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Abstract

Beta-particles can be utilized as an independent tool of study of new semiconductors, in particular thin diamond films. They are
still the secondary particles that are emitted as a result of nucleus reactions caused by irradiation of the crystal by other particles.
In this Note, the effect associated with response of a quasi-two-dimensional diamond-like layer to the moving electron field is
considered. The beta-particle field induces exciton modes to arise in the material. Coupled with the beta-particle electromagnetic
modes they generate polaritons. Spectral density of the radiation intensity of the flashed polaritons has been estimated as a function
of the layer thickness as well as of the scattering angle and the beta-particle velocity. To cite this article: V.V. Rumyantsev, C. R.
Physique 7 (2006).
© 2006 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Génération de polaritons d’excitons par le champ d’une particule beta se déplaçant dans une couche ultra-fine de type
diamant. Les particules bêta peuvent être utilisées comme outil indépendant pour l’étude de nouveaux semi-conducteurs, en par-
ticulier des films minces de diamant. Ils sont aussi les particules secondaires provenant de l’irradiation du cristal par d’autres
particules. Dans le présent article, on considère l’effet associé à la réponse d’une couche quasi-bidimensionnelle de type diamant
au champ d’un électron mobile. Le champ de la particule bêta induit des modes d’excitons. Le couplage de ces excitons avec les
modes électromagnétiques de la particule bêta engendre des polaritons. La densité spectrale de l’intensité des polaritons est estimée
en fonction de l’épaisseur de la couche, de l’angle de diffusion et de la vitesse de la particule bêta. Pour citer cet article : V.V. Ru-
myantsev, C. R. Physique 7 (2006).
© 2006 Académie des sciences. Published by Elsevier SAS. All rights reserved.

1. Introduction

Thin diamond-like structures and especially diamond thin films, which promise to be a new semiconductor rivaling
silicon, are important materials for electronics [1]. Advance of technology allowing growth of ultrathin films and pe-
riodic structures with controlled characteristics has led to an increasing use of similar objects in special applications
[2–4]. Search for methods of diagnostic of quasi-two-dimensional sample (such as thin film or near-surface crystal
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layer) enabling one to control of various processes in it is thus of a great importance. Irradiation of crystal by photons,
neutrons or electrons is one of methods of examination of a crystalline structure. The present Note deals with the effect
associated with response of a diamond-like crystal layer to the electromagnetic field of a moving electron. Study of a
layer affected by a beta-particles flow should be of an interest for two reasons: first, irradiation by charged particles
has become a frequently employed method for investigation of properties of different materials and, secondly, because
irradiation of an arbitrary nature causes the material nuclei to emit secondary particles including beta-particles. Al-
though charged particles interact strongly with material, depth of their penetration into crystal is relatively small [5].
It is therefore important to study excitation of the electronic subsystem of an ultrathin crystalline layer by a β-particle
field. We find necessary conditions for generation of the Cherenkov radiation and calculate its spectral density.

2. Dispersion of exciton polariton, localized in ultrathin crystalline layer

Dispersion of polaritons in bulk samples was intensively investigated (see, e.g., [6]). This phenomenon presents
an interest for study of nano-films of thickness d of the order of the excitation radius. This article concerns of an
ultrathin diamond-like layer interaction with the electromagnetic field of a beta-particle moving into the layer. The
interaction of excitonic and electromagnetic modes results in the arising of polaritons of a specific dispersion law for
the quasi-two-dimensional layer.

Dispersion of polaritons near the exciton transition of the structural unit (SU) spectrum has been considered within
the microscopic approach [7]. An appropriately chosen SU yields a common description for crystals with different
chemical bonds, such as atomic cryocrystals (with the SU being a separate atom) or valent semiconductors (with the
SU represented by the nearest neighbours σ -bond). Valent crystals quasi-molecular model [7,8] made it possible to
utilize the calculating technique developed earlier for molecular crystals. This allowed one to describe the internal
field in a diamond-like crystal and to calculate the limiting exciting frequencies for diamond and silicon. There is a
significant difference between molecular and valent crystals though. An excited state in the former is a ‘true’ one;
its living time is limited by radiation only. As for valent crystals, their excitons are metastable (excitation levels
being in the continuous spectrum hω > EG, where EG denotes the forbidden band width). The life time of such
excitons is limited by the electron-hole pair disintegration time. Note that diamond-like crystals such as silicon are
indirect forbidden gap semiconductors. Distance between the points Γ15 and Γ ′

25 in the centre of their Brillouin zone
is approximately 2.5 eV. Therefore optical transitions for h̄ω exceeding this value are the direct ones [9,10].

Response of an ultrathin crystalline layer to the electromagnetic wave of the frequency ω and the wave vector �q
(d � 2π/q) lying in the plane of the film was studied as a model problem in [11]. The field-induced polarization �Π of
the quasi-two-dimensional layer has been described within a continual approximation. In this case, it is convenient to
employ the Maxwell equations with sources on the surface in the (ω, �q, z)-representation. This way we will be able to
eliminate the field components normal to the film, expressing them in terms of the planar components using (�α, �β, �n)

vector basis ( �β = �q/q , �α = �n × �β). The resulting set of equations will consist of two linearly independent systems
describing s- and p-modes. Polaritons will arise as a result of interaction between excitonic and electromagnetic
modes (of the �Ee field of a β-particle). The dispersion relations for one normal n-mode and two planar t-modes
localized in the layer are the following:{

2π
(
q2 − ω2/c2)1/2 + [

χt(ββ)(ω)
]−1}

Πβ = a−3[Ee(ω, �q)
]
β{

2πq2(q2 − ω2/c2)−1/2 − [
χn(nn)(ω)

]−1}
Πn = a−3[Ee(ω, �q)

]
n{

2π
ω2

c2

(
q2 − ω2/c2)−1/2 − [

χt(αα)(ω)
]−1

}
Πα = a−3[Ee(ω, �q)

]
α

(1)

Here a, χ̂ are the lattice constant and the layer polarizability respectively. Dispersion curves corresponding to Eqs. (1)
are shown in Fig. 1. Fig. 2 depicts the geometry of a scattering electromagnetic wave.

Let us consider the particular case of a β-particle moving into a diamond-like crystalline layer. Its velocity �ν = ν�e
is assumed to be directed along the normal, �e ‖ �n. We want to express the velocity ν as ν = γ c (where c is light
velocity and γ is the value of velocity of the particle reduced with respect to c) and the vector �k of the β-particle
electromagnetic wave as �k = k�s. In terms of these notations we get �ν = (να, νβ, νn) = (0,0,−cγ ), q = k sin θ , �e · �s =
cos(π − θ) = − cos θ , sn = cos θ , sβ = sin θ (see Fig. 2). Hence the Fourier components of the electromagnetic field
�Ee are the following:
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Fig. 1. The points of crossing of lines ω = γ cq ctg θ with polariton
curves reflect the double resonance (both on frequency ω and wave
vector �q) and correspond to generating of polariton localized in layer.

Fig. 1. Les points de croisement des lignes ω = γ cq ctg θ avec les
courbes correspondent aux polariton reflètent la double résonance (à
la fois pour la fréquence ω et le vecteur d’onde �q) et correspondent à
la génération de polaritons localisés dans la couche.

Fig. 2. Geometry of the scattering electromagnetic wave accompany-
ing β-particle.

Fig. 2. Géométrie de l’onde électromagnétique qui accompagne la
particule.

Eα(ω, �q) = 0

Eβ(ω, �q) = −4π ie
sin2 θ

q(1 − γ 2 cos2 θ)
δ(ω − �k · �ν)

En(ω, �q) = −4π ie
sin θ cos θ(1 − γ 2)

q(1 − γ 2 cos2 θ)
δ(ω − �k · �ν) (2)

The corresponding Green functions have the form:

Gββ(ω,q) = 1

2π

(√
q2 − ω2

c2
+ 2

d(ε∞ − 1)

)−1

, Gnn(ω,q) = 1

2π

(
q2√

q2 − ω2/c2
− 2ε∞

d(ε∞ − 1)

)−1

(3)

The dielectric permeability ε∞ has the value 5.7 for diamond, 11.7 for Si and 11 for GaAs.

3. Spectral density of radiation induced by field of a beta-particle moving into ultrathin diamond-like layer

Similarly to the case considered in [11], the generation of exciton polariton of a certain polarization in diamond-like
quasi-two-dimensional layer by field of a moving β-particle is possible only at the condition of the double resonance
(at the frequency ω and wave vector �q). Of the polaritons localized in the layer only those corresponding to intersection
of the linear part of the dispersion curve (Fig. 1) with the direct line (which is the dispersion law for the β-particle field)
are flashed immediately. It is readily seen in Fig. 1 that the intersection is possible only if the direct line characterizing
β-particle lies between lines 1 and 2 which correspond to the velocity values ν1 and ν2. Polaritons moving at the
velocities beyond ν2 (see Fig. 1) are flashed after scattering in the crystalline layer. This results in decrease of the
polariton wave vector absolute value down to that typical for the linear part of the dispersion curve.

The intensity of radiation by layer SUs excited by β-particle field equals to the total work
∑

l
�Ee⊥(�rl, t) · d �P l⊥

dt

produced by SU-dipoles �P l⊥ (where l is the index of the crystalline lattice cells) against the electromagnetic field of
the β-particle. Summing over l can be replaced by surface integration as follows:

I (t) =
∫

d2r �Ee(�r, t) · d �Π(�r, t)
dt

(4)
S
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Therefore the expression 〈I 〉 = Iα(θ, γ, d) + Iβ(θ, γ, d) + In(θ, γ, d) for the averaged intensity of radiation (repre-
sented in the general case by α-, β-, n-polaritons) takes the form:

Ii(θ,β, d) = 1

(2π)2

∫
S

d2r

∫
Ii

(
q, {θ, γ, d}) exp(i�q · �r)d2q (5)

where i = β,n. As we consider electron motion normal to the surface (see Fig. 2), therefore Iα = 0. Spectral density
Ii(q, {θ, γ, d}) depends on several parameters, which are the angle θ reflecting the geometry of the problem, the
layer thickness d and the reduced β-particle velocity γ . The spectral density of β- and n-polarized polaritons is the
following:

Iβ

(
q, {θ, γ, d}) = 8π

e2c

a3

γ sin3 θ cos θ

(1 − γ 2 cos2 θ)2

2π∫
0

dϕ

q∫
0

dq ′

|�q − �q ′|√1 − γ 2 ctg2 θ + 2
d(ε∞−1)

(6)

In

(
q, {θ, γ, d}) = 8π

e2c

a3

γ sin θ cos3 θ(1 − γ 2)2
√

1 − γ 2 ctg2 θ

(1 − γ 2 cos2 θ)2

2π∫
0

dϕ

q∫
0

dq ′

|�q − �q ′| − 2ε∞
d(ε∞−1)

√
1 − γ 2 ctg2 θ

(7)

Here ϕ denotes the angle between wave vectors �q and �q ′. In order to obtain physically meaningful results from
formulae (6) and (7) we must restrict the parameter θ value by the condition[

1 − o(q, q ′, ϕ)
]
/γ < ctg θ � 1/γ (8)

The small value o(q, q ′, ϕ) = qd ε∞−1
4ε∞

√
1 + (

q ′
q
)2 − 2(

q ′
q
) cosϕ is of the order of qd � 1.

Angular variables should be expected to behave similarly when approaching zero. Hence we get spectral density (7)
in the form:

In

(
q, {θ,λ, d}) = (4π)2 e2c

a3

γ (γ + 1/γ )(1 − γ 2)2 sin θ cos3 θ

(1 − γ 2 cos2 θ)2

2ε∞
qd(ε∞ − 1)

(9)

Fig. 3. Radiation spectral density Iβ (q, {θ, γ, d}) measured in units (4π)2e2c/a3 (q and θ are measured in units corresponding to 10a−1 and
radians). First plot (below) relates to γ = 0.3 and second—to γ = 0.7, d = 5a.

Fig. 3. Densité spectrale Iβ (q, {θ, γ, d}) mesurée en multiples de (4π)2e2c/a3 (pour θ l’unité est le radian et pour q elle est égale à 10a−1) pour
d = 5a. Le graphique du bas correspond à γ = 0,3 et celui du haut à γ = 0,7.
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Substitution of the expression (9) into (5) allows calculating the radiation density, corresponding to flashing
n-polaritons:

In(θ, γ, d) = 32π
e2c

a3

2ε∞
(ε∞ − 1)

γ (γ + 1/γ )(1 − γ 2)2 sin θ cos3 θ

d(1 − γ 2 cos2 θ)2

1

r
(10)

It follows from (10) that the radiation density of the layer SUs decreases as 1/r in the layer plane.
The results of numerical integration of (6) are presented in Figs. 3, 4 and 5. It is clearly seen that the dependence

of Iβ upon θ has the maximum at θ = 1.04 for charged particles moving at small velocities (Fig. 3 corresponds to
γ = 0.3). Comparison between Figs. 3 and 4 (corresponding to d = 50a) reveals a relatively weak dependence of Iβ

Fig. 4. Radiation spectral density Iβ (q, {θ, γ, d}) measured in units (4π)2e2c/a3 (q and θ are measured in units corresponding to a−1 and
radians). First plot (below) relates to γ = 0.3 and second—to γ = 0.7, d = 50a.

Fig. 4. Densité spectrale Iβ (q, {θ, γ, d}) mesurée en multiples de (4π)2e2c/a3 (pour θ l’unité est le radian et pour q elle est égale à a−1) pour
d = 50a. Le graphique du bas correspond à γ = 0,3 et celui du haut à γ = 0,7.

Fig. 5. Radiation spectral density Iβ (q, {θ, γ, d}) measured in units (4π)2e2c/a3 (q and θ are measured in units corresponding to a−1 and
radians). First plot (below) relates to γ = 0.7, second—to γ = 0.9 and third—to γ = 0.99, d = 50a.

Fig. 5. Densité spectrale Iβ (q, {θ, γ, d}) pour d = 50a. Les unités sont les mêmes que dans la Fig. 4. Les valeurs de γ sont, de bas en haut,
γ = 0,7, γ = 0,9 et γ = 0,99.
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Fig. 6. Radiation spectral density Iβ (q, {θ, γ, d}) measured in units (4π)2e2c/a3 (q and θ are measured in units corresponding to 10a−1 and
radians). First plot (below) relates to diamond, second—to Si, γ = 0.7, d = 50a.

Fig. 6. Densité spectrale Iβ (q, {θ, γ, d}) pour γ = 0,7 et d = 50a. Les unités sont les mêmes que dans la Fig. 3. Le graphique du bas correspond
au diamant et celui du haut à Si.

upon the layer thickness within the considered approximation qd � 1 . Due to condition (8) the dependency Iβ(θ) is
left defined in a gradually shrinking range of θ values as γ increases (see Fig. 5). It also takes a monotonous character.
Spectral density of radiation drops abruptly at θ → arcctg 1/γ .

4. Conclusions

The present work deals with polaritons excited by field of a charged particle moving in an ultrathin diamond-like
crystalline layer. Results concerning the intensity of the secondary electromagnetic radiation (being the flashing po-
laritons) were obtained. This may provide a way to solve one of the problems of detecting of particles (see, e.g., [12]).
Similar problems arise when studying the influence of charged particles (e.g., proton ‘solar wind’) bombarding the
surface layer of a semiconductor instrument (solar cells). Sustainable working of an installation applicable under the
irradiation is then possible only at conservation of the material functional characteristics.
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