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Abstract

We adapt the statistical mechanics of the shallow-water equations to the case where the flow is forced at small scales. We
assume that the statistics of forcing is encoded in a prior potential vorticity (PV) distribution which replaces the specification of
the Casimir constraints in the case of freely evolving flows. This determines a generalized entropy functional which is maximized
by the coarse-grained PV field at statistical equilibrium. Relaxation equations towards equilibrium are derived which conserve
the robust constraints (energy, mass and circulation) and increase the generalized entropy. To cite this article: P.-H. Chavanis,
B. Dubrulle, C. R. Physique 7 (2006).
© 2006 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Mécanique statistique d’un système à eau peu profonde avec une distribution de vorticité potentielle fixée à priori. Nous
adaptons la mécanique statistique d’un système à eau peu profonde au cas où le flot est forcé à petite échelle. Nous supposons que
la statistique du forçage est représentée par une distribution de vorticité potentielle fixée à priori, qui remplace la spécification des
contraintes de Casimir dans le cas des flots libres. Ceci détermine une fonctionnelle d’entropie généralisée qui est maximisée par le
champ de vorticité potentielle lissé à l’équilibre statistique. Nous dérivons les équations de relaxation vers l’équilibre qui conservant
les contraintes robustes (énergie, masse et circulation) et accroissant l’entropie généralisée. Pour citer cet article : P.-H. Chavanis,
B. Dubrulle, C. R. Physique 7 (2006).
© 2006 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction

Two-dimensional turbulent flows with high Reynolds numbers have the striking property of organizing sponta-
neously into large-scale coherent structures such as jets and vortices. Jovian atmosphere shows a wide diversity of
structures: Jupiter’s great red spot, white ovals, brown barges, . . . . A good hydrodynamical model to describe Jov-
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ian atmosphere is provided by the Shallow-Water (SW) equations. A statistical theory of the SW system has been
developed recently by Chavanis and Sommeria [1]. This extends the statistical mechanics of the incompressible 2D
Euler equation proposed by Miller [2] and Robert and Sommeria [3] to the case of compressible flows. It is how-
ever assumed that the flow is weakly compressible (small Mach number) so that the effect of waves is not dominant.
Therefore, large-scale coherent vortices can form and persist for a long time. After a phase of chaotic mixing (violent
relaxation), the system is expected to reach an equilibrium state which corresponds to the most mixed state consistent
with the constraints imposed by the dynamics. Mathematically, it is obtained by maximizing a mixing entropy while
conserving energy, mass, circulation and all the higher moments of the PV vorticity (Casimirs). One difficulty with
this approach is that the moments of PV depend on the resolution at which the PV field is considered so that the
prediction can change accordingly. Furthermore, geophysical flows are usually forced and dissipated at small scales
so that the conservation of all the Casimirs is abusive. In an attempt to solve these problems, Ellis et al. [4] have pro-
posed to fix a prior vorticity distribution instead of the Casimirs. It is assumed that this global distribution of vorticity
is generated by the small-scale forcing so it must be given as an input in the statistical theory. In this approach, only
the conservation of the robust constraints (E,Γ ) is taken into account and the effect of the small-scale forcing is
encapsulated in a prior vorticity distribution or in a generalized entropy. This approach has been further developed in
Chavanis [5,6] in the context of the quasi-geostrophic (QG) equations. In this paper, we show how it can be extended
to the case of the Shallow-Water (SW) equations. Since this is only a slight, but interesting, variant with respect to
the un-forced case, we shall mostly refer to the study of Chavanis and Sommeria [1] for technical details, without
repeating all the steps of the derivation.

2. The shallow-water equations

The dynamical evolution of a thin fluid layer with thickness h(x, y, t) and velocity field u = (u, v)(x, y, t) submit-
ted to a gravity acceleration g on a rotating planet is governed by the shallow water equations

∂h

∂t
+ ∇ · (hu) = 0 (1)

∂u
∂t

+ (u · ∇)u = −g∇h − 2Ω × u (2)

The first equation can be viewed as an equation of continuity and the second equation as the Euler equation (in a
rotating frame Ω) for a barotropic fluid with pressure p = 1

2gh2. The Euler equation can be rewritten

∂u
∂t

+ (ω + 2Ω) × u = −∇B (3)

where ω = ωez = ∇ × u is the vorticity and where we have introduced the Bernouilli function

B = u2

2
+ gh (4)

The potential vorticity (PV)

q = ω + 2Ω

h
(5)

is conserved for each fluid parcel, i.e.,

dq

dt
= ∂q

∂t
+ u · ∇q = 0 (6)

Each mass element hdr is also conserved in the course of the evolution. This implies that the shallow-water equations
conserve the PV moments

Γn =
∫

qnhdr (7)

The moments n = 0,1,2 are, respectively, the total mass M , the circulation Γ and the PV enstrophy Γ2. The energy

E =
∫

h
u2

dr + 1
∫

gh2 dr (8)

2 2
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involving a kinetic and a potential part is also conserved. It is convenient to use a Helmholtz decomposition of the
momentum hu into a purely rotational and purely divergent part

hu = −ez × ∇ψ + ∇φ (9)

For any stationary solution, the mass conservation (1) reduces to ∇ · (hu) = 0 so that

hu = −ez × ∇ψ (10)

where ψ is the stream-function. Then Eq. (6) reduces to u · ∇q = 0 which implies that q = f (ψ). Finally, Eq. (3)
reduces to

(ω + 2Ω) × u = −∇B (11)

Taking the scalar product with u, we obtain u · ∇B = 0 so that B = B(ψ). Then, substituting Eq. (10) in Eq. (11) we
obtain

q = −dB

dψ
(12)

The SW equations admit an infinite class of stationary solutions, specified by the relations B = B(ψ) and q = f (ψ) =
−B ′(ψ). They are determined by the two coupled partial differential equations for ψ and h

−�ψ

h2
+ 2Ω

h
+ 1

h3
∇ψ · ∇h = −dB

dψ
(13)

(∇ψ)2

2h2
+ gh = B(ψ) (14)

This formulation of the SW equations in terms of (h,ψ) variables has been introduced in Chavanis and Sommeria [1].

3. The equilibrium statistical mechanics

3.1. Freely evolving flows

The SW equations are known to develop a complicated mixing process which ultimately leads to the emergence of
a large-scale coherent structure, typically a jet or a vortex. One question of fundamental interest is to understand and
predict the structure and the stability of these equilibrium states. This can be achieved by using statistical mechanics
arguments. The idea is to replace the deterministic description of the flow q(r, t) by a probabilistic description where
ρ(r, σ, t) gives the density probability of finding the PV level q = σ in r at time t (it satisfies the local normalization
condition

∫
ρ(r, σ )dσ = 1). The observed (coarse-grained) PV field is then expressed as q̄(r, t) = ∫

ρσ dσ . To apply
the statistical theory, one must first specify the constraints attached to the SW equations. The mass M = ∫

hdr,

circulation Γ = ∫
q̄hdr and energy E = ∫

hu2

2 dr + 1
2

∫
gh2 dr will be called robust constraints because they can be

expressed in terms of the coarse-grained field. These integrals can be calculated at any time from the coarse-grained
field and they are conserved by the (macroscopic) dynamics. By contrast, the Casimir invariants If = ∫

f (q)hdr,

or equivalently the fine-grained moments of the vorticity Γ
f.g.

n>1 = ∫
qnhdr = ∫

ρσn dσhdr, will be called fragile
constraints because they must be expressed in terms of the fine-grained PV. Indeed, the moments of the coarse-grained
PV Γ

c.g.

n>1 = ∫
q̄nhdr are not conserved since qn �= q̄n (part of the coarse-grained moments goes into fine-grained

fluctuations). Therefore, the moments Γ
f.g.

n>1 must be calculated from the fine-grained field q(r, t) or from the initial
conditions, i.e., before the PV vorticity has mixed. Since we often do not know the initial conditions nor the fine-
grained field, the Casimir invariants often appear as ‘hidden constraints’ [7].

The statistical theory of Miller and Robert–Sommeria–Chavanis for the 2D Euler equations and the SW equations
is based on several assumptions: (i) it is assumed that the flow is freely evolving without small-scale forcing and
dissipation; (ii) it is assumed that we know the initial conditions (or equivalently the value of all the Casimirs) in
detail; (iii) it is assumed that mixing is efficient and that the evolution is ergodic so that the system will reach at



P.-H. Chavanis, B. Dubrulle / C. R. Physique 7 (2006) 422–432 425
equilibrium the most probable (most mixed) state. Within these assumptions,1 the statistical equilibrium state of the
SW system is obtained by maximizing the mixing entropy

S[ρ] = −
∫

ρ lnρhdr dσ (15)

while conserving the energy, the circulation, the mass and all the Casimirs. We write the variational principle in the
form

δS − βδE − αδΓ − γ δM −
∑
n>1

αnδΓ
f.g.
n −

∫
ζ(r)δ

(∫
ρ dσ

)
hdr = 0 (16)

In the present point of view, all the constraints are treated on the same footing. In particular, the moments Γ
f.g.
n are

treated microcanonically and we must ultimately relate the Lagrange multipliers αn to the constraints Γ
f.g.
n .

3.2. Prior distribution and relative mixing entropy

In the approach of Chavanis and Sommeria [1], it is assumed that the system is strictly described by the SW
equations so that the conservation of all the Casimirs has to be taken into account. However, in geophysical situations,
the flows are forced and dissipated at small scales (due to convection in the Jovian atmosphere) so that the conservation
of the Casimirs is destroyed. Ellis et al. [4] have proposed to treat these situations by fixing the conjugate variables
αn>1 instead of the fragile moments Γ

f.g.

n>1 . If we view the PV levels as species of particles, this is similar to fixing the
chemical potentials instead of the total number of particles in each species. Therefore, the idea is to treat the fragile
constraints canonically, whereas the robust constraints (E,Γ,M) are still treated microcanonically. This point of view
has been further developed in Chavanis [5,6] in the QG model and this approach is extended here to the SW system.
The relevant thermodynamical potential is obtained from the mixing entropy (15) by using a Legendre transform with
respect to the fragile constraints:

Sχ = S −
∑
n>1

αnΓ
f.g.
n (17)

Explicating the fine-grained moments, we obtain

Sχ = −
∫

ρ

[
lnρ +

∑
n>1

αnσ
n

]
hdr dσ (18)

Introducing the function

χ(σ) ≡ exp

{
−

∑
n>1

αnσ
n

}
(19)

we get

Sχ [ρ] = −
∫

ρ ln

[
ρ

χ(σ)

]
hdr dσ (20)

which has the form of a relative entropy. The function χ(σ) is interpreted as a prior vorticity distribution. It is a global
distribution of PV fixed by the small-scale forcing. We shall assume that this function is imposed by the small-scale
forcing so it must be regarded as given.

1 Some attempts have been proposed to go beyond the assumptions (ii) and (iii) of the statistical theory. For example, Chavanis and Sommeria [8]
consider a strong mixing limit in which only the first moments of the vorticity are relevant instead of the whole set of Casimirs. On the other hand,
Chavanis and Sommeria [9] introduce the concept of maximum entropy bubbles (or restricted equilibrium states) in order to account for situations
where the evolution of the flow is not ergodic in the whole available domain but only in subdomains. A 2D turbulent flow is therefore viewed
as an ensemble of isolated vortices which can be seen as ‘maximum entropy bubbles’ separated by un-mixed flow. In 2D decaying turbulence,
these isolated vortices result from previous mergings and they are expected to correspond to statistical equilibrium states [10]. In fact, because of
incomplete relaxation, they may just well be particular stable stationary solutions of the 2D Euler equation that are incompletely mixed.
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Assuming ergodicity, the statistical equilibrium state is now obtained by maximizing the relative entropy Sχ at
fixed energy E, circulation Γ and mass M (robust constraints). The conservation of the Casimirs has been replaced
by the specification of the prior χ(σ). From that point, we can repeat the calculations of Chavanis and Sommeria [1]
with almost no modification. The only difference is that we regard the αn as given. Writing δSχ − βδE − αδΓ −
γ δM = 0, and accounting for the normalization condition

∫
ρ dσ = 1, we find (i) that the statistical equilibrium state

is a stationary solution of the SW equation (ii) that the detailed distribution of PV levels is given by the Gibbs state

ρ(r, σ ) = 1

Z
χ(σ)e−(βψ+α)σ (21)

where the partition function

Z =
∫

χ(σ)e−(βψ+α)σ dσ (22)

is determined by the local normalization condition. The distribution of the fluctuations of PV vorticity is the product
of a universal Boltzmann factor by a non-universal function χ(σ) fixed by the forcing. This is the same formula as
in Chavanis and Sommeria [1] except that in the present formalism χ(σ) must be regarded as given a priori while in
[1] it was a function of the Lagrange multipliers αn that had to be related a posteriori to the fine-grained moments
imposed by the initial conditions. The equilibrium coarse-grained PV is

q̄ =
∫

χ(σ)σe−(βψ+α)σ dσ∫
χ(σ)e−(βψ+α)σ dσ

= − 1

β

d lnZ

dψ
= F(βψ + α) = f (ψ) (23)

The coarse-grained vorticity (23) can be viewed as a sort of superstatistics [7] as it is expressed as a superposition
of Boltzmann factors (on the fine-grained scale) weighted by a non-universal function χ(σ). We note that the q̄ −
ψ relationship predicted by the statistical theory can take a wide diversity of forms (usually non-Boltzmannian)
depending on the prior χ(σ). The function F is entirely specified by the prior PV distribution according to

F(Φ) = −(ln χ̂ )′(Φ), with χ̂ (Φ) =
+∞∫

−∞
χ(σ)e−σΦ dσ (24)

Differentiating Eq. (23) with respect to ψ , we find that

q̄ ′(ψ) = −βq2, q2 = q2 − q̄2 � 0 (25)

This relation relates the slope of the q̄ = f (ψ) relationship to the local centered variance q2(ψ) of the PV distribution.
This can also be written F ′(Φ) = −q2(Φ) � 0 so that F is a decreasing function. Therefore, the statistical theory
predicts that the coarse-grained field is a stationary solution of the SW equation and that the q̄ − ψ relationship is a
monotonic function which is increasing at negative temperatures β < 0 and decreasing at positive temperatures β > 0.
We note that, according to Eqs. (12) and (23), the Bernouilli function is given by

B = 1

β
lnZ (26)

and it plays the role of a free energy in the statistical theory (if we interpret Z as a partition function).
We also note that the most probable PV field 〈σ 〉(r) of the Gibbs distribution (21) is given by [11]:

〈σ 〉 = [
(lnχ)′

]−1
(βψ + α) (27)

provided that (lnχ)′′(〈σ 〉) < 0. This is also a stationary solution of the SW system which usually differs from the
average value q̄(r) of the Gibbs distribution (21). They coincide only when

−(ln χ̂ )′(Φ) = [
(lnχ)′

]−1
(Φ) (28)

which is the case when χ(σ) is Gaussian.



P.-H. Chavanis, B. Dubrulle / C. R. Physique 7 (2006) 422–432 427
3.3. Generalized entropy

We first show that a PV field which extremizes a functional of the form

H [q] = −
∫

C(q)hdr (29)

where C is a convex function, at fixed energy E, mass M and circulation Γ , is a steady state of the SW equations. We
write the variational principle as

δH − βδE − αδΓ − γ δM = 0 (30)

Using the results of Chavanis and Sommeria [1], we have

δE =
∫

Bδhdr +
∫

ψδ(qh)dr −
∫

φδ(∇ · u)dr (31)

δΓ =
∫

δ(qh)dr (32)

δH = −
∫

C(q)δhdr −
∫

C′(q)δ(qh)dr +
∫

C′(q)qδhdr (33)

where we have taken h, qh and ∇ · u as independent variables. The variations on ∇ · u yield φ = 0. The variations on
qh give

C′(q) = −βψ − α (34)

so that q = f (ψ). The variations on h give

qC′(q) − C(q) = βB + γ (35)

so that B = B(ψ). Taking the derivative of Eq. (35) with respect to ψ , we find that

qC′′(q)
dq

dψ
= β

dB

dψ
(36)

According to Eq. (34), we also have

dq

dψ
= − β

C′′(q)
(37)

so that q(ψ) is a monotonic function increasing at negative temperatures and decreasing at positive temperatures.
Furthermore, we find that Eq. (36) is equivalent to q = −dB/dψ . Therefore, the optimization problem (30) determines
stationary solutions of the SW system. Since H , E, Γ and M are conserved by the SW equations, we can argue, as
for the 2D Euler equation [4], that a maximum of H at fixed E, Γ and M (if it exists) will be nonlinearly dynamically
stable with respect to the SW system. In this dynamical context, H is referred to as a Casimir functional and E − H

as an energy-Casimir functional.
Note that the optimization problem (30) can also be justified by a selective decay principle (for −H ) if we interpret

the PV vorticity as the coarse-grained PV. Indeed, −H [q̄] calculated with the coarse-grained PV decreases (fragile
constraint) while E[q̄], Γ [q̄] and M[q̄] are approximately conserved (robust constraints). This selective decay prin-
ciple can explain physically how −H [q̄] can possibly reach a minimum value while −H [q] is exactly conserved by
the SW equations. In this coarse-grained context, H [q̄] is referred to as a generalized H -function [12].

Finally, we note that the equilibrium state (23) predicted by the statistical theory extremizes a certain H -function
at fixed E, Γ and M . This functional

S[q̄] = −
∫

C(q̄)hdr (38)

corresponding to the statistical equilibrium state, will be called a generalized entropy in q̄-space [7]. It is completely
determined by the prior PV distribution. It should not be confused with the mixing entropy (15) which is a functional
of ρ. Coming back to Eq. (34) and recalling that C is convex (so that this relation can be inversed), we find that
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Eqs. (34) and (23) coincide provided that C′(q̄) = −F−1(q̄). Therefore, the prior PV distribution χ(σ) determines
F(x) which itself determines C(q̄) according to

C(q̄) = −
q̄∫
F−1(x)dx (39)

In other words, to obtain C(q̄), we need to inverse Eq. (23) and integrate the resulting expression. Some examples are
collected in Chavanis [13]. Combining the previous relations, we find that the generalized entropy is determined by
the prior according to [7]:

C(q̄) = −
q̄∫ [

(ln χ̂)′
]−1

(−x)dx (40)

Finally, comparing Eqs. (37) and (25) we get the relation

q2 = 1

C′′(q̄)
(41)

which is exact at statistical equilibrium.

4. Relaxation equations

4.1. Maximum Entropy Production principle

In the case of freely evolving flows, Chavanis and Sommeria [1] have proposed a thermodynamical parametrization
of the SW equations (on the coarse-grained scale) in the form of relaxation equations that conserve all the constraints
of the SW dynamics (including the Casimirs) and increase the mixing entropy. In the case of flows that are forced at
small scales, the Casimirs are replaced by the specification of a prior vorticity distribution or, as we have seen, by a
generalized entropy. In this context, we can propose a thermodynamical parametrization of the SW equations in the
form of relaxation equations that conserve only the robust constraints (mass, energy and circulation) and increase the
generalized entropy S[q̄] fixed by the prior.

We first decompose the vorticity ω and velocity u into a mean and fluctuating part, namely ω = ω̄ + ω̃, u = ū + ũ,
keeping h smooth. Taking the local average of the shallow water equations (1), (3), we get

∂h

∂t
+ ∇ · (hū) = 0 (42)

∂ū
∂t

+ (ω̄ + 2Ω) × ū = −∇B − ez × Jω (43)

where the current Jω = ω̃ũ represents the correlations of the fine-grained fluctuations. We deduce an equation for the
evolution of the potential vorticity (5), taking the curl of Eq. (43) and using Eq. (42):

∂

∂t
(hq̄) + ∇ · (hq̄ū) = −∇ · Jω (44)

This equation can be viewed as a local conservation law for the circulation Γ = ∫
q̄hdr. It shows also that Jω rep-

resents the current of coarse-grained vorticity due to mixing. We shall determine the unknown current Jω by the
thermodynamic principle of Maximum Entropy Production (MEP), using the generalized entropy (38). The Maxi-
mum Entropy Production (MEP) principle consists in choosing the current Jω which maximizes the rate of entropy
production Ṡ respecting the constraints Ė = 0, and J 2

ω � C(r, t). The last constraint expresses a bound (unknown) on
the value of the diffusion current. Convexity arguments justify that this bound is always reached so that the inequality
can be replaced by an equality. We write the variational problem as

δṠ − β(t)δĖ −
∫

D−1δ

(
J 2

ω

)
dr = 0 (45)
2
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where β(t) is a Lagrange multiplier accounting for the conservation of energy and D−1 is a Lagrange multiplier
associated with the constraint J 2

ω = C(r, t). The conservations of mass and circulation are automatically satisfied by
the form of the relaxation equations (42) and (43). Noting that

Ė =
∫

Jω · ū⊥hdr (46)

Ṡ = −
∫

C′′(q̄)Jω · ∇q̄ dr (47)

and performing the variations on Jω in Eq. (45), we obtain an optimal current

Jω = −D

[
∇q̄ + β(t)

C′′(q̄)
hū⊥

]
(48)

Thus, in the presence of a prior PV distribution, we obtain a parametrization of the SW equations of the form

∂h

∂t
+ ∇ · (hu) = 0 (49)

∂u
∂t

+ q̄hez × u = −∇
(

u2

2
+ gh

)
+ D

[
ez × ∇q̄ − β(t)

C′′(q̄)
hu

]
(50)

q̄ = (∇ × u) · ez + 2Ω

h
, β(t) = −

∫
Dhu⊥ · ∇q̄ dr∫

D u2h2

C′′(q̄)
dr

(51)

n · ∇q̄ = − β(t)

C′′(q̄)
h n · u⊥ (on each boundary) (52)

n · u = 0 (on each boundary) (53)

where n is a unit vector normal to the boundary and we have omitted the overbar on u. The relaxation equation for
the coarse-grained vorticity is given by

∂

∂t
(hq̄) + ∇ · (hq̄u) = ∇ ·

{
D

[
∇q̄ + β(t)

C′′(q̄)
hū⊥

]}
(54)

These equations can also be directly obtained from the parametrization of Chavanis and Sommeria [1] by replacing q2
in their parametrization by 1/C′′(q). Therefore, the identity (41) can be viewed as a closure relationship in the present
context. This relation is valid at equilibrium but the present approach suggests that it is also valid out-of-equilibrium
when there is a prior distribution of PV. In fact, we can obtain this relation by assuming that, out-of-equilibrium, the
PV distribution ρ(r, σ, t) maximizes the relative entropy (20) at fixed PV q̄(r, t) and normalization (Appendix C of
Chavanis [5]).

The entropy production (47) can be written

Ṡ = −
∫

C′′(q̄)Jω ·
[
∇q̄ + β(t)

C′′(q̄)
hu⊥

]
dr + β(t)

∫
Jω · u⊥hdr (55)

Using the conservation of energy Ė = 0 with Eq. (46), the second integral is seen to vanish. Substituting Eq. (48) in
the first integral, we finally obtain

Ṡ =
∫

C′′(q̄)
J2
ω

D
dr � 0 (56)

which is positive provided that D � 0. A stationary solution of the relaxation equations (49)–(53) satisfies Ṡ = 0
yielding Jω = 0, i.e.,

∇q̄ + β

C′′(q̄)
∇ψ = 0 (57)

After integration, we obtain

C′(q) = −βψ − α (58)
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Therefore, the generalized entropy increases until the statistical equilibrium state (23)–(34), fixed by the prior χ(σ),
is reached with β = limt→+∞ β(t). Alternatively, these equations can be used as a numerical algorithm to compute
arbitrary stationary solutions of the SW system specified by the convex function C (see Section 3.3).

4.2. The incompressible limit

The case of ordinary 2D incompressible turbulence is recovered in the limit h → 1, q → ω and u = −ez × ∇ψ .
The relaxation equation for the coarse-grained vorticity is given by

∂ω̄

∂t
+ u · ∇ω̄ = ∇ ·

{
D

[
∇ω̄ + β(t)

C′′(ω̄)
∇ψ

]}
(59)

with

β(t) = −
∫

D∇ω̄ · ∇ψ dr∫
D

(∇ψ)2

C′′(ω̄)
dr

(60)

This returns the equations introduced by Chavanis [13] in 2D turbulence in the case where the system is described
by a prior vorticity distribution. They can be viewed as nonlinear mean-field Fokker–Planck equations. They are the
forced-case counterpart of the relaxation equations introduced by Robert and Sommeria [14] for freely evolving flows
that conserve all the Casimir constraints.

The relaxation equation (50) for the velocity field can be written

∂u
∂t

+ (u · ∇)u = − 1

ρ
∇p + D

[
�u − β(t)

C′′(ω̄)
u
]

(61)

where we have used the well-known identity of vector analysis �u = ∇(∇ ·u)−∇ × (∇ ×u) which reduces for a two-
dimensional incompressible flow to �u = ez × ∇ω̄. Eq. (61) is valid even if D is space dependent unlike with a usual
viscosity term. In previous publications this equation was given only in its vorticity form (59) and the equivalence
with Eq. (61) is not obvious at first sights when D is space dependent. At equilibrium, we have from Eq. (61) the
identity

�u = β

C′′(ω̄)
u (62)

which can be deduced directly from the stationary state (34). Indeed, for a stationary solution ω̄ = f (ψ), the previous
identity �u = ez × ∇ω̄ becomes �u = −f ′(ψ)u which is equivalent to Eq. (62) for a steady state thanks to Eq.
(37). Finally, the previous equations can be extended to the quasi-geostrophic (QG) limit if we replace ω by the PV q

related to the stream-function by

q = −�ψ + ψ

L2
R

(63)

where LR is the Rossby radius.

4.3. Explicit examples

In the present formalism, one has to specify (i) a prior PV distribution χ(σ) which encodes small-scale forcing and
non-ideal effects (ii) the robust constraints E, Γ and M which can be determined at any time from the coarse-grained
flow. From the prior PV distribution, we can determine a generalized entropy C(q̄) by using the procedure exposed in
Section 3.3 (see in particular Eq. (40)). Then, we can use this entropy in the parametrization (49)–(53) to obtain the
dynamical evolution of the coarse-grained flow towards statistical equilibrium. The difficulty is now to find the good
prior. This depends from case to case as it is related to the properties of forcing, but the idea is that several forms of
prior (or corresponding entropies) give similar results so that they can be regrouped in classes of equivalence [13].
Thus, for a given situation, one has to find the relevant class of equivalence. In general, one has to proceed by tryings
and errors. We specify a prior, compute the corresponding flow and see whether it agrees with the information that
we have on the system. If we find a ‘good prior’ for a system with some given initial conditions, then we can expect
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that it will remain valid for this system when we change the initial conditions (or, equivalently, the value of the robust
constraints E, Γ and M). Note that specifying the prior is not the end of the story but only the starting point. Indeed,
there can be different types of solutions for a given prior PV distribution depending on the values of the control
parameters. Thus, we have to study the bifurcation diagram as a function of these parameters E, Γ and M for a given
prior χ(σ) or generalized entropy C(q̄). This is a rich and non trivial problem.

Let us give some examples to illustrate our approach. In the case of Jovian flows, Ellis et al. [4] have proposed
to adopt a prior χ(σ) corresponding to a de-centered Gamma distribution. This leads to a generalized entropy of the
form [7]:

C(q̄) = 1

ε

[
q̄ − 1

ε
ln(1 + εq̄)

]
(64)

where 2ε is the skewness of the PV distribution. We have C′(q̄) = q̄/(1 + εq̄) and C′′(q̄) = 1/(1 + εq̄)2 so that the
statistical equilibrium state is specified by

q̄ = − βψ + α

1 + ε(βψ + α)
(65)

In the limit ε → 0, the generalized entropy (64) becomes minus the enstrophy S[q̄] = − 1
2

∫
q̄2 dr and the q̄ = f (ψ)

relationship is linear. The parametrization that we propose in that case for the vorticity equation is

∂

∂t
(hq̄) + ∇ · (hq̄u) = ∇ ·

{
D

[
∇q̄ + β(t)(1 + εq̄)2hū⊥

]}
(66)

On the other hand, in order to describe Jovian flows, Sommeria et al. [15] have considered a case of the statistical
theory where the PV distribution is restricted to two levels. In their approach, the flow is assumed to be freely evolving
and the dynamics corresponds to the inviscid mixing of patches with PV σ0 and σ1. As discussed in Chavanis [5],
we can also consider the case of a flow that is permanently forced at small scales (due to convection) so that a prior
PV distribution is established with two intense peaks at σ0 and σ1. In the two-levels case, theses two interpretations
lead to the same results but the second one can probably be extended more easily to the more realistic situation where
the peaks have a finite width �σ . If we adopt a prior of the form χ(σ) = δ(σ − σ1) + χδ(σ − σ0), we find that the
generalized entropy is

C(q̄) = 1

σ1 − σ0

[
(q̄ − σ0) ln(q̄ − σ0) + (σ1 − q̄) ln(σ1 − q̄)

]
(67)

We have C′(q̄) = 1
σ1−σ0

ln(
q̄−σ0
σ1−q̄

) and C′′(q̄) = 1/[(q̄ − σ0)(σ1 − q̄)] so that the statistical equilibrium state is

q̄ = σ0 + σ1 − σ0

1 + χe(σ1−σ0)(βψ+α)
(68)

similar to the Fermi–Dirac distribution. The parametrization that we propose in that case for the vorticity equation is

∂

∂t
(hq̄) + ∇ · (hq̄u) = ∇ ·

{
D

[
∇q̄ + β(t)(q̄ − σ0)(σ1 − q̄)hū⊥

]}
(69)

and it coincides with the parametrization of Chavanis and Sommeria [1] in the two-levels case of the statistical theory.
Therefore, the approach based on priors is not in radical opposition with the usual statistical theory but it allows for
convenient extensions in more general cases.

Explicit determinations of the statistical equilibrium state specified by Eqs. (65) and (68) have been obtained in
the QG limit of the statistical theory. In the two approaches, a vortex solution has been found at the latitude of
Jupiter’s great red spot where the underlying topography is extremum (or the shear is equal to zero). In the case of
the Fermi–Dirac distribution (68), Sommeria et al. [15] consider the limit of small Rossby radius and find that the
vortex has an annular jet structure which is consistent with the morphology of Jupiter’s great red spot. This study has
been further developed in Bouchet and Sommeria [16] and it has been extended by Bouchet et al. [17] to the case
of the SW system. In these studies, the structure of Jupiter’s great red spot can be seen as the co-existence of two
thermodynamical phases in contact separated by a sort of ‘domain wall’ in the language of phase ordering kinetics
(like in the Cahn–Hilliard theory). This annular jet structure is not obtained in the approach of Ellis et al. [4]. This
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implies that the prior PV distribution relevant to the case of JGRS is probably closer to two intense peaks rather than
to a decentered Gamma distribution [5]. These two distributions belong to different classes of equivalence since they
lead to structurally different solutions. Probably, the prior distribution could be improved to give a better description
of Jovian vortices, but a distribution with two intense peaks already gives a fair description.

5. Conclusion

In this paper, we have extended the ‘ordinary’ statistical theory of the SW system [1] to account for the existence of
a prior vorticity distribution. This approach can be justified when the system is forced at small scales so that a global
PV distribution is imposed canonically. In that case, the forcing acts like a sort of reservoir. The attractive nature
of this theory is its practical interest: in the standard theory, one works with the Boltzmann entropy in ρ-space and
deals with a very large (possibly infinite) number of Casimir constraints which are often not known or not rigorously
conserved. In the other approach, one conserves only the robust constraints (E, Γ , M) and work with a generalized
entropic functional in q̄-space fixed by the prior (that has to be found by tryings and errors). Therefore, in the first
approach, we have to solve N coupled relaxation equations (one for each level) while in the second approach, we just
have to solve one relaxation equation. Whether this approach is really physically relevant remains to be established. In
any case, the relaxation equations (49)–(53) can be used as numerical algorithms to construct a large class of stationary
solutions of the SW equations, which is certainly an interest of our formalism.
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