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Abstract

We briefly review the use and the derivation of Generalized Impedance Boundary Conditions (GIBC) in the case of thin dielectric
coatings and in the case of strongly absorbing media, within the context of electromagnetic scattering problem at a fixed frequency.
We then numerically test the validity and accuracy of these boundary conditions in the case of high absorption. A numerical
treatment of the corner singularity is proposed to recover the accuracy of the GIBC for singular geometries. To cite this article:
M. Duruflé et al., C. R. Physique 7 (2006).
© 2006 Published by Elsevier SAS on behalf of Académie des sciences.

Résumé

Conditions d’impédances généralisées d’ordre élevé pour les problèmes de diffraction en électromagnétisme. Nous ef-
fectuons une revue succincte de l’obtention et l’utilisation des conditions d’impédances généralisées (GIBC) dans le cas de
revêtements diélectriques minces et dans le cas d’objets fortement conducteurs. Nous nous plaçons dans le cadre des probèmes de
diffraction d’ondes électromagnétiques en régime harmonique. Nous testons numériquement la validité et la précision de ces condi-
tions aux limites pour le cas de forte conductivité. En présence de géométries comportant des coins, nous proposons un traitement
numérique astucieux afin de garder la même précision que dans le cas de géométries régulières. Pour citer cet article : M. Duruflé
et al., C. R. Physique 7 (2006).
© 2006 Published by Elsevier SAS on behalf of Académie des sciences.
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1. Introduction

The use of Generalized Impedance Boundary Conditions (GIBC) in the mathematical modeling of wave propaga-
tion phenomena has gained a wide attention in recent decades (see for instance [1]). It is applied in electromagnetism
to scattering problems from obstacles that are partially or totally penetrable. The general idea is to replace the use of an
‘exact model’ inside (the penetrable part of) the obstacle by approximate boundary conditions (also called equivalent
or effective conditions) in order to reduce the cost of numerical computations.
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In this article, we shall focus on two types of electromagnetic time harmonic scattering problems involving the
presence of a small length scale. The advantage of the approximate models is to avoid the use of computational
meshes constrained by this small scale.

(1) The scattering of electromagnetic waves by perfectly conducting obstacles coated with a thin layer of dielectric
material. Due to the small thickness of the coating (typically with respect to the wavelength), the effect of the
layer on the exterior field is, as a first approximation, local (see for instance [1–4,19], [5] for the high frequency
limit, [6,7] for periodic coatings and [8,9] for an extension to the time dependent problem).

(2) The scattering of electromagnetic waves by highly conducting materials. In such a case, it is the well-known
skin effect that creates a ‘thin layer’ phenomenon. The high conductivity limits the penetration of the wave to a
boundary layer whose depth is inversely proportional to the square root of its magnitude. Then, here again, the
effect of the obstacle is, as a first approximation, local. The research on effective boundary conditions for highly
absorbing obstacles began with Leontovich [10], then was pursued by Rytov [11] (see also [1]). More recent
investigations, using different approaches, can be found in [12,5].

This article is at the same time a review and a continuation of previous works [9,13,14] that provides a numerical
justification of the use of GIBCs. After having introduced our two model problems in Section 2, we give and compare
in Section 3 the expressions of the GIBCs for each problem and for various orders of approximation (the notion of
order is defined in Section 2). These conditions require smoothness assumptions on the geometry of the obstacle. In
Section 4, we present the principles of the scaled asymptotic-expansions method, that enable us to derive the GIBCs.
Section 5 is devoted to the numerical validation of the obtained GIBCs in the case of the high conductivity. From
the numerical point of view these boundary conditions have the advantage of being variational (Section 5.1) and are
therefore suitable for finite elements type approximations (see also [15] for an integral equation approach). In Sec-
tion 5.2, we numerically verify the theoretical results regarding the order of the GIBC in the case of regular boundaries.
Section 5.3 is devoted to boundaries with corner singularities. We numerically show how the GIBC accuracy can be
deteriorated in this case. We also show how the combination between local mesh refinement and the use of GIBC
restores the accuracy order.

2. Two model problems

Let Ω be an open bounded domain of R
3 with connected complement and regular boundary Γ := ∂Ω , totally or

partly filled by a penetrable material. We are interested in approximating the scattered field in R
3 \ Ω̄ in the situations

where a boundary layer, whose width is small compared to the incident wavelength, is present near Γ . Two typical
situations can be responsible of this boundary layer effect.

(a) Thin coating: in this case the penetrable region is a coating of small width δ (the domain Ωδ , see Fig. 1) bounded
by a perfectly conducting material. The boundary layer here is then due to the smallness of the physical thickness
of the penetrable region.

(b) Highly conducting materials: in this case the penetrable region is the whole domain Ω but due to the high con-
ductivity σ δ , there is a rapid exponential decay of the wave inside Ω (see Fig. 2). The boundary layer here is
then due to the physical properties of the material, its width is proportional to δ := 1/

√
μωσδ , where ω is the

frequency of the incident wave and μ is the relative magnetic permeability.

Fig. 1. Thin layer configuration. Fig. 2. Configuration of highly conducting material.
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In these two situations, the effect of the thin layer on the scattered wave outside Ω can be approximated by the use
of a local boundary condition on Γ (GIBC). If the error between exact and approximated solutions is O(δk+1) than
the GIBC is said GIBC of order k.

Let us assume for simplicity that the exterior domain (R3 \ Ω) is homogeneous and that the time and space scales
are chosen such that the intrinsic impedance is 1 in this medium. We also assume that the time dependence is harmonic
with a frequency ω > 0, i.e., the electromagnetic field is of the form

Eδ(x, t) = Re
{
Eδ(x) exp(iωt)

}
, Hδ(x, t) = Re

{
Hδ(x) exp(iωt)

}
Denoting by (Eδ

e ,H
δ
e ) = (Eδ,Hδ)|

R3\Ω , then

iωEδ
e − curlHδ

e = 0, iωHδ
e + curlEδ

e = 0 in R
3 \ Ω (1)

where this total field can be decomposed into the sum of an incident field (Einc,Hinc) and a scattered one (Eδ
e,s ,H

δ
e,s)

that satisfies the Silver–Müller radiation condition:

lim|x|→∞ x̂ × (E × x̂) − H × x̂ = 0 (2)

uniformly with respect to x̂ := x/|x|. Let n denotes a regular normal field on Γ . Then,

Eδ
e × n = Eδ

i × n, Hδ
e × n = Hδ

i × n on Γ (3)

where (Eδ
i ,H

δ
i ) denotes the electromagnetic field inside Ω . Depending on cases (a) and (b) the equations satisfied

by this field are different. Let μ, ε and σ respectively denote the relative magnetic permeability, the relative electric
permittivity and the conductivity inside Ωδ in case (a) and Ω in case (b). In case (a) these quantities are assumed to
be independent of δ and⎧⎨⎩

(iωε + σ)Eδ
i − curlHδ

i = 0 in Ωδ

iωμHδ
i + curlEδ

i = 0 in Ωδ

Eδ
i × n = 0 on Γ δ

(4)

whereas in case (b) the conductivity depends on δ and is set to σ := σ δ = 1/(μωδ2), and⎧⎨⎩
(

iωε + 1

μωδ2

)
Eδ

i − curlHδ
i = 0 in Ω

iωμHδ
i + curlEδ

i = 0 in Ω

(5)

3. Expression of the GIBCs

We denote by (E
δ,k
e ,H

δ,k
e ) the desired approximation of order O(δk+1) of the exact electromagnetic field (Eδ

e ,H
δ
e ).

It satisfies the standard Maxwell equations in the exterior domain

iωEδ,k
e − curlHδ,k

e = 0, iωHδ,k
e + curlEδ,k

e = 0 in R
3 \ Ω (6)

and is the sum of the incident field (Einc,Hinc) and a scattered one that satisfies the radiation condition (2). The
interface conditions on Γ and Maxwell equations inside Ω satisfied by the exact solution are replaced by a GIBC of
order k on Γ that can be written in the form

Eδ,k
e × n + i(μω)Dδ,k

(
n × (Hδ,k

e × n)
) = 0 (7)

where n denotes the normal to Γ directed to the interior of Ω of and where Dδ,k is a local boundary operator acting on
tangential vector fields on Γ . The order of this operator increases with the desired order of accuracy. We shall restrict
ourselves to GIBCs leading to operators of order �2. Before giving the expression of this operator for different values
of k (that can be interpreted as successive approximations of the H -to-E map for the Maxwell equations inside Ω),
we need to first introduce some notation related to surface operators on Γ .

We denote by ∇Γ the surface gradient on Γ and −divΓ its adjoint with respect to L2(Γ ) inner product. We then
define the surface curl of a tangential vector V and the surface vector curl of a scalar function u defined on Γ by

curlΓ V := divΓ (V × n) and
−−−−→
curlΓ u := (∇Γ u) × n
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The curvature tensor C is defined by C := ∇Γ n. We recall that C is symmetric and Cn = 0. We denote by c1 and c2 the
eigenvalues of C (namely the principal curvatures associated with tangential eigenvectors τ1, τ2); then g := c1c2 and
h := 1

2 (c1 + c2) are respectively the Gaussian and mean curvatures of Γ . To these curvatures we associate

H = hIΓ and G = gIΓ

where IΓ (xΓ ) denotes the projection operator on the tangent plane to Γ at xΓ .

3.1. Expression of Dδ,k in the case of thin coatings (a)

In this case, setting ε̃ := ε + (σ/iω), we have the following expressions for k = 0,1,2 (see [9]):⎧⎪⎪⎪⎨⎪⎪⎪⎩
Dδ,0 = 0

Dδ,1 = δ

(
1 − 1

(ε̃μ)ω2

−−−−→
curlΓ curlΓ

)
Dδ,2 = δ

((
1 − δ(C −H)

) − 1

(ε̃μ)ω2

−−−−→
curlΓ (1 − δh)curlΓ

) (8)

3.2. Expression of Dδ,k in the case of high conductivity (b)

In this case we have the following expressions for k = 0,1,2,3 (see [14]):⎧⎪⎪⎨⎪⎪⎩
Dδ,0 = 0
Dδ,1 = (√

2/2 − i
√

2/2
)
δ

Dδ,2 = Dδ,1 + iδ2(C −H)

Dδ,3 = Dδ,2 − (√
2/4 + i

√
2/4

)
δ3

(
C2 −H2 + (εμ)ω2 + ∇Γ divΓ + −−−−→

curlΓ curlΓ
) (9)

As one can notice from comparing both cases, the limit problem is the same boundary condition for perfect con-
ductors, however, the expression and nature of Dδ,k greatly differ for higher order approximations. For instance, in
the case of thin coatings, a surface wave operator appears starting from the first order. However, it is only at the third
order that one can see an effect of the wave propagation along the scatterer boundary in case of high absorption. Also
in this case, one can see that the second order operator appearing in the expression of Dδ,3 has no fixed sign, which
causes difficulties in the mathematical study of the well-posedness of the approximate problem [14].

We refer to [14] for the mathematical justification of the order of these conditions in case (b). The error analysis in
case (a) can be easily deduced by using similar arguments.

Let us mention finally that there are other possible GIBCs of order k, that differ from the ones given above only by
O(δk+1) terms. Even if they theoretically lead to the same accuracy, their adaptivity to a given numerical solver may
be different (see [13,9,15]). We presented here the expressions that are directly obtained from the procedure hereafter
detailed. It turns out that they are also suitable to a finite element implementation, as presented in Section 5.

4. Formal construction of the approximations

The construction of the approximations can be obtained from power series expansions in δ of the solutions inside
Ω , after a scaling with respect to the normal coordinate to Γ . More precisely, for a sufficiently small given positive
constant ν̄ (ν̄ = δ in case (a)) we define

Ων̄ = {
x ∈ Ω; dist(x, ∂Ω) < ν̄

}
and to any x ∈ Ων̄ we uniquely associate the parametric coordinates (xΓ , ν) ∈ Γ × (0, ν̄) through

x = xΓ + νn, x ∈ Ων̄ (10)

Then the exact solution has the following expansions:∣∣∣∣ Eδ
e(x) = E0

e (x) + δE1
e (x) + δ2E2

e (x) + · · · for x ∈ R3 \ Ω

Hδ(x) = H 0(x) + δH 1(x) + δ2H 2(x) + · · · for x ∈ R
3 \ Ω

(11)

e e e e
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where E�
e , H�

e , � = 0,1, . . ., are functions defined on R
3 \ Ω and∣∣∣∣ Eδ

i (x) = E0
i (xΓ , ν/δ) + δE1

i (xΓ , ν/δ) + δ2E2
i (xΓ , ν/δ) + · · · for x ∈ Ων̄

Hδ
i (x) = H 0

i (xΓ , ν/δ) + δH 1
i (xΓ , ν/δ) + δ2H 2

i (xΓ , ν/δ) + · · · for x ∈ Ων̄ (12)

where x, xΓ and ν are as in (10). In case (b), E�
i (xΓ , η), H�

i (xΓ , η) :Γ × R
+ �→ C and∣∣∣∣∣∣

lim
η→∞E�

i (xΓ , η) = 0 for a.e. xΓ ∈ Γ

lim
η→∞H�

i (xΓ , η) = 0 for a.e. xΓ ∈ Γ
(13)

These conditions ensure that E�
i and H�

i are exponentially decreasing inside the obstacle. In case (a) these functions
are only defined for η � 1 and are such that

E�
i (xΓ ,1) × n = 0 for a.e. xΓ ∈ Γ (14)

which is obtained from the perfect conductor condition on Γ δ . The set of equations satisfied by the terms of these
expansions can be found from equating the terms of same order with respect δ after inserting them into the equations
of the problem. This identification process is based on using the expression the curl operator in parametric coordinate.
For instance, it is shown in [9,14] that

curlV =
[(

1

j (ν)
(I + νM)∇Γ

)
· (Ṽ × n

)]
n +

[
1

j (ν)
(I + νM)∇Γ

(
Ṽ · n)] × n

−
[

1

j (ν)
(C + νG)Ṽ

]
× n − ∂ν

(
Ṽ × n

)
for regular functions V defined on Ων̄ , where Ṽ is defined on Γ × (0, ν̄) by Ṽ (xΓ , ν) = V (xΓ + νn), and where the
tangential operator M is defined on Γ by MC = G, and j (ν) := det(I + νC) = 1 + 2νh + ν2g.

The obtained set of equations enables an inductive characterization of the asymptotic expansion terms. In addition,
analytic formulas of E�

i and H�
i in terms of η and the boundary tangential values of Hk

e on Γ , k � � − 1, can be
established (however this technical task becomes more and more involving as k increases). These expressions are
used in setting up the GIBCs.

4.1. Getting the GIBC expressions

The GIBC of order k is obtained by considering the truncated expansion

Ẽδ,k :=
k∑

�=0

δ�E�
e and H̃ δ,k :=

k∑
�=0

δ�H�
e

as an approximation of order k + 1 of respectively Eδ
e and Hδ

e . Using the first interface condition in (3), one has

Ẽδ,k
∣∣
Γ

(xΓ ) × n =
k∑

�=0

δ�E�
i (xΓ ,0) × n for xΓ ∈ Γ (15)

Substituting the computed expressions of E�
i (xΓ ,0) into (15) then leads to a boundary condition of the form

Ẽδ,k × n + i(μω)Dδ,k
(
n × (

H̃ δ,k × n
)) = δk+1gδ

k on Γ (16)

where ‖gδ
k‖L2

t (Γ ) is uniformly bounded with respect to δ and where Dδ,k is some boundary operator (that previously

given for k = 0,1, . . .). The GIBC of order k that defines E
δ,k
e and H

δ,k
e is then obtained by neglecting the right-hand

side of (16).
Let us mention that once (E

δ,k
e ,H

δ,k
e ) are computed, one can also get an approximation of order O(δk+1) of the

field inside the medium through an analytic formula. This formula is a direct consequence of the analytic expressions
of E� (see [14]).
i
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5. Numerical discussion in the case of high absorption

We discuss in this section the numerical accuracy of the GIBCs and their validity for singular geometries. We shall
restrict ourselves to the case (b) and to axisymmetric obstacles which authorizes the use of the 3D axisymmetric Hcurl
spectral isoparametric Q� finite elements [16]. The numerical method uses a variational formulation and a Fourier
expansion in the azimuthal variable as detailed in the next section. To simulate the radiation condition at infinity
we use a coupling between finite element method and an integral equation on the exterior surface (see [17]). For the
discretization of this condition, we introduce a Lagrange multiplier (the surfacic current on the exterior surface), using
the same idea that we explain in the next section for the treatment of the generalized impedance condition. A direct
solver (LU factorization) is used for the numerical computations.

5.1. Variational formulation and Fourier decomposition

In order to simplify the notation we shall simply denote by (E,H) the electromagnetic field that satisfies (6), (7).
The used variational formulation is a classical Hcurl formulation for the electric field E. In order to take in account the
GIBC on Γ , the magnetic current J is introduced

J := n × H on Γ

as an additional unknown on Γ . We then rewrite the GIBC for E×n and J to complete the classical Hcurl formulation.
The GIBCs of order 1 to 3, can be synthetically written in the form

E × n + βn × J + γ
[∇Γ

(
divΓ (n × J )

) − n × ∇Γ

(
divΓ (J )

)] = 0 on Γ (17)

where β is a matrix and γ is a constant. The unknown J ∈ V (Γ ) where V (Γ ) = L2
t (Γ ) in the cases where γ = 0 (the

subscript t referring to tangential functions) and V (Γ ) = H 1
t (Γ ), the subspace of L2

t (Γ ) fields with square integrable
surfacic gradient, otherwise.

The variational formulation associated with (17) can be written in the form∫
Γ

E × n · ϕ̄ dΓ +
∫
Γ

β(n × J ) · ϕ̄ dΓ

− γ

∫
Γ

[
divΓ (n × J )divΓ (ϕ̄) + divΓ (n × ϕ̄)divΓ (J )

]
dΓ = 0 ∀ϕ ∈ V (Γ ) (18)

In the case of an axisymmetric obstacle Ω , the resolution of the 3D problem can be reduced into the resolution
of a series of 2D problems that we shall describe here after. Let (r, θ, z) be the cylindrical coordinate system, we
assume that the boundary Γ is generated by rotating with respect to the z axis a curve Γg of the plane θ = constant,
parameterized by:

M(ξ) = (
r(ξ), z(ξ)

)
, ξ ∈ I ⊂ R

Let Δ(ξ) := √|r ′(ξ)|2 + |z′(ξ)|2 then, dΓ = r(ξ)Δ(ξ)dθ dξ = r(ξ)dθ ds(ξ) where ds(ξ) := Δ(ξ)dξ is the curvilin-
ear measure along Γg . The tangent vectors τ1(ξ) and τ2(ξ) associated with principal curvatures of Γ and the inward
normal n(ξ) form an orthonormal basis of R3 and are given by:

τ1(ξ) = 1

Δ(ξ)

(
r ′(ξ) cos θ

r ′(ξ) sin θ

z′(ξ),

)
, τ2(ξ) =

(− sin θ

cos θ

0

)
, n(ξ) = 1

Δ(ξ)

(−z′(ξ) cos θ

−z′(ξ) sin θ

r ′(ξ)

)
The principal curvatures c1(ξ) and c2(ξ) are given by:

c1(ξ) = (r ′′z′ − z′′r ′)(ξ)

Δ(ξ)3
and c2 = − z′(ξ)

r(ξ)Δ(ξ)

Let (J1(ξ, θ), J2(ξ, θ)) such that J (ξ, θ) = J1τ1 + J2τ2, is a tangential vector field then

divΓ J = 1 ∂J1 + r ′(ξ)
J1 + 1 ∂J2 = ∂J1 + r ′(ξ)

J1 + 1 ∂J2
Δ(ξ) ∂ξ r(ξ)Δ(ξ) r(ξ) ∂θ ∂s r(ξ)Δ(ξ) r(ξ) ∂θ
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The axisymmetric configuration enables us to apply Fourier series with respect to the θ variable. More precisely, we
seek the solution in the form

E(r, θ, z) =
+∞∑

m=−∞
Êm(r, z)e−imθ , J (ξ, θ) =

+∞∑
m=−∞

Ĵm(ξ)e−imθ

For each m, the field (Em,Jm) satisfies a 2D problem in cylindrical coordinates (r, z) where Em is sought in a 2D
H(curl)-like space [16] adapted to particular coordinates and Jm is searched in H 1(Γg)

2 (we refer here to the case
k = 3). In particular, introducing the curvilinear operator

divm
s J := ∂J1

∂s
+ r ′

rΔ
J1 − im

r
J2

one easily sees that (18) results in∫
Γg

(
Êm × n

) · v̄r ds +
∫
Γg

β
(
n × Ĵm

) · v̄r ds − γ

∫
Γg

(
divm

s

(
n × Ĵm

)
divm

s (v̄) + divm
s (n × v̄)divm

s

(
Ĵm

))
r ds = 0

for all v ∈ H 1(Γg)
2. While the electric field is approximated with Hcurl spectral isoparametric Q� finite elements, the

current density is discretized using standard isoparametric continuous P� finite elements. Let us mention that we get
a good approximation of the curvature terms (hidden in the matrix β) as soon as � � 2.

5.2. Validation of the GIBCs for smooth boundaries

In our numerical experiments, we compute an approximate solution Eδ,k (k refers to the order of the GIBC) with the
method presented in Section 5.1. The polynomial order � = 7 of the finite element approximation is large enough and
the computational mesh is fine enough so that the discretization errors can be considered as negligible. We compute
a reference solution Eδ after having meshed the interior of the obstacle. The mesh is constructed in such a way that
the boundary layer effect is correctly taken into account. The accuracy of the GIBC is tested by representing the error
functional

Error := ∥∥curlEδ − curlEδ,k
∥∥

L2(D\Ω̄)
/‖curlEδ‖L2(D\Ω̄)

in terms of δ, where D is our bounded domain of computations.
We choose a (non convex) peanut geometry as an example of C1 domains: see Fig. 3 (left) (in each picture, we shall

superpose to the obstacle geometry the distribution of the current density modulus for a given scattering experiment).
We compute the scattering of an incident plane wave propagating along the axis of revolution of the obstacle. In this
case only the two harmonic modes m = 1 and m = −1 (cf. Section 5.1) have to be computed. This wave propagates
from top to bottom, according to Fig. 3 (left). In the first simulation a moderate frequency is used: ω = 0.2π , which
corresponds to a wavelength two times smaller than the height of the scatterer. As shown by the error curves in Fig. 3
(right), one gets a convergence rate that roughly corresponds to the theoretical O(δk+1) for a GIBC of order k. More
precisely one gets O(δ3.8) for k = 3, O(δ2.9) for k = 2 and O(δ2.5) for k = 1. In the second example shown in Fig. 4,
we increased the frequency: ω = π . In this case one observes that the GIBC of order 1 and order 2 give similar
precision (up to 3 digits): an improvement between k = 1 and k = 2 would be observed only with smaller values of δ.
However, the condition of order 3 improves significantly the precision. This is (more or less) expected since when
the wavelength is very small as compared with the smallest radius of curvature of the surface, the corrections due to
geometrical terms are not significant: the wave ‘locally sees’ the obstacle as a flat boundary, for which the curvature
is 0 (therefore the conditions of order 1 and order 2 are the same in this case). The improvement observed in the case
of the third order GIBC is due to the surface wave operator.

5.3. The treatment of singular boundaries

When the boundary is not smooth, the error analysis in [14] fails. One has even to be cautious in the definition of
the GIBC of order 3 for non smooth boundaries [18]. To overcome this difficulty we propose to combine the use of
local mesh refinement around the singularity and the use of GIBC in the region with regular boundary. The coupling
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Fig. 3. Left: |Re(J )| on the boundary Γ . Right: error curves in terms of δ (log–log scale).

Fig. 4. Left: |Re(J )| on the boundary Γ . Right: error curves in terms of δ (log–log scale).

Fig. 5. Left: the diedron-disk geometry. Right: example of a mesh including a small part (in green/slightly lighter) of the absorbing medium.

between the two is done by introducing a fictitious regular boundary inside the absorbing medium at the singularity
regions that links the regular parts of Γ so that their union gives a C1 surface Γ̃ . The GIBC is then applied on Γ̃ and
the small region around the singularity is treated as a part of the computational volume domain: see Fig. 5 (right) as
an example.



M. Duruflé et al. / C. R. Physique 7 (2006) 533–542 541
Fig. 6. Left: |Re(J )| on the boundary Γ . Right: error curves in terms of δ (log–log scale).

Fig. 7. Left: |Re(J )| on the boundary Γ . Right: error curves in terms of δ (log–log scale).

Fig. 8. Left: |Re(J )| on the boundary Γ . Right: error curves in terms of δ (log–log scale).

In the following, we shall compare the results obtained from a naive treatment of the singularity, consisting in
applying (at the discrete level) the GIBC on Γ as in the case of regular surfaces, with the results obtained after
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applying the numerical treatment explained above. The error curves associated to this treatment are labeled by adding
the word ‘modified’.

The object considered is a ‘sharp ring’ generated by rotating a diedron-disk around the z axis (see Fig. 6 (left)).
The incident plane wave propagates as in Section 5.2. In our first experiment we take R = π and α = 30 degrees. The
pulsation is chosen equal to ω = 1, so that the wavelength is two times smaller than the height of the scatterer. As
shown by the error curves in Fig. 6 (right), the GIBC of order 1 or 3 fails to give the same convergence rate as in the
case of smooth boundary. Let us notice, that both conditions give a convergence rate in O(δ0.9), and no improvement
is observed when the GIBC of order 3 is used instead of order 1, for δ small enough. However, after applying the
numerical treatment of the singularities, one significantly improves the accuracy: we get a convergence rate in O(h2.7)

for the GIBC of order 1, and a convergence rate in O(δ4.4) for GIBC of order 3.
Increasing the angle α reduces the singular behavior of the exact solution at the corner. Hence, for α = 90 degrees

(see Fig. 7 (left)), the standard GIBCs behaves slightly better that in the previous case (same convergence rate in
O(δ1.2) for the GIBCs), but their accuracy is still poor as compared with the case of regular geometries (especially for
the third order one). Once again, the modified ones roughly restore the expected accuracy (the measured convergence
rate are respectively O(δ2.3) O(δ2.7) for orders 1 and 3). Due to the weaker singularity of the obstacle, the improvement
due to the treatment of the singularity is less spectacular than in our first experiment.

However, when the frequency is increased, ω = 2π , one recovers the same type of improvement than observed
with the sharper geometry at lower frequency (see Fig. 8).
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