
C. R. Physique 7 (2006) 442–448

http://france.elsevier.com/direct/COMREN/

Statistical mechanics of non-extensive systems/Mécanique statistique des systèmes non-extensifs

Stochastic invertible mappings for Tsallis distributions

Christophe Vignat a,∗, A. Plastino b,c

a Laboratoire de Production Microtechnique, E.P.F.L., Lausanne, Switzerland
b La Plata Physics Institute, Exact Sciences Faculty, National University La Plata, La Plata, Argentina

c Argentine National Research Council—CONICET, C. C. 727, 1900 La Plata, Argentina

Available online 17 April 2006

Abstract

We devise mappings between Gaussian distributions and power-law distributions, nowadays also called Tsallis distributions. To
a given Tsallis distributed vector X, one can associate a Gaussian distributed vector N in the fashion N = aX where a is a random
variable independent of X whose properties we are going to characterize here. We not only show that this mapping is invertible
but also construct the adequate inversion operation. As an application of this stochastic mapping, we revisit the problem posed to
Tsallis practitioners by the zeroth law of thermodynamics, that has bedeviled them for 15 years. To cite this article: C. Vignat,
A. Plastino, C. R. Physique 7 (2006).
© 2006 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Mappings stochastiques inverses pour les distributions de Tsallis. Nous définissons des relations bijectives entre les dis-
tributions Gaussiennes et les distributions de Tsallis ; à un vecteur aléatoire X suivant une distribution de Tsallis, il est possible
d’associer un vecteur aléatoire Gaussien N de la façon suivante : N = aX où a est une variable aléatoire indépendante de X

dont nous caractérisons les propriétés. Nous montrons que cette association est bijective et construisons explicitement l’associa-
tion inverse. Nous appliquons ce résultat au problème du principe zéro de la thermodynamique tel qu’il se pose dans le cadre des
statistiques de Tsallis. Pour citer cet article : C. Vignat, A. Plastino, C. R. Physique 7 (2006).
© 2006 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction

Recently, Beck and Cohen (BC) [1] have advanced an interesting generalization, that they call ‘superstatistics’,
of the exponential factor entering Boltzmann–Gibbs (BG) equilibrium probability distribution (PD) for the canonical
ensemble, advanced originally by Gibbs [2–4], namely,

pG(i) = exp(−βEi)

ZBG
(1)
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where Ei is the energy of the pertinent microstate, labelled by i, β = 1/kBT the inverse temperature, kB the Boltz-
mann’s constant, and ZBG the partition function. Its associated exponential term FBG = exp(−βE) is called the BG
factor. Assuming that the inverse temperature is a stochastic variable, BC effect a multiplicative convolution that leads
to a ‘generalized’ statistical factor FGS

FGS =
∞∫

0

βf (β)dβ exp(−βE) ≡ f ◦ FBG (2)

where f (β) satisfies
∞∫

−∞
dβ f (β) = 1 (3)

The ◦-sign denotes multiplicative convolution between two PDs, fX ◦ fY being the PD of the ratio of the two cor-
responding random variables X and Y . While β is the inverse temperature, the integration variable may also be any
convenient intensive parameter. BC-superstatistics is a statistics of statistics that takes into account fluctuations of in-
tensive parameters. BC also show that, if f (β) is a χ distribution, the result is nonextensive thermostatistics (NEXT),
currently a very active field, with applications to several branches [5–7]. NEXT’s framework is characterized by
power-law distributions (PLD), which are certainly common in physics (as for instance in critical phenomena [8]).
PLD naturally emerge in maximizing Tsallis q-information measure (q is called the nonextensivity index)

Hq(f ) = 1

1 − q

(
1 −

+∞∫
−∞

f (x)q dx

)
(4)

subject to appropriate constraints. For the canonical distribution, only one constraint is needed, apart from normaliza-
tion: the mean energy E, i.e., the mean value of the pertinent Hamiltonian H(x):

E = 〈
H(x)

〉
(5)

It is important to remark that, as q → 1, Tsallis entropy reduces to Shannon entropy

H1(f ) = −
+∞∫

−∞
f (x) logf (x) (6)

One deals with PLDs for many physical systems [9–13]. This is an incentive for furthering research into the nonex-
tensive formalism along multiple paths. It is in such a spirit that we revisit here the BC-road [1] and generalize its
scope by showing that, for a fixed temperature T (or for any other adequate intensive parameter), there exists a map-
ping between power law PDs, on the one hand, and Gaussian PDs on the other one. Using such a mapping one can
transform a Tsallis PD into a Gaussian PD and vice versa via multiplicative convolution with a chi random variable.
This mapping is able to nitidly reveal the intimate relation between the orthodox Gibbs–Boltzmann statistics [2] and
NEXT. As a first application of our new mapping we confront Tsallis’ troubles with thermodynamics’ zero-th law,
as was first revealed by Raggio and Guerberoff [14] (see also [15–19], a by no means exhaustive list, and references
therein).

2. Details of the formalism

2.1. Case q > 1 or q < 0

Consider first a k-variate vector Y = (Y1, . . . , Yk)
t following a Tsallis distribution with parameter q > 1 (or q < 0).

This distribution, defined as the maximum Tsallis entropy distribution with given covariance matrix K , reads

fY (Y ) = �(
q

q−1 + k
2 )

�(
q

)|πΣ |1/2
(1 − Y tΣ−1Y)

(p−k)/2−1
+ (7)
q−1
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with p = k + 2q
q−1 , Σ = pK and with the notation x+ = max(0, x). As discussed in [20], if p ∈ N then fY can be ob-

tained as the k-variate marginal of a uniform distribution on the sphere in R
p . Additionally, a stochastic representation

for Y writes

Y = Σ1/2N√
NtN + a2

(8)

where N = [N1, . . . ,Nk]t is a k-variate unit covariance Gaussian vector and a is an independent chi random variable
with (p − k) degrees of freedom.

Theorem 1. If bp is a chi random variable with p degrees of freedom independent of vector Y distributed as in (7),
then the product Z = bpY is Gaussian with identity covariance.

Proof. This result is based on the polar factorization property [22] of Tsallis distributions: if Y writes as (8) then Y

and
√

NtN + a2 are independent random variables. Since
√

NtN + a2 is chi-distributed with p degrees of freedom,
the result follows. However, an analytical proof is given in Appendix A.

Thus a Tsallis system with q > 1 can be ‘Gausssianized’ simply by multiplying each of its components by an inde-
pendent, scalar chi random variable with p = k + 2q

q−1 degrees of freedom.1

2.2. Case k
k+2 < q < 1

Let us now consider a k-variate random vector X = (X1, . . . ,Xk)
t following a Tsallis distribution with

k
k+2 < q < 1. Then

fX(X) = �( 1
1−q

)

�( 1
1−q

− k
2 )|πΛ|1/2

(1 + XtΛ−1X)−(k+m)/2 (9)

with Λ = (m − 2)K . A stochastic representation for X can be written:

X = Λ1/2N

a
(10)

where a is chi distributed with m degrees of freedom, independent of the unit covariance Gaussian vector N . The
equivalent of Theorem 1 can be expressed as follows (see the proof in Appendix A):

Theorem 2. If X is distributed according to (9) and if bm+k is a chi random variable independent of X with (m + k)

degrees of freedom then random vector

Z = bm+k√
1 + XtΛ−1X

X

is Gaussian with identity covariance. Moreover, random variable cm = bm+k√
1+XtΛ−1X

is chi distributed with m degrees

of freedom.

Thus a Tsallis random variable X with k
k+2 < q < 1 can be ‘Gaussianized’ as Z = cmX but, contrary to the case

q > 1, random variable cm is now dependent of X.

1 Chi distributions are restricted to integer degrees of freedom; if p /∈ N then the χ distribution fa(a) = 21−m/2

�(m/2)
am−1 exp(−a2/2) should be

extended to the distribution of the square-root of a gamma random variable with shape parameter equal to 2m. For the sake of simplicity, we will
speak of χ distribution in this case too.
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3. Application: the zeroth law of thermodynamic

We deal with two independent systems (in the sense that their mutual interaction is negligible) whose states are
described by two Tsallis-random vectors (independent as well) Y1 and Y2 with, say, q > 1 and both Σ1 = Σ2 = Ik

where Ik is the k × k identity matrix. If we consider the system Y = [Y t
1, Y t

2]t , we immediately realize that it is not
Tsallis-distributed, since its distribution

fY (Y1, Y2) ∝ (1 − Y t
1Y1)

(p−k)/2−1(1 − Y t
2Y2)

(p−k)/2−1 (11)

can not be expressed as a function of Y t
1Y1 + Y t

2Y2 (except in the Gaussian case q = 1) [14–18]. This fact shows
that we face severe NEXT-difficulties in describing the zeroth law of thermodynamics. We propose circumventing
the problem in the following fashion: if we ‘pre-multiply’ Y1 and Y2 by the same chi-distributed random variable
ap as defined in Theorem 1, then the system described by Z = ap[Y t

1, Y t
2]t is the merging of two Gaussian systems.

Moreover, the covariance of Z can be written

EZZt = Ea2
pEYY t = I2k (12)

so that apY1 and apY2 are both uncorrelated and Gaussian, and thus independent. Finally, considering a new chi-
distributed random variable bp−k with p − k degrees of freedom and chosen independent of Z, the Tsallis distributed
vector

YTsallis = Z√
ZtZ + b2

p−k

= Y√
Y tY + b2

p−k/a
2
p

(13)

—and NOT vector Y —turns out to be the ‘true’ representative of the composite system ‘1 + 2’ that arises after
the merging of the two nonextensive systems ‘1’ and ‘2’ represented by, respectively, Y1 and Y2. Note this crucial
fact: such a vector, by virtue of the random variable ap , is no longer characterized by a fixed temperature T (or,
more generally, by a fixed value of an appropriate intensive system’s parameter τ ), but instead by a superposition of
temperatures ‘centered’ at T (resp., a superposition of the intensive parameter centered at τ ), exactly in the spirit of
superstatistics. Of course, for extensive systems at equilibrium the temperature of ‘1’ and ‘2’ would be equal to the
common temperature T of both ‘1’ and 2’.

In other words, we encounter a ‘stochastic’ formulation of the zeroth law that would apply for nonextensive ther-
mostatistics: given two independent systems A, B of equal temperature T , the pertinent temperature of the associated
composite system A + B at equilibrium fluctuates around T .

3.1. ‘Normal modes’ or diagonalizable Hamiltonians

We extend this approach to more general types of Hamiltonians:

H =
k∑

i=1

ci |zi |pi , pi is an integer power (14)

In this case, the q > 1 Tsallis distribution compatible with (14) can be written:

f (Y ) = Aq

(
1 −

k∑
i=1

λi |Yi |pi

)1/(q−1)

(15)

with Aq = �( 1
q−1 + k

p
+1)

�( 1
q−1 +1)

∏k
i=1

piλ
1/pi
i

2�(1/pi)
and with 1/p = ∑k

i=1 1/pi .

Then Theorem 1 can be applied provided the mixing variable an is modified as follows (see proof in Appendix A).

Theorem 3. If A is a diagonal matrix whose element Ai,i = a1/pi where a is (i) a chi random variable with n − k +
2
∑k

i=1
1
pi

degrees of freedom and (ii) independent of component Xi distributed as in (15), then the product Z = AX

is distributed as

fZ(Z) ∝ exp

(
−

k∑
ci |zi |pi

)
(16)
i=1
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with ci > 0.

An identical line of reasoning as that above allows one then to generalize the stochastic zeroth law obtained there
to all classical systems described by the above type of Hamiltonian.

4. Conclusion

We have shown in this paper that Tsallis and Boltzmann distributions can be related in a simple stochastic way,
namely through multiplication by a random variable. This approach has allowed us to revisit the zeroth law of ther-
modynamics, showing that when two systems are put in contact, the resulting temperature should be considered as
randomly fluctuating; this result is coherent with Beck and Cohen theory of superstatistics.

Appendix A. Proofs

A.1. Proof of Theorem 1

Using [21, 3.471.3], we have

exp(−cx) = cα

�(α)

+∞∫
0

exp(−c/u)u−α−1(1 − ux)α−1+ du (A.1)

Replacing x by
∑k

i=1 x2
i and u by v−1 in (A.1) we obtain

exp

(
−c

k∑
i=1

x2
i

)
= cα

�(α)

+∞∫
0

exp(−cv)vα−1

(
1 − v−1

k∑
i=1

x2
i

)α−1

+
dv

= cα

�(α)

+∞∫
0

exp(−cv)vα−1+k/2
(

1√
v

)k
(

1 −
k∑

i=1

x2
i

v

)α−1

+
dv

Now, as a classical Gamma integral,

+∞∫
0

exp(−cv)vα−1+k/2 dv = �(α + k/2)

cα+k/2

so that

fv(v) = cα+k/2

�(α + k/2)
exp(−cv)vα−1+k/2

is the distribution of a chi-squared random variable with k + 2α degrees of freedom and variance σ 2 = 1/2c. Thus

(
1

2πσ 2

)k/2

exp

(
−

∑k
i=1 x2

i

2σ 2

)
= �(α + k/2)

ck/2(σ
√

2π )k�(α)

+∞∫
0

σχ2α+k(v)v−k/2

(
1 −

k∑
i=1

x2
i

v

)α−1

+
dv

=
+∞∫
0

σχ2α+k(v)S
(α)

X
√

v
(x1, . . . , xk)dv

where S
(α)
X denotes a k-variate Tsallis distribution obtained as the marginal of the uniform distribution on the sphere Sp

S
(α)
X (x) = �(α + k/2)

2 k/2
(1 − xtx)α−1
(2πσ c) �(α)
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where

p − k

2
= α ↔ p = 2α + k

A.2. Proof of Theorem 2

This result is based on the following duality result: if X is distributed according to (9) then X√
1+XtΛ−1X

= Y where

Y is distributed as in (9) with Λ = Σ and p − k = m. Thus

Y = X√
1 + XtΛ−1X

with p − k = m and by Theorem 1, bpY = bm+kX√
1+XtΛ−1X

is normal. Moreover, the distribution of random variable

cm = bp/
√

1 + Y tΛ−1Y can be computed as

fc(c) ∝
∫

(1 + Y tY )p/2cp−1 exp

(
−c2(1 + Y tY )

2

)
(1 + Y tY )−(m+k)/2 dY

= cp−1 exp

(
−c2

2

)∫
exp

(
−c2Y tY

2

)
dY

∝ cp−1 exp

(
−c2

2

)
c−k = cm−1 exp

(
−c2

2

)

so that cm is a chi random variable with m degrees of freedom.

A.3. Proof of Theorem 3

Starting from equality (A.1), we obtain

exp

(
−c

k∑
i=1

|xi |pi

)
= cα

�(α)

+∞∫
0

exp(−cv)vα−1

(
1 −

k∑
i=1

( |xi |
v1/pi

)pi

)α−1

+
dv

= cα

�(α)

+∞∫
0

exp(−cv)vα−1+1/p

(
k∏

i=1

1

v1/pi

)(
1 −

k∑
i=1

( |xi |
v

1
pi

)pi

)α−1

+
dv

with 1
p

= ∑k
i=1

1
pi

. Following the same path as in proof of Theorem 3, we deduce that vector with ith component
api Xi , where Xi is distributed as

fXi
(x) = (1 − |x|pi )α−1+ , (A.2)

is distributed as vector Z with

fZ(Z) ∝ exp

(
−

k∑
i=1

ci |zi |pi

)
(A.3)
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