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Abstract

We consider the electromagnetic scattering problem of an inhomogeneous obstacle. The methodology applied combines a vol-
ume finite element method with a boundary integral method. Both are numerically solved in an efficient way and coupled with a
domain decomposition method. The main ingredients are: domain decomposition method with Després’s transmission conditions
and concentric subdomains, Després’s integral equations, fast multipole method, and a parallel sparse direct solver. Numerical re-
sults on different inhomogeneity and complex geometries are presented. To cite this article: K. Mer-Nkonga et al., C. R. Physique
7 (2006).
© 2006 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Une stratégie de résolution d’un problème de diffraction électromagnétique à haute fréquence en formulation mixte.
Notre but est de résoudre le problème de la diffraction électromagnétique par un obstacle hétérogène. La méthode que nous
proposons couple une formulation volumique discrétisée par éléments finis avec une méthode intégrale surfacique. Ces deux
formulations sont résolues numériquement par des méthodes efficaces et sont couplées à l’aide d’une méthode de décomposition
de domaines. Les ingrédients principaux utilisés sont : la décomposition de domaines avec conditions de transmission de Després
et des sous-domaines concentriques, les équations intégrales de Després, la méthode multipôle rapide, et enfin un solveur direct
creux parallèle. Nous présentons des résultats obtenus pour différentes hétérogénéités sur des géométries complexes. Pour citer cet
article : K. Mer-Nkonga et al., C. R. Physique 7 (2006).
© 2006 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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Version française abrégée

Le calcul de la diffraction d’une onde électromagnétique à haute fréquence, par un obstacle hétérogène, est un
problème très coûteux. Pour réaliser ce type de simulation avec un coût raisonnable, un code de calcul a été développé
au CEA CESTA (code Odyssee), basé sur un couplage de méthodes et de solveurs originaux. Les méthodes ont été
choisies selon des critéres de précision et de robustesse, et l’efficacité a été optimisée par des méthodes et des solveurs
rapides, et par la parallélisation.

Pour prendre en compte d’une part l’obstacle et d’autre part le domaine de propagation infini, la modélisation du
problème de diffraction est basée sur un couplage d’une discrétisation éléments finis des équations de Maxwell à
l’intérieur du domaine hétérogène, et d’une équation intégrale posée sur la frontière extérieure à ce domaine.

Le couplage est réalisé par la méthode de décomposition de domaines de Després [2] ; les sous-domaines consi-
dérés ici sont concentriques (en « pelures d’oignons ») et on utilise un algorithme de type Gauss–Seidel relaxé où
les sous-domaines sont résolus successivement du sous-domaine intérieur au sous-domaine extérieur [3,5,4]. cette
configuration des sous-domaines permet d’accélérer la convergence.

L’équation intégrale considérée est l’équation intégrale de Després [6,7] ; cette équation a de bonnes propriétés
de précision et de robustesse, en particulier par rapport à la convergence itérative. Le système est résolu par deux
gradients conjugués imbriqués ou par un GMRES préconditionné. Les produits matrice-vecteurs sont accélérés par
une méthode multipôle multiniveaux [8–10].

Dans les domaines intérieurs, les systèmes sont résolus par méthode directe parallèle à l’aide de la chaîne logicielle
EMILIO, qui inclut le solveur PaStiX [11,12].

Les principales caractéristiques des méthodes considérées sont développées et des résultats numériques sur des
objets complexes et de grande taille sont présentés.

1. Introduction

The numerical treatment of the scattering of an electromagnetic wave at high frequency by an inhomogeneous
obstacle is very costly in terms of computational time and memory requirements. For this purpose, a coupling of
original methods and solvers have been achieved using a numerical software, Odyssee, developed at CEA/CESTA.
Our numerical strategy is guided by arguments of accuracy and robustness; moreover, the efficiency is improved by
fast methods and solvers, and by parallelization. To take into account the inhomogeneous obstacle, together with the
infinite domain of propagation, the modelling of the diffraction problem is based on a coupling of a finite element (FE)
discretization of Maxwell’s equations, and a Boundary Element Method (BEM) written on a boundary surrounding
the inhomogeneous obstacle. The coupling of both formulations is achieved using a domain decomposition method
(DDM).

The DDM is particularly attractive for the solution of a large problem: it is decomposed into several coupled sub-
problems that can be solved independently, thus reducing considerably the memory storage requirements. Two classes
of methodologies may be identified. In the first (see, e.g., [1]), no iterations are required but the solutions may not be
unique on account of the fact that these subproblems generally involve Dirichlet or Neumann boundary conditions.
Methodologies of the second class [2–5] are based on an iterative DDM originally proposed in [2]: the fields in two
adjacent subdomains are connected by a mixed boundary condition, termed transmission condition (TC), that ensures
the uniqueness of the solutions and their convergence to the one of the original problem. If a particular, ‘onion-like’,
partition of the computational domain into concentric subdomains circumscribing the object is performed, then the
efficiency of the TCs is improved and, consequently, the number of iterations is reduced. In this case, a large num-
ber of redundant subproblem solutions are performed if the original Després’s algorithm is employed, and these are
suppressed if this algorithm is modified appropriately [3].

Scattering from a stealthy object, the bistatic Radar Cross Section (RCS) of which generally exhibits a very large
angular dynamic range, can be accurately calculated only if an exact radiation condition, such as the EID (équation
intégrale de Després) [6,7], is prescribed on the outer boundary of the whole computational domain. The EID is
(weakly) coupled to the PDE formulation defined inside the outermost subdomain through the TC, so that the PDE
and EID systems are solved independently at each DDM iteration, thus reducing considerably the complexity of the
original problem [5,4]. In addition, since the matrices that are to be inverted in the EID are all Hermitian positive defi-
nite, the EID systems can be efficiently solved via a very simple double conjugate gradient (two imbricated conjugate
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gradients) algorithm where the matrix–vector product can be further accelerated, in conjunction with considerable
savings in memory, through the use of the MLFMA [8–10].

The corresponding numerical software is parallelized, each of the subproblems being solved successively. In the
interior subdomains, the FE systems are solved with parallel sparse direct methods, using the software processing
chain EMILIO (which includes the parallel sparse direct solver PaStix from INRIA) [11,12]. PaStix performs high
performance sparse supernodal LDLt or LLt parallel factorization without pivoting for large sparse symmetric positive
definite systems, and sparse supernodal LU parallel factorization with static pivoting for non-symmetric matrices
having a symmetric pattern.

The main features of each method are given here, and numerical results with complex and large objects are pre-
sented.

2. A FE/BEM coupling with domain decomposition

Let Ω be a bounded domain with boundary Γ , and Ω∞ = R3 \ Ω . We consider the electromagnetic field (E,H)

scattered by Ω . In the interior domain Ω , the relative electric permittivity ε and magnetic permeability μ can be
anisotropic and variable functions, while in the exterior domain Ω∞ we assume that ε = μ = 1. The interior domain
Ω is subdivided into P concentric subdomains Ωi : Ω = Ω1 ∪ Ω2 ∪ · · · ∪ ΩP , with ∂Ωp = Σp−1 ∪ Σp for p =
1, . . . ,P , where Σp = ∂Ωp ∩ ∂Ωp+1 and ΣP = ∂ΩP ∩ ∂ΩP+1(= ∂Ω∞) = Γ . Σ0 is the innermost surface of the
computational domain on which a Leontovich boundary condition is prescribed. It is important to note that ε and μ

may be discontinuous at the interfaces between the subdomains. The assumed (and suppressed) time dependence is
exp(iωt), and k = 2π/λ = ω/c is the wave number of the incident field (c is the speed of light). Let n̂p denote the
unit normal to Σp exterior to Ωp , and let us define, for q = p − 1,p [13]:

Gout
Ωp,Σq

= n̂q × (Ep × n̂q) − 1

ik
(μ−1∇ × Ep) × n̂out

q

Gin
Ωp,Σq

= n̂q × (Ep × n̂q) − 1

ik
(μ−1∇ × Ep) × n̂in

q

where n̂out
q (resp. n̂in

q ) is the normal to Σq , exterior (resp. interior) to Ωp . We consider the following domain decom-
position problem, with Després’s like transmission conditions [2]:

Interior subdomains:⎧⎨
⎩

k2ε(x)Ep(x) − ∇ × (
μ−1(x)∇ × Ep(x)

) = 0, ∇ · (εE) = 0, x ∈ Ωp

n̂q × (Ep × n̂q) − 1

ik
(μ−1∇ × Ep) × n̂in

q = Gin
Σq

on Σq, for q = p − 1,p
(1)

Exterior subdomain:⎧⎨
⎩

ikE(x) − ∇ × H(x) = 0, ikH(x) + ∇ × E(x) = 0, x ∈ Ω∞
n̂P × (EP × n̂P ) + H × n̂P = Gin

ΣP
on ΣP , lim|x|→∞

(
(H × x̂) × x̂ − E × x̂

) = o

(
1

r

)
(2)

Interior problems are solved using a variational formulation of (1) and a discretization with H(rot) edge finite ele-
ments, and the exterior problem is solved using Després’s Integral Equation formulation (Section 3), discretized with
H(div) edge finite elements.

The (relaxed) DDM algorithm is defined as follows [3]. For p = 1, . . . ,P + 1 and at iteration l, solve problem P l
p:

⎧⎪⎨
⎪⎩

El
p is the solution of the discrete variational problem in Ωp with boundary conditions:

(Gin
Σp−1

)l = (Gout
Ωp−1,Σp−1

)l

(Gin
Σp

)l = αl(G
in
Ωp,Σp

)l−1 + (1 − αl)(G
out
Ωp+1,Σp

)l−1, for p � P with α1 = 0, αl ∈ [0,1/2], l � 2

In Gin and Gout, the tricky computation of ∇ × E on the interfaces is avoided if these terms are computed recursively
[3] (the corresponding complete algorithm is given in [5]). When this algorithm is employed, the number of redundant
solutions of problems P l

p that are being suppressed in Després’s original one and yield identical values for E in Ωp+1

is equal to (P + 1)2 + (P + 1)(l − 2) when l � P + 1 [3]; note that the solution in Ω1 is affected by the radiation
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condition on ΣP only if l � P + 1. For the continuous problem, the convergence of this algorithm has been proved
in [5]. Also, it has been shown [13] that the DDM algorithms reduce to particular iterative solutions of a more global
linear system, defined for the whole computational domain Ω and where the unknowns are the quantities Gin, Gout

defined on each side of the interfaces. In this approach, Després’s (resp. the above) algorithm may be viewed as a kind
of Jacobi (resp. Gauss–Seidel) iterative solution of this global system.

For the discrete problem, it can be shown that the algorithm converges by using the interface problem formalism
with scattering operators Sp :Gin 	→ Gout of [13], which are shown to be contractions. The result is not classical for
the operator S∞ of a discretized integral equation. Indeed, it can be shown that the operator S∞ of the discretized
EID is a contraction: if Gin = Et + H × n = −J + n × M,Gout = Et − H × n = −Gin + 2n × M (see Section 3 for
notations), then we have:

‖S∞Gin‖2 = ‖Gout‖2 + 2

∥∥∥∥A∞
(

J

M

)∥∥∥∥
2

Z

� ‖Gin‖2

where ‖γ ‖2
Z = ∫

S2∼ |γ (ŝ)|2 and
∫
S2∼ is used for integrals computed with a numerical quadrature.

3. Després’s integral equations and the fast multipole method

3.1. Després’s integral equations

The integral equations considered to model the exterior problem with a Léontovitch type Impedance Boundary
Condition (IBC) on Γ , have been established by Després [6], considering the minimization of a quadratic functional
with constraints, over the outgoing and incoming solutions of Maxwell’s equations. Later, a paper by Collino and
Després [7] established a relationship between Després’s Integral Equations (EID) and standard formulations like
EFIE and CFIE. Indeed, the EID are based on a particular combination of the Stratton-Chu representation formulae
with the IBC on Γ , a decomposition of the Green kernel in real and imaginary parts, a symmetric positive operator for
the imaginary part, and new unknowns V = (J ′,M ′) (the Lagrangian multipliers of the minimization problem) which
satisfy for the continuous problem V = σ(J,M) = σ(n × H |Γ ,−n × E|Γ ) where σ is some constant. The equations
obtained then read:(

(1 + β)I + (A∞)∗A∞ −T∗ + iβI

T − iβI βI + (A∞)∗A∞
)(

U

V

)
+ NRU =

(
G

0

)

where

U =
( √

iJ√
i−1M

)
, T =

(
Tr Kr − 1

2 n×
Kr − 1

2 n× Tr

)
, (A∞)∗A

∞ =
(

Ti Ki

Ki Ti

)

A∞U(ŝ) = a∞(u1, ŝ) − iŝ × a∞(u2, ŝ), a∞(u, ŝ) = ik

4π

∫
ΣP

ŝ × (
u(x) × ŝ

)
e−ikx.ŝ dΣP (x)

Tr , Kr (resp. Ti , Ki ) are the real part (resp. imaginary part) of classical integral operators of Stratton–Chu repre-
sentation formulae. We have NR = 0 if the reflection coefficient R = (Z − 1)/(Z + 1) = 0, or Z = 1, which is the
case of the transmission condition in (2). Considering new unknowns X = (X+,X′+,X−,X′−) where (X+,X−) =√

i(u2 − u1, u2 + u1) = (M − iJ,M + iJ ), one can obtain two weakly coupled systems, uncoupled when R = 0:(
A+ N+
N− A−

)
X = G, where A± =

(
I + D± B±
−BH± D±

)
and N± =

(
R(I ± in × I ) 0

0 0

)
(3)

where D± = Ti ±Ki is symmetric positive and B± = (Tr ±Kr ± 1
2n×). This latter formulation is used for the exterior

problem (2). System (3) is discretized using the Nédélec or RWG edge-based finite elements.

3.2. Iterative solution of the EID

3.2.1. Solution with a double conjugate gradient
In the case of the transmission condition in (2) between subdomains ΩN and Ω∞, for which R = 0, systems with

(X+,X′+) and (X−,X′−) are uncoupled. The system with A+ (resp. A−) can be solved independently by employing
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two imbricated solvers with Hermitian positive definite matrices. An efficient iterative solver—a double conjugate
gradient—is then used. Systems solved by the internal and external CG have a small condition number, slowly in-
creasing with the wave number, as is shown theoretically in [7] for spherical scatterers (see Section 5 for complex
numerical cases).

In the case of a monostatic RCS calculation, we have extended the CG method to the case of multiple right hand
sides, following the construction of the MGCR by Soudais [14], and applied it to the context of the double conjugate
gradient.

3.2.2. Solution with a preconditioned flexible GMRES
Problems where the materials can be modeled by an impedance boundary condition prescribed on the outermost

boundary of object can be solved by employing solely an integral equation formulation. This implies that R �= 0, in
which case both systems in X+, X− are coupled and a third level of iteration is needed (e.g., a Jacobi method). Then,
it may be more efficient to solve the global EID system (3) with a more general iterative method. We have considered
a preconditioned flexible GMRES [15]. The preconditioning matrix is obtained using an approximation of matrices
A±, in the form:

Ã± =
(

Diag(I + D±) B̃±
−B̃H± Diag(D±)

)

where B̃± is a sparse approximation of B±. We have considered for this approximation the matrix of near interactions
of the FMM (see next section). At each iteration of FGMRES, the (sparse) system for preconditioning is solved by a
conjugate gradient as in the previous section.

3.2.3. Comparison with other formulations for large size systems
We conclude Section 3.2 with some practical comparisons of the EID with other more classical formulations, first

for the above mentioned FE-IE coupling (R = 0), and then for the more general case where R �= 0 (Léontovitch IBC).
The system size of the EID (4N ) is twice that of the CFIE. For the double CG solution, we have two levels of

iterations, but no preconditioning is needed, and we have theoretical results of convergence. For a general Léontovitch
IBC and a GMRES solution, we have eight matrix–vector products per iteration, since sub-systems with A+ and A−
in (3) are weakly coupled. This is twice that of the classical formulations implemented with the Léontovitch IBC [16].
However, as shown in the next section, the acceleration of the matrix–vector products with the fast multipole method
can be more efficient than the one of matrix–vector products for classical integral formulations.

3.3. Parallel multilevel fast multipole method

The iterative solution of system (3) has a complexity of order O(N2)—the cost of matrix-vector products—which
implies prohibitive costs for large size systems. The Fast Multipole Method (FMM) can than be applied to factorize
matrices D±, B± into products of sparse matrices. The FMM for acoustic or electromagnetic problems accelerates
the calculation of far interactions using a suitable approximation of the Green kernel and a clustering of interaction
points in multipole boxes [17].

The product ZJ is decomposed into near and far interactions: ZJ = (ZJ)near + (ZJ)far. Far interactions are obtained
using an approximation of the integral kernel. For the real part (B±), we use the following approximation: if x − y =
d + X with |d| < |X|, we have:

Gr(x, y) = cos(|x − y|)
4π |x − y| � − k

(4π)2

∫

S2

∼ TL(ŝ,X)eikd·ŝ dωs

where

TL(ŝ,X) =
L∑

(2l + 1)ilyl(kX)Pl

(
X̂ · ŝ)
l=0
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is the transfer function, with yl(u) the spherical Bessel function of the second kind and Pl(θ) the Legendre polynomial
of order l. For the imaginary part (D±) we have:

Gi(x, y) = sin(k|x − y|)
4π |x − y| � k

(4π)2

∫

S2

∼ eik(x−y) dωs

The Multi-Level Fast Multipole Algorithm (MLFMA) is based on an octree and has a numerical complexity of
O(N lnN) [8]. The MLFMA has been applied to the EID for Maxwell’s equations in [9,10]. The global cost of
MLFMA applied to matrices of the EID is less than for classical integral equations [9]: (i) Znear reduces to a real ma-
trix for B± and vanishes for D±; (ii) Multipole to Local translations for D± are needed at only one level (the coarser
one); (iii) The vector far-field FB(ŝ) has at least two components in classical integral methods [18]; it is reduced to a
scalar far-field for the EID.

The algebraic form of MLFMA reads:

ZJ � Z
near

J + V

(∑
l

(Al )T T
l
A

l

)
V

H
J

where products with VH , Al , etc., are made successively (l = Lf , . . . ,Lc are the levels of the octree). The paral-
lelization of MLFMA consists of the parallelization of all these products. For message passing based parallelization,
it is based on a load-balanced distribution of multipole boxes on processors and overlapped communications during
the aggregation (upward step Al), disaggregation (downward step (Al )T ) and translation step Tl . We have obtained
an efficiency of 73% on 40 processors for the Dassault-Aviation Cetaf with 5 millions of unknowns, which is rather
similar to the efficiency obtained in [19].

4. Sparse direct solver EMILIO

Solving large sparse symmetric positive definite systems of linear equations is a crucial step in our application
described above (Odyssee), as in many scientific and engineering applications. Consequently, many parallel formula-
tions for sparse matrix factorizations have been studied and implemented. For our specific needs, we have developed
(in collaboration with INRIA’s research project: ScAlApplix) an industrial, robust and versatile software: EMILIO
[12]. The goal of this software is to give efficient solution to the problem of the parallel solution of large sparse lin-
ear systems by direct methods (especially Cholesky–Crout factorization A = LDLt for symmetric matrices). In fact,
software of the INRIA’s project is called PaStiX [11] and its industrial version is called EMILIO, which includes in
addition algorithms for the parallel assembly of the matrix in the context of the finite element method. In order to
achieve efficient parallel sparse factorization, three pre-processing steps are required:

– Ordering. The ordering step computes a symmetric permutation of the initial matrix A such that the factorization
process will exhibit as much concurrency as possible while incurring low fill-in. In our software, we use a tight
coupling of the Nested Dissection and Approximate Minimum Degree (AMD) algorithms. The partition of the
original graph into supernodes is achieved by merging the partition of separators computed by the Nested Dis-
section algorithm and the supernodes amalgamated for each subgraph ordered by Halo Approximate Minimum
Degree.

– Block symbolic factorization. The block symbolic factorization step determines the block data structure of the
factorized matrix L associated with the partition resulting from the ordering step. This structure consists of N

column blocks, each of them containing a dense symmetric diagonal block and a set of dense rectangular off-
diagonal blocks. One can efficiently perform such a block symbolic factorization in quasi linear memory space
and computation time.

– Block repartitioning and scheduling. The block repartitioning and scheduling step refines the previous partition
by splitting large supernodes in order to exploit concurrency within dense block computations, and which maps
the resulting blocks onto the processors.

Concerning the parallel stage of the software, the three main steps are:
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– Parallel assembly. The parallel assembly step, which consists in computing the elementary matrix of each element
and adding this elementary matrix to the global matrix A. Since the global matrix is distributed, the parallel
assembly is guided by two distributions: the distribution of the column blocks of the matrix (described above)
and the distribution of the elements of the mesh (distribution computed just after the pre-processing steps). Every
processor computes the elementary matrices of the elements assigned to it, and can add immediately the new
coefficients in its local part of the global matrix (if the unknowns of the element are entirely local) or send
contributions to the processors involved by the updates of the matrix.

– Parallel sparse LDLt factorization without pivoting. We use this factorization in order to solve sparse systems
with complex coefficients. The parallel solver is based on a supernodal fan-in approach and is fully driven by the
algorithm which computes an efficient static scheduling of the block computations.

– Parallel solution of the system. The parallel solution of the system is also fully driven by the static scheduling
step.

Therefore, these parallel steps have been designed to achieve a good computation time scalability and to reduce the
memory overhead arising in the direct parallel methods. Moreover, in the context of SMP-nodes architectures, to fully
exploit shared memory advantages, a relevant approach is to use a hybrid MPI-threads implementation of the solver.
In this way, the communications within a SMP node can be advantageously substituted by direct access to shared
memory between the processors in the SMP node using threads. In an earlier investigation, we have performed with
PaStix a computation with some 10 million unknowns (corresponding to the size of one subdomain) on 64 processors
IBM Power4 with 2 SMP nodes (32 processors per node), 64 Gigabytes RAM per node. The factorized matrix has
6.7 × 109 non-zero terms and has been factorized with 43 Tera operations in 400 seconds.

Our current research opens up new prospects of bridging the gap between direct and iterative methods. The goal is
to provide a method which exploits the parallel blockwise technique used in the framework of high performance direct
solvers. We want to extend these high-performance algorithms to develop robust parallel incomplete factorization
based preconditioners for iterative solvers such as GMRES or Conjugate Gradient solvers.

5. Numerical results

For the test cases presented, simulations are performed on the terascale supercomputer of CEA (SMP nodes—
Compaq AlphaServer ES45, processors EV68 at 1 GHz).

The first test case is a sphere-cone with different layers of materials (Fig. 1). The 3-dimensional mesh is composed
of 6 subdomains, and some subdomain interfaces intersect a layer of material. There are three different materials in the
volume, with characteristics: (ε1 = 2, μ1 = 1), (ε2 = μ2 = 1), (ε3 = 1 + i, μ3 = (1 + i)/2). The total amount of DoF
is more than 10 million in the computational domain, and the biggest subdomain reaches 2 million DoFs. The number
of elements on the outer boundary is 145 000. Only 7 global iterations of the DDM algorithm give us a solution with
a good accuracy. We have used the sparse direct solver for each subdomain and the double conjugate gradient for the
EID. A mean value of 30 iterations is needed at each DDM iteration for the EID. This case runs with 64 processors
in 4 hours. On this example, we can see the efficiency of the direct solver PaStix: for problem sizes up to 2 million
DoFs, we need less than 300 seconds to perform the solution in each subdomain. In Fig. 1 we compare the bistatic
Radar Cross Section at 2 GHz obtained with Odyssee and that obtained with a 2D axi-symmetric software (SHFC).
The 2-D mesh used for SHFC is shown in Fig. 1. The incident wave is perpendicular to the axis of the cone. The 2
curves match perfectly for the 2 polarizations of the incident waves.

The geometry of the second test case has the form of a stopper (Fig. 2). The purpose of this test case is to see
the impact of the concave interfaces with singularities on the convergence of the DDM iterative algorithm [4]. The
3-dimensional mesh is composed of 4 subdomains, with a specific material in each subdomain: ε1 = 1 + i, ε2 = 2,
ε3 = 0.71(1 + i), ε4 = 0.5(1 + i), μi = εi . An impedance boundary condition Z = 1 is imposed on the boundary. The
total amount of DoFs is 5.63 million in the computational domain. The number of elements on the outer boundary
is 120 000. 7 global iterations of the DDM algorithm give us a solution with a good accuracy. We have used the
sparse direct solver for each subdomain and the double conjugate gradient for the EID. A mean value of 26 iterations
is needed at each DDM iteration for the EID. This case runs with 64 processors in 2 hours and 20 min. In Fig. 2
we compare the bistatic Radar Cross Section at 1 GHz obtained with Odyssee and the one obtained with a 2D axi-
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Fig. 1. Sphere-cone: 3-D and 2-D meshes, bistatic RCS (dB m2) with Odyssee and SHFC.

Fig. 2. Stopper: 3-D and 2-D meshes, bistatic RCS (dB m2) with Odyssee and SHFC.

symmetric software (SHFC). The 2-D mesh used for SHFC is shown in Fig. 2. The incident wave is perpendicular to
the axis of the cone. The 2 curves match well for the 2 polarizations of the incident waves.

6. Conclusion

We have presented a numerical strategy for electromagnetic scattering which efficiently couples a finite element
discretization of the inhomogeneous part of the domain and a boundary integral method for the homogeneous un-
bounded exterior domain. The numerical results that have been presented illustrate the accuracy achieved on the RCS,
and the efficiency of the iterative methods associated with the DDM and the EID. Moreover, the numerical complexity
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has been further reduced by implementing a parallel multilevel fast multipole method for the iterative solution of the
EID, together with an appropriate parallel sparse direct solver for the solution in the inner subdomains. Problems
involving up to 10 million unknowns have been solved with six subdomains on 64 processors. In order to increase the
numerical capabilities of the software, we have to further reduce the global cost of the EID solution, and to implement
an hybrid parallelization that couples message passing and multi-threading. It is only in this context that computations
involving 100 million unknowns with ten subdomains may be considered.
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