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Abstract

Systems whose potential energies consists of pieces that scale as r−2, together with pieces that scale as r2, show no violent
relaxation to Virial equilibrium, but may pulsate at considerable amplitude for ever. Despite this pulsation these systems form
lattices when the non-pulsational energy is low, and these disintegrate as that energy is increased. The quasi specific heats show
the expected halving as the ‘solid’ is gradually replaced by the gas of independent particles. The forms of the lattices are described
here for N � 20 while they become hexagonal close packed for large N . In the larger N limit, a shell structure is formed. Their
large N behaviour is analogous to a γ = 5/3 polytropic gas with a quasi-gravity such that every element of fluid attracts every
other in proportion to their separation. To cite this article: C. Pichon, D. Lynden-Bell, C. R. Physique 7 (2006).
© 2006 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Fusion de réseaux en équilibre d’oscillations perpétuelles. Les systèmes dont l’énergie potentielle est constituée d’une com-
posante en r−2 et d’une composante en r2 ne presentent pas de relaxation violente vers l’équilibre du viriel mais vont osciller
fortement indéfiniment. En dépit de ces pulsations, de tels systèmes forment un réseau quand l’énergie non oscillatoire reste faible,
et se désintegrent si elle augmente. Leurs quasi chaleur spécifique est divisée par deux quand le gaz de particules indépendantes
remplace la phase solide. La forme du crystal est décrite ici pour N � 20. Dans la limite des grands N le réseau se stratifie en
coquilles suivant un motif hexagonal compact. Pour citer cet article : C. Pichon, D. Lynden-Bell, C. R. Physique 7 (2006).
© 2006 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction

Astrophysics has provided several new insights into ways statistical mechanics may be extended to cover a wider
range of phenomena. Negative heat capacity, bodies which get cooler when you heat them, were first encountered by
Eddington [1] and when such bodies were treated thermodynamically by Lynden-Bell and Wood [2], what seemed
natural to astronomers was seen as an apparent contradiction in basic physics to those from a statistical mechanics
background. Even after a physicist, Thirring [3], first resolved this paradox and Lynden-Bell and Lynden-Bell [4] gave
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an easily soluble example, there was considerable reluctance to accept the idea that micro canonical ensembles could
give such different results to canonical ones. Nevertheless, there was still some reluctance, even in 1999 (Lynden-
Bell [5]), though to those working on simulations of small clusters of atoms or molecules, the distinction was well
understood by the early 1990s, see, e.g., Wales [6], Bogdan and Wales [14]. However, by 2005, the broader statistical
mechanics community had embraced these ideas, and emphasized this difference which had been with us for 30 years.
Another area to which statistical mechanics might extend is that of collisionless systems which may be treated as
‘Vlasov’ fluids in phase space. While early attempts at finding such equilibria gave interesting formulae reminiscent
of a Fermi–Dirac distribution, Lynden-Bell [7], there is ample evidence from astronomical simulations that these
equilibria are not reached in gravitational systems. There are also different ways of doing the counting that lead
to different results and recently, Arad and Lynden-Bell [8] gave an example that demonstrates that the concept of
a unique final state determined by a few constants of motion found from the initial state is not realized. Thus the
statistical mechanics of fluids in phase space remains poorly understood, with theory at best loosely correlated with
simulations and experiments. See however Binney [15].

This article is concerned with a third area of non standard statistical mechanics which is restricted to very special
systems, those for which the oscillation of the system separates off dynamically from the behaviour of the rescaled
variables that are now scale free. These systems were found as a bi-product of a study which aimed at generalizing
Newton’s soluble N -body problem Lynden-Bell and Lynden-Bell [9] (paper I) and a first skirmish with the statistical
dynamics of the scale free variables despite the continuing oscillation of the scale was given there. Since then, Lynden-
Bell and Lynden-Bell [10], hereafter paper III, have showed that the peculiar velocities of the particles do indeed
relax, as predicted, to a Maxwellian distribution, whose temperature continuously change as (scale)−2. This occurs,
whatever the ratio of the relaxation time to the pulsation period. The peculiar velocities are larger whenever the system
is smaller. The interest of this problem for those versed in statistical mechanics is that there is no longer an energy that
is shared between the different components of motions. The interest for astronomers lies in part because these systems
suffer no violent relaxation to a size that obeys the Virial theorem. Nevertheless, despite the continual pulsation of
such systems the rescaled variables within them do relax to a definite equilibrium.

In this article, we demonstrate that such systems can form solids (albeit ones that pulsate in scale). We study in
Section 3 their behaviour in the large N limits and show that they stratify into shells. By appealing to an analogy with
a γ = 5/3 gaseous system, we predict their equilibrium configuration and investigate their properties. We also study
the phase transition as these structures melt and the corresponding changes in ‘specific heat’. Section 2 derives the
basic formulae for the N -body system and its gaseous analog.

2. Derivation

2.1. The discrete system

We consider N particles of masses mi at ri , i = N and set∑
mi = M,

∑
miri = Mr (1)

and

I =
∑

mi(ri − r)2 = Ma2 (2)

In earlier work we showed both classically (paper I [9]) and quantum mechanically (paper II [11]) that if the potential
energy of the whole system was of the form:

V = W(a) + a−2W2(â) (3)

where â is the 3N -dimensional unit vector

â = N−1/2

a
(r1 − r, r2 − r, . . . , rN − r) (4)

then the motion of the scaling variable a separates dynamically from the motions of both r and the r̂ so those motions
decouple. If we ask that V be made up of a sum of pairwise interactions then we need

W = 1
ω2Ma2 = V−2 (5)
2
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where ω2 is constant, and

a−2W2(â) = V2 =
∑∑

i<j

K2|ri − rj |−2 (6)

Let us now see why potentials for V2 + V−2 are so special by looking at the Virial Theorem and the condition of
Energy conservation. Take the more general potential energy to be a sum of pieces Vn where each Vn scales as r−n

on a uniform expansion. n can be positive or negative. Then V = ∑
Vn. For such a system the Virial Theorem reads:

1

2
Ï = 2T +

∑
nVn = 2E +

∑
(n − 2)Vn

Now we already saw that V−2 ∝ I and V2 clearly drops out of the final sum because n − 2 is zero. Thus for potentials
of the form V = V−2 + V2

1

2
Ï = 2E − 4V−2 = 2E − 4ω2

(
1

2
I

)
(7)

so I vibrates harmonically with angular frequency 2ω about a mean value E/ω2 and shows no Violent Relaxation (1).
Multiplying by 4İ and integrating

İ 2 = 8EI − 4ω2I 2 − 4M2L2

where the last term is the constant of integration chosen in conformity with Eq. (8). Now recall from Eq. (2) that
I = Ma2 so we find on division by 8M2a2 that

ȧ2

2
+ L2

2a2
+ 1

2
ω2a2 = E

M
(8)

which we recognise as the specific energy of a particle with specific ‘angular momentum’ L moving in a simple
harmonic spherical potential of ‘frequency’ ω. In such a potential a vibrates about its mean at ‘frequency’ 2ω.

Note here that the γ = 5/3 gas has a term 3(γ − 1)U = 2U in the Virial theorem since its internal energy, U ,
scales like r−2 so it can be likewise absorbed into the total energy term. Thus if every elementary mass of such a gas
attracted every other with a force linearly proportional to their separation, then that system too would pulsate eternally,
as described above in Eq. (7).

The aim of this article is to demonstrate the existence of perpetually pulsating equilibrium lattices and to study the
changes as the non-pulsational ‘energy’ ML2/2 is increased. We show that the part of the potential left in the equation
of motion for the rescaled variables is the purely repulsive V2. It is then not surprising that the lattice disruption at
higher non-pulsational energy occurs quite smoothly without any latent heat and the solid phase appears to give way
to the gaseous phase of half the specific heat without the appearance of a liquid with another phase transition. The
hard sphere solid has been well studied and behaves rather similarly.

2.1.1. The equations of motion and their separation
Although the work of this section can be carried out when the masses mi are different (see paper I), we here save

writing by taking mi = m and so M = Nm. We start with V of the form (3). The equations of motion are

mr̈i = −∂V/∂ri (9)

Now V is a mutual potential energy involving only ri − rj so
∑

i ∂V/∂ri = 0 and summing the above equation for
all i we have

d2r/dt2 = 0, r = r0 + ut

Henceforth we shall remove the centre of mass motion and fix the centre of mass at the origin so r = 0. Now the
3N -vector a can be rewritten in terms of its length a and its direction â (a unit vector). Eq. (9) takes the form

mä = −∂V/∂a = −W ′â + 2a−3W2â − a−3∂W2/∂ â (10)

where we have used the form (3) for V . Notice that when W2 is zero (or negligibly weak) all the hyperangular
momenta of the form m(rαṙβ − rβ ṙα) (the components of L) where α �= β run from 1 to 3N , are conserved!
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Taking the dot product of (10) with Na eliminates the ∂W2/∂ â term which is purely transverse so we get the Virial
Theorem in the form:

1

2

d2

dt2

(
Ma2) = M ȧ2 − a

dW

da
− 2a−2W2 = 2E − 1

a

d

da

(
a2W

)
(11)

Multiplying by 1
2 d(a2)/dt and integrating Eq. (11) yields

1

2
Ma2ȧ2 = Ea2 − Wa2 − 1

2
ML2

where the final term is the constant of integration. On division by a2

M

2

(
ȧ2 + L2

a2

)
+ W(a) = E (12)

which is the energy equation of a particle of mass M moving with ‘angular momentum’ L and energy E in a hyper-
spherical potential W(a). Now

ä = d

dt

(
ȧâ + a ˙̂a) = äâ + 1

a

d

dt

(
a2 ˙̂a)

(13)

and from (12)

ä = L2

a3
− 1

M
W ′(a) (14)

Inserting these values for ä and ä into Eq. (10) we obtain on simplification, multiplying by a3;

Ma2 d

dt

(
a2 dâ

dt

)
= 2W2â − ∂W2/∂ â − ML2â (15)

On writing d/dτ = a2 d/dt this becomes an autonomous equation for â(τ ). Since (ȧ)2 = (a ˙̂a + ȧâ)2 = a2 ˙̂a2 + ȧ2 we
may write the energy in the form

E = 1

2
M

[
1

a2

(
dâ
dτ

)2

+ ȧ2
]

+ V = 1

2
M

(
ȧ2 + L2

a2

)
+ W

so

1

2
M

(
dâ
dτ

)2

+ W2 = 1

2
ML2 (16)

This shows that the only ‘potential’ in the hyper angular coordinates’ motion is W2(â) and that the effective hyper
angular energy in that motion is 1

2ML2 (which has the dimension of a2 times an energy). In fact, we showed in papers
I and III that it was this quantity that was equally shared among the hyperangular momenta in the statistical mechanics
of perpetually pulsating systems. Subtracting the radial part of (15) from it gives the equation of motion for â. The
radial part reduces to the d/dτ derivative of Eq. (16).

In terms of the true velocities v1,v2 etc.

dâ
dτ

= a2 d

dt

(
r1

a
,

r2

a
, . . . ,

rN

a

)
= a

(
v1 − ȧ

a
r1,v2 − ȧ

a
r2 etc.

)

so it is the peculiar velocities after removal of the Hubble flow ȧri/a and after multiplication by a that constitute the
kinetic components of the shared angular energy in the angular potential W2(â).

When the 1
2m(dâ/dτ)2 are large enough to escape the potential wells offered by W2/N we get an almost free

particle angular motion of these 3N − 4 components. The −4 accounts for the fixing of the centre of mass and the
removal of ȧ from the kinetic components. If we impose also a prescribed total angular momentum, the number
of independent kinetic components would reduce by a further two transverse components to 3N − 6. However the
peculiar velocities are then measured relative to a frame rotating with angular velocity Ω̃ × a where Ω̃ = I−1 · J. The
constant Lagrange multiplier is no longer Ω̃ but is proportional to a−2 since the inertial tensor, I has that dependence
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in pulsating equilibrium. The Lagrange multiplier is Ω = Ω̃a2 which is constant during the pulsation and the peculiar
velocity is vpi = (vi − ui ) where ui = (ȧri/a + Ω × ri/a

2) see paper III, Eq. (17).1 Hereafter we specialise to the
requirements given by Eqs. (5) and (6).

2.2. The γ = 5/3 analogous gaseous system

When particles attract with both a long range force such as gravity or our linear law of attraction, and a short range
repulsion, the latter acts like the pressure of a gas. Indeed short range repulsion forces only extend over a local region,
and for large N their effect can be considered as pressure since only the particles close to any surface drawn through
the configuration affect the exchange of momentum across that surface. In our case, the local r−3

ij forces come from

the r−2
ij potential which scale as r−2. A barotropic gas with p = ργ has an internal energy that behaves as ργ−1

scaling like r−3(γ−1). The required r−2 scaling gives a γ of 5/3. Thus we may expect strong analogies between a
γ = 5/3 gas with the linear long range attraction and our large N particle systems. However an r−3

ij repulsion between
particles is not of very short range so that the gas is not exactly the same as the large N limit of the particle system.
The particle equilibria have the inverse cubic repulsion between particles balancing the long range linear attraction,
which can be exactly replaced by a linear attraction to the barycentre proportional to the total mass. For the gas, it is
the pressure that balances this long range force.

2.2.1. Mass profile of the static fluid
The equilibrium of such a gas in the presence of a long range force, −G
Mr (where MG
 ≡ ω2) is given by

1

ρ

dp

dr
= −G
Mr (17)

Setting p = κρ5/3, with ξ ≡ r/rm, this yields

ρ = ρ0(1 − ξ2)3/2 (18)

where r is from now on the 3D configuration space vector measured from the centre of mass of the system and r its
modulus, with rm its value at the edge.

Integrating the density predicts a mass profile, M(ξ),

M(ξ) = πM

12

(
3 arcsin(ξ) − ξ(8ξ4 − 14ξ + 3)

√
1 − ξ2

)
(19)

and M is the total mass. In practice for the discrete system of Section 2.1, there is a marked layering at equilibrium,
and the ‘pressure’ and the mass profiles depart from their predicted profiles as each monolayers of particles is crossed.
See Section 3 and Fig. 3.

The relationship between the polytropic coefficient, κ , and K2, the strength of the repulsion (entering W2 in Eq. (6))
is found by identifying the internal energy of the corresponding gas to the potential energy of the 1/r2

ij coupling. In
short, the former reads for a γ = 5/3 fluid with density profile equation (17):

V2 = −
rm∫

0

κγ

γ − 1
ρ2/34πr2ρ dr = −25π2

128
κρ

5/3
0 r3

m (20)

while the latter reads:

V2 = −K2

2

∫ ∫ rm∫
0

4πr2ρ(r)4πr ′2ρ(r ′)dμdr dr ′

r2 + r ′2 − 2μrr ′ = −9π4

640
ρ2

0r4
mK2 (21)

Identifying Eqs. (20) and (21) gives (using M = ρ0r
3
mπ2/8)

κ = 18

125
π4/3M1/3K2 (22)

1 The above definition of u is correct. That given under Eq. (18) of paper III has −Ω for Ω in error as may be seen from Eq. (17).
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3. Applications: crystalline forms of pulsating equilibria

Let us now study the discrete form of rotating pulsating equilibria that the systems described in Section 2. Let us
first ask ourselves what would the final state of equilibrium in which N particles obeying Eq. (9) would collapse to, if
one adds a small drag force in order to damp the motions.

3.1. Numerical setup

A softening scale, s, of 0.05 was used so that the effective interaction potential reads

ψ12 = r2
12

2
+ 1

r2
12 + s2

(23)

having rescaled both the repulsive and the attractive component of the potential to one by choosing appropriately the
time units and the scale units. We computed the total energy of the cluster, together with the invariant, mL2/2. The
relaxation towards the equilibrium should be relatively smooth in order to favor that the system collapses into a state
of minimal energy. We consider here an isotropic force, proportional to −αv.

3.2. Static equilibrium

Fig. 1 displays the first few static equilibria, while Table 1 lists the first 18, which includes in particular the regular
isocahedron for N = 12. Strikingly, roughly beyond this limit of about N = 20, there exists more than one set of
equilibria for a given value of N , and the configuration of lowest energy is not necessarily the most symmetric. The
overall structure is not far for hexagonal close packed, but with a radial layering.

3.2.1. Large N limit
Fig. 3 displays both the mean mass profile and the corresponding section though N � 512 lattices; both the mass

profile and the sections are derived while stacking different realisations of the lattice and binning the corresponding

Fig. 1. A few set of remarkable equilibria; for left to right and top to bottom: n = [5] two tetrahedra joined at their bases, [6] two pyramids joined
by bases, [8] two twisted squares, [12] isocahedron, i.e., two skewed pentagonal pyramid, [13] isocahedron + center, [14] hexagonal + pentagonal
pyramid + center, [17] hexagonal pyramid over hexagon over triangle + center, [18] two pentagonal pyramid + twisted pentagon center.
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Table 1
First 18 configurations of equilibria. A few of them are shown on Fig. 1.
Note that as the number of elements increases, the final configurations
need not be unique

5 Two tetrahedra joined on a face
6 Two pyramids joined at their base
7 Two pentagonal pyramids joined at their base
8 A twisted cube
9 Three pyramids sharing the edge of a base

10 Two twisted pyramids
11 Two twisted pyramids and one center
12 Isocahedron, i.e., two skewed pentagonal pyramids
13 Isocahedron and one center
14 Hexagonal and pentagonal pyramid and one center
15 Two skewed hexagonal pyramid and one center
16 Pentagonal pyramid and an hexagon and a triangle and one center
17 Hexagonal pyramid over an hexagon over a triangle and one center
18 Two pentagonal pyramid and one twisted pentagon and one center

Fig. 2. An example of large N static spherical equilibrium obeying Eq. (9); here only a given shell is represented for clarity.

density. Note that the inner regions are more blurry as N increases; indeed, the inner layers are frozen early on by the
infall of the outer layers.

3.2.2. Stratification in spherical shells
Given the number density of particles, n(r) ≡ ρ(r)/m, we may compute the total number of particles as

N =
rm∫

0

n(r)4πr2 dr = π2

8
n0r

3
m (24)

where n0 ≡ ρ0/m. If the stratification involves NL layers, given that dr/n−1/3(r) is the fractional increase in layer
number, we have

rm∫
dr

n(r)−1/3
= NL + 1/2 (25)
0
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Fig. 3. Mean mass profile and section though a N = 1024 and N = 512 crystal; The mass profile is derived while stacking different realisations of
the lattice and binning the corresponding density. The shell structure is clearly apparent on these figures.

(where the extra 1/2 accounts for the unique central particle); hence,

NL =
(

π

8
N

)1/3

− 1

2
(26)

Following the same route without integrating out to the outer layer, we may ask ourselves what fraction of the radius,
ξi corresponds to layer i; it will obey:

i + 1/2 =
rmξi∫
0

dr

n−1/3
(27)

Hence

i + 1/2 = 2

π
(NL + 1/2)

[
sin−1 ξi + xi

√
1 − ξ2

i

]
(28)

Conversely, the number of particles, N (� i) within (and including) layer i is given by

N (� i) = 2N

π

[
8

3

(
ξi

√
1 − ξ2

i

)3 + sin−1 ξi − 1

2
ξi

√
1 − ξ2

i

]
(29)

Solving the implicit Eq. (28) for the relative radius ξi of layer i and putting it into Eq. (29) yields the number of
particles within layer i as a function its rank. The radii of the layers, ξirm follows from inverting Eq. (28) for ξi .
Examples of such shells are shown in Fig. 2.
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Fig. 4. Quasi specific heat measured by increase of quasi energy with quasi temperature in units of kN ; the quasi temperature is a2 times the kinetic
energy relative to the time-dependent ‘Hubble flow’, a(t), divided by Nk; the quasi energy is the sum of the quasi kinetic energy plus W2; W2 is
a2 times the repulsive part of the potential energy. During the large amplitude pulsation of the system, the quasi energy is conserved. It is the quasi
energy that is shared between the different components in the statistical equilibrium. Since W2 is only repulsive, the system displays characteristics
similar to a hard sphere gas. Hence there is no latent heat as there are no bonds and therefore no bonds to break. There is a continuous transition
between the cold crystal lattice and the ‘free’ gas.

3.3. Thermodynamics of dissolving crystal

How does the shell structure disappear as a function of temperature increase? Fig. 4 displays the specific heat
measured by the increase of quasi energy with quasi temperature in units of kN ; Here the quasi temperature is a2

times the kinetic energy relative to the time-dependent ‘Hubble flow’ divided by Nk; while the quasi energy is the
sum of the quasi kinetic energy plus W2 given by Eq. (6). During the large amplitude pulsation of the system, the
quasi energy that is shared between the different components in the statistical equilibrium. Since W2 is only repulsive,
the system displays characteristics similar to a hard sphere gas. Hence there is no latent heat, as there are no bonds
and therefore no bonds to break.

4. Conclusion

In this article, we demonstrated that very special systems, those for which the oscillation of the system separates off
dynamically from the behaviour of the rescaled variables, can form solids (albeit ones that pulsate in scale). We studied
their phase transition and the corresponding quasi “specific heat” as these structures melt. As expected, we found that
the heat capacity halve to that of a free gas, but the phase transition appears to occur gradually even at large N .
Although we expected a set or regular and semi regular solids, which we did find for small N , and an hexagonal
close packing of most of the system at larger N , we did not foresee the strong shell structure found. Nevertheless,
we constructed a theory that explained this shell structure once it had been recognized. Another by-product of our
study was that the internal energy of the corresponding barotropic gas scales as ργ−1, i.e., as (scale)−3(γ−1) so that
for γ = 5/3, it scales like (scale)−2. Thus our investigation applies equally to a γ 5/3 gas with a quasi gravity such that
every element of fluid attract every other in proportion to their separation. It is well known, since Newton, that such
attractions are equivalent to every particle being attracted in proportion to its distance to the centre of mass as though
the total mass were concentrated there. Recently, Price and Monaghan [12] used simulations of such systems to test
their smooth particle hydrodynamic codes without knowledge of its connection to the N -body problem discussed here.

Java animations describing the both the static and the pulsating and rotating crystals are found at http://www2.iap.fr/
users/pichon/spin.html and http://www2.iap.fr/users/pichon/lattice.html. In Lynden-Bell et al. [13] a discussion of
such rotating configurations is given and the analogous gaseous model is also extended to rotating fluids.
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