to add a higher order derivative term in the expansion (1), and the generalized
Ginzburg–Landau expansion will be:

FG = a(H,T )|ψ |2 + γ (H,T )
∣∣−→∇ψ

∣∣2 + η(H,T )

2

∣∣−→∇2ψ
∣∣2 + b(H,T )

2
|ψ |4 (2)

The critical temperature of the second order phase transition into a superconducting state may be found from the
solution of the linear equation for the superconducting order parameter

aψ − γ�ψ + η

2
�2ψ = 0 (3)

If we seek a non-uniform solution ψ = ψ0 exp(iqr), the corresponding critical temperature depends on the wave-
vector q and is given by the expression a = −γ q2 − η

2 q4. Note that the coefficient a may be written as a =
α(T − Tcu(H)), where Tcu(H) is the critical temperature of the transition into the uniform superconducting state.
In a standard situation, the gradient term in the Ginzburg–Landau functional is positive, γ > 0, and the highest tran-
sition temperature coincides with Tcu(H); it occurs for the uniform state with q = 0. However, in the case γ < 0,
the maximum critical temperature corresponds to the finite value of the modulation vector q2

0 = −γ /η and the corre-
sponding transition temperature into the non-uniform FFLO state Tci(H) is given by a = α(Tci − Tcu) = γ 2/2η. It is
higher than the critical temperature Tcu of the uniform state. Therefore, we see that the FFLO state appearance may
simply be interpreted as a change of sign of the gradient term in the Ginzburg–Landau functional.

3. Damped oscillatory dependence of the Cooper pair wave function in ferromagnets

To get idea about the peculiarity of the proximity effect in S/F structures, let us start from the description based on
the generalized Ginzburg–Landau functional Eq. (2). Such an approach is adequate for a small wave-vector modulation
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case, otherwise the microscopical theory must be used. We address the question of the proximity effect for a weak
ferromagnet described by the generalized Ginzburg–Landau functional Eq. (2). More precisely, we consider the decay
of the order parameter in the normal phase (x > 0), i.e., at T > Tci, assuming that our system is in contact with another
superconductor (x < 0) with a higher critical temperature, and the x axis is chosen perpendicular to the interface.

The induced superconductivity is weak and to deal with it, we may use the linearized equation for the order
parameter (3), which is written for our geometry as

aψ − γ
∂2ψ

∂x2
+ η

2

∂4ψ

∂x4
= 0 (4)

The solutions of this equation in the normal phase are of the type ψ = ψ0 exp(kx), with a complex wave-vector
k = k1 + ik2, and

k2
1 = |γ |

2η

(√
1 + T − Tci

Tci − Tcu
− 1

)
(5)

k2
2 = |γ |

2η

(
1 +

√
1 + T − Tci

Tci − Tcu

)
(6)

If we choose the gauge with the real order parameter in the superconductor, then the solution for the decaying order
parameter in the ferromagnet is also real

ψ(x) = ψ1 exp(−k1x) cos(k2x) (7)

where the choice of the root for k is the condition k1 > 0. So the decay of the order parameter is accompanied by its
oscillation, which is the characteristic feature of the proximity effect in the considered system. When we approach
the critical temperature Tci the decaying wave-vector vanishes, k1 → 0, while the oscillating wave-vector k2 goes to
the FFLO wave-vector, k2 → √|γ |/η, so a FFLO phase emerges. Let us compare this behavior with the standard
proximity effect described by the linearized Ginzburg–Landau equation for the order parameter

aψ − γ
∂2ψ

∂x2
= 0 (8)

with γ > 0. In such case Tc simply coincides with Tcu, and the decaying solution is ψ = ψ0 exp(−x/ξ(T )), where
the coherence length ξ(T ) = √

γ /a. The different behavior of the superconducting order parameter in S/F and S/N
systems is illustrated in Fig. 1. The presented simple analysis shows the appearance of the oscillations of the order
parameter in the presence of an exchange field. This is a fundamental difference between the proximity effect in S/F
and S/N systems, and it is at the origin of many peculiar characteristics of S/F heterostructures.

In real ferromagnets, the exchange field is very large compared with the superconducting temperature and energy
scales, so the gradients of the superconducting order parameter variations are also large, and cannot be treated in the
framework of the generalized Ginzburg–Landau functional. To describe the relevant experimental situation we need
to use a microscopical approach.

Fig. 1. Schematic behavior of the superconducting order parameter near the (a) superconductor-normal metal and (b) superconductor-ferromagnet
interfaces.
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If the electron scattering mean free path l is small (which is usually the case in S/F systems), the most natural
approach is to use the Usadel equations [10] for the Green’s functions averaged over the Fermi surface. The linearized
Usadel equation for the anomalous Green function Ff in the ferromagnet is expressed(

|ω| + ih sgn(ω) + 1

τs

)
Ff − Df

2

∂2Ff

∂x2
= 0 (9)

where ω = (2n+1)πT are the Matsubara frequencies, and Df = 1
3vF l is the diffusion coefficient in the ferromagnet.

The parameter τ−1
s describes the magnetic scattering in the ferromagnetic alloys used as F layers. Note that this form

of the Usadel equation in the ferromagnet implies strong magnetic uniaxial anisotropy when the magnetic scattering
in the plane (xy) perpendicular to the anisotropy axis is negligible.

In the F region, we may neglect the Matsubara frequencies compared to the large exchange field (h � Tc). Also
assuming first that the magnetic scattering is weak, we readily obtain the decaying solution for Ff

Ff (x,ω > 0) = A exp

(
− i + 1

ξf

x

)
(10)

where ξf = √
Df /h is the characteristic length of the superconducting correlations decay (with oscillations) in

F-layer. Due to the condition h � Tc , this length is much smaller than the superconducting coherence length
ξs = √

Ds/(2πTc), i.e., ξf � ξs . In a ferromagnet, the role of the Cooper pair wave function is played by Ψ that
decays as

Ψ ∼
∑
ω

F(x,ω) ∼ ∆ exp

(
− x

ξf

)
cos

(
x

ξf

)
(11)

We retrieve the damping oscillatory behavior of the order parameter Eq. (7). The important conclusion we obtain from
the microscopic approach is that in the dirty limit in the absence of magnetic scattering, the scale for the oscillation and
decay of the Cooper pair wave function in a ferromagnet is the same. If we take into account the magnetic scattering,
then the decaying length ξf 1 becomes smaller than the oscillating length ξf 2; namely

ξf 1 = ξf /

√√
1 + α2

s + αs and ξf 2 = ξf /

√√
1 + α2

s − αs

where the parameter αs = 1/(τsh) characterizes the relative strength of the magnetic scattering.
The damped oscillatory behavior of the order parameter may lead to the electronic density of state (DOS) oscilla-

tions in a ferromagnet in contact with a superconductor [11]. This prediction has been confirmed by the experiment
of [13], which up to now remains the only experimental observation of the DOS oscillations in F layer. Note that the
magnetic scattering effect complicates this type of experiment, strongly reducing the amplitude of the oscillations.

4. Oscillatory superconducting transition temperature in S/F multilayers and bilayers

The damped oscillatory behavior of the superconducting order parameter in ferromagnets may produce the com-
mensurability effects between the period of the order parameter oscillation (which is of the order of 2πξf 2) and the
thickness of a F layer. This results in the striking non-monotonous superconducting transition temperature dependence
on the F layer thickness in S/F multilayers and bilayers. Indeed, for a F layer thickness smaller than ξf 2, the pair wave
function in the F layer changes a little and the superconducting order parameter in the adjacent S layers must be the
same. The phase difference between the superconducting order parameters in the S layers is absent and we call this
state the ‘0’-phase. On the other hand, if the F layer thickness becomes of the order of πξf 2, the pair wave function
may go through zero at the center of the F layer providing the state with the opposite sign (or π shift of the phase)
of the superconducting order parameter in the adjacent S layers, which we call the ‘π ’-phase. The increase of the
thickness of the F layers may provoke the subsequent transitions from ‘0’- to ‘π ’-phases, which superpose on the
commensurability effect and results in a very special dependence of the critical temperature on the F layer thickness
[7,8]. The experimental observation [14] (see Fig. 2) of this unusual dependence in Nb/Gd was the first strong evidence
in favour of the ‘π ’-phase appearance. For the S/F bilayers, the transitions between ‘0-’ and ‘π ’-phases are impos-
sible; nevertheless the commensurability effect between ξf 2 and F layer thickness also leads to the non-monotonous
dependence of Tc on the F layer thickness. Processes of the normal quasiparticle reflection at the free F layer boundary
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Fig. 2. Oscillatory-like dependence of the critical temper-
ature of Nb/Gd multilayers versus thickness of Gd layer
[14]. Dashed line in (a) is a fit using the theory [8].

Fig. 3. Critical temperature of Nb/Cu0.43Ni0.57
bilayer versus the thickness of the ferromag-
netic layer [16].

and Andreev reflection at SF-interface interfere and this results in Tc minima reached when the F layer thickness is
close to a quarter of the spatial oscillation period [15,7]. The dependence of the Tc of Nb/Cu0.43Ni0.57 bilayer on the
F layer thickness [16] is presented in Fig. 3. Recently a different oscillatory behavior of Tc(df ) in Nb/Co bilayers and
multilayers has been observed experimentally in detail [17].

5. Superconductor–ferromagnet–superconductor ‘π ’-junction

The experiments on the critical temperature of the S/F multilayers and bilayers attracted much interest to the
proximity effect in S/F systems, but their interpretations were controversial (as a review see [18]) due to the very
small value of the characteristic length ξf 2 (only several nanometers). The most direct proof of the ‘π ’-phase existence
would be the observation following the theoretical predictions [6,12] of the vanishing of the critical current at the ‘0’-
to ‘π ’-phase transition. The first experimental evidence of a 0–π transition in S/F/S (Nb–CuxNi1−x–Nb) Josephson
junction was obtained in [19] from the measurements of the temperature dependence of the critical current. The 0–
π transition was signaled by the vanishing of the critical current with the temperature decrease. Such a behavior is
observed for a F layer thickness d close to some critical value dc. In fact, it simply means that the critical thickness
dc slightly depends on temperature. The temperature variation serves as a fine tuning and permits one to study this
transition in detail. Later the damped oscillations of the critical current as a function of F layer thickness were observed
in Nb/Al/Al2O3/PdNi/Nb [22] and Nb/Cu/Ni/Cu/Nb [23] junctions. The very recent experiments [21] have enabled us
to observe the two-node thickness dependence of the critical current in Josephson SFS junctions with a ferromagnetic
interlayer, i.e., both direct transition into π -state and reverse one from π - into 0-state (Fig. 4). This revealed that the
‘0’- to ‘π ’-transition with the F layer thicknesses observed in [19] was the second one. The first transition occurs for
an F layer thickness around 10 nm. The temperature dependences of the critical current near the first and the second
‘0’- to ‘π ’-transitions are presented in Fig. 5.

The complete the quantitative analysis of the S/F/S junctions is rather complicated, because the ferromagnetic layer
may strongly modify superconductivity near the S/F interface. In addition, the boundary transparency and electron
mean free path, as well as magnetic scattering, are important parameters affecting the critical current. In the case of
small conductivity of the F layer or small interface transparency γ

B
: σf ξs /σsξf � max(1, γ

B
) we may use the ‘rigid

boundary’ conditions [24] with Fs(−df /2) = ∆e−iϕ/2/
√

ω2 + ∆2 and Fs(df /2) = ∆eiϕ/2/
√

ω2 + ∆2, where ϕ is
the phase difference on the junction. We consider the junction with F layer thickness df and the x axis is chosen
perpendicular to the F layer.

The solution of Eq. (9) in a ferromagnet satisfying the corresponding boundary conditions is written as

F(x) = ∆√
2 2

[
cos(ϕ/2) cosh(kx) + i sin(ϕ/2) sinh(kx)

]
(12)
ω + ∆ (cosh(kdf /2) + kγ
B
ξn sinh(kdf /2)) (sinh(kdf /2) + kγ

B
ξn cosh(kdf /2))
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Fig. 4. The double-reversal F-layer thickness dependence of
the critical current density for Nb/Cu0.47Ni0.53/Nb junctions
at temperature 4.2 K [21]. The open circles present experi-
mental results, the dashed line shows the fit using Eq. (14).

Fig. 5. Temperature dependence of the Nb/Cu0.47Ni0.53/Nb junctions
critical current density at several F-layer thicknesses close to the critical
ones [21]. The dashed lines show the calculation results based on the
solution of the nonlinear Usadel equation [21].

where the complex wave-vector k = ξ−1
f 1 + iξ−1

f 2 . This solution describes the F(x) behavior near the critical tempera-
ture and gives the sinusoidal current-phase dependence Is(ϕ) = Ic sin(ϕ) with the critical current

Ic = eSN(0)Df πT

∞∑
−∞

∆2

ω2

2k/ cosh(kdf )

tanh(kdf )(1 + Γ 2
ωk2) + 2kΓω

(13)

where Γω = γ
B
ξn/|Gs |. This expression may be generalized to take into account the different interface transparencies

γ
B1 , γ

B2 � 1, it is enough to substitute in Eq. (13) Γ 2
ω → γ

B1γB2(ξn/|Gs |)2 and 2Γω → (γ
B1 + γ

B2)ξn/|Gs |.
In the most interesting limit from the practical point of view, when the F layer thickness df > ξf 1 we obtain the

universal expression for the Ic(df ) dependence

Ic ∼ exp

(
− df

ξf 1

)[
sin

(
df

ξf 2
+ Ψ

)]
(14)

where the angle π/4 < Ψ < π/2 depends on the magnetic scattering amplitude and the boundary transparencies. This
expression gives a good description of the available experimental data (Fig. 4) permitting one to find the lengths ξf 1
and ξf 2 and then proves the important influence of the magnetic scattering on the properties of the S/F/S junctions.
Formula (14) is strictly applicable near Tc but gives also a good approximation for the Ic(df ) dependence at low tem-
perature everywhere except close to the critical thicknesses dc corresponding to ‘0’–‘π ’ transitions. The temperature
dependence of the critical current is very peculiar for df ≈ df c and the corresponding experimental data are presented
in Fig. 5. The theoretical description of these Ic(T ) dependences requires the solution of the nonlinear Usadel equation
(see [21] and for more details [1]).

Bulaevskii et al. [25] pointed out that a ‘π ’-junction incorporated into a superconducting ring would generate a
spontaneous current and the corresponding magnetic flux would be half a flux quantum Φ0 = h/2e. The appearance
of the spontaneous current is related to the fact that the ground state of the ‘π ’-junction corresponds to the phase
difference π and so this phase difference will generate a supercurrent in the ring which short circuits the junction.
Naturally the spontaneous current is generated if there is an odd number of ‘π ’-junctions in the ring. This circumstance
has been exploited in a elegant way [20] to provide unambiguous proof of the ‘π ’-phase transition. The observed half-
period shift of the external magnetic field dependence of the transport critical current in triangular S/F/S arrays is
presented in Fig. 6. The thickness of F layers of the S/F/S junctions was chosen in such a way that the junction nature
changed from ‘0’ to ‘π ’ with temperature variation.
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Fig. 6. Magnetic field dependence of the critical transport current for the network of five Nb/Cu0.46Ni0.54/Nb sandwiches at temperature (a) above
and (b) below the transition to the π -state [20].

6. How the transition from ‘0’- to ‘π ’-states occurs?

The current-phase relation for a Josephson junction is sinusoidal only near the critical temperature Tc [9]

j (ϕ) = I1 sinϕ (15)

At low temperature the higher harmonic terms appear. However, in the diffusive limit at df > ξ1 they are very small
and in the usual junctions their presence is to be hardly observed. In S/F/S junctions in general, in the dirty limit
I1 ∼ exp(−df /ξ1) and the second harmonic contribution happens to be very small and positive ∼ exp(−2df /ξ1)

[26]. The peculiarity of the situation with the 0–π transition is that in the transition region the first harmonic term
changes its sign passing through zero and then the role of the second harmonic contribution becomes predominant!
To study the scenario of the 0–π transition we address to the general current-phase relation

j (ϕ) = I1 sinϕ + I2 sin 2ϕ (16)

which corresponds to the following phase dependent contribution to energy of the Josephson junction

EJ (ϕ) = Φ0

2πc

[
−I1 cosϕ − I2

2
cos 2ϕ

]
(17)

If we neglect the second harmonic term, then the 0 state occurs for I1 > 0. Near a 0–π transition I1 → 0 and the
second harmonic term becomes important. The critical current at the transition jc = |I2| and if I2 > 0, the minimum
energy always occurs at ϕ = 0 or ϕ = π , see Fig. 7.

In the opposite case (I2 < 0) the transition from 0 to π state is continuous and there is region where the equilibrium
phase difference takes any value 0 < ϕ < π . The characteristics of such a ‘ϕ-junction’ are very peculiar [27].

On experiment the second harmonic at 0–π transition was observed in Nb–Cu0.52Ni0.48–Nb junctions [30] for the
F-layer thickness df ≈ 17 nm (which corresponds to the first 0–π transition with thickness increase) at 1.1 K. For
junctions with x = 0.48 [29] we may roughly estimate ξ1 ≈ 4 nm, ξ2 ≈ 9 nm, the magnetic scattering parameter
α ≈ 0.9, ξf ≈ 6 nm and h ≈ 100 K and we have for the ratio I2/I1 ∼ 0.1 exp(−d/ξ1) ∼ 10−3 which is somewhat
smaller than the observed value 3×10−3 [30]. The measurements [30] could not provide information about the sign of
the second harmonic. In the experiments [28] the second harmonic was also searched in the series of Nb–Cu0.47Ni0.53–
Nb junctions near the second 0–π transition at df ≈ 22 nm (the first transition occurs at df ≈ 11 nm [21]). From the
thickness dependence of the critical current in the series of [21] we may estimate ξ1 ≈ 1.5 nm and ξ2 ≈ 3.5 nm which
gives I2/I1 ∼ 0.1 exp(−df /ξ1) ∼ 10−8, which gives a very small value for I2 � 10−11 A, well below the experimental
threshold.
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Fig. 7. Schematic plot of the phase-dependent Josephson junction’s energy. The case I2 > 0 corresponds to the discontinuous 0–π transition while
at I2 > 0 the minimum energy is reached at 0 < ϕ < π .

However, the estimates of the positive intrinsic second harmonic term presented above presume that the junction is
ideal. The thickness variation of the F layer switch on the another mechanism of the second order harmonic generation
[27]. Indeed, the roughness of F layer in the real S/F/S junctions is of the order of 1 nm. This means that if the
characteristic length δl of the thickness variation (along the contact surface) is larger than df , the critical current will
vary locally as well. On the other hand if δl is much smaller than the Josephson length λJ , which for the current
density 106 A/m2 [16] is of the order of the junction dimension (50 × 50 µm2 in [16]), the measured characteristics
of the junction will be effectively averaged. At the 0–π transition we deal with a system where the local current
density is alternating ±I1 and I1 = 0. The resulting local phase variation leads to the appearance of the negative
second harmonic in the averaged current-phase relation [31,27] I2 ∼ −|I1|(δl/λJ )2, where λJ is the Josephson length
corresponding to the current density I1. The 1 nm roughness of the F layer in the experiments [30,29] permits one
to estimate for df ≈ 17 nm the value |I1| ∼ 5 × 106 A/m2 and λJ ∼ (10–100) µm. At the present time there is no
information about the characteristic length δl of thickness variation in the studied S/F/S junctions. Taking it as 1 µm
for the 10 × 10 µm2 junction [29,30] we have I2 ∼ −5 × (102–104) A/m2 while the experimentally observed value is
∼3 × 104 A/m2 and the sign of I2 is unknown.

Apparently this mechanism was responsible for the very recent second harmonic observation in Nb–Cu0.47Ni0.53–
Nb junctions with spatial variation in the barrier thickness [32]. Unfortunately the interesting question about the origin
of the second harmonic generation at 0–π transition in S/F/S junctions is still open. The response on this question
may shed light of the sign of the second harmonic and then on the fascinating possibility to have an experimental
realization of the new type of the Josephson junction: ‘ϕ-junction’.

7. Conclusion

During the last five years an enormous progress in the controllable fabrication of the superconductor–ferromagnet
heterostructures has been achieved. The peculiar effects predicted earlier have been observed in experiments and we
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have a general understanding of the mechanism of the superconductivity and ferromagnetism interplay in S/F systems.
Now this domain of research enters into a period when the design of the new types of the devices becomes feasible
and we may expect many interesting findings in the near future.
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