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Abstract

We present an integral equation approach for which the discretization leads to systems of linear equations which can be easily
solved iteratively. This concept of intrinsically well-conditioned integral equations is illustrated by two equations applied to the
scattering of a plane wave by a perfectly conducting obstacle. The numerical performance obtained in both cases is encouraging
and opens new perspectives on stable integral equation methods. To cite this article: D.P. Levadoux, C. R. Physique 7 (2006).
© 2006 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Des équations intégrales stables pour la résolution itérative de problèmes de diffraction d’ondes en électromagnétisme. On
décrit une approche intégrale dont la finalité est de permettre la construction d’équations qui, après discrétisation, conduisent à des
systèmes linéaires facilement résolus par les solveurs itératifs. Le concept d’équation intégrale intrinsèquement bien conditionnée
est dégagé, illustré par deux équations résolvant le problème de la diffraction d’une onde par un corps parfaitement conducteur.
Les résultats numériques sont probants et ouvrent des perspectives nouvelles concernant la stabilisation des équations intégrales.
Pour citer cet article : D.P. Levadoux, C. R. Physique 7 (2006).
© 2006 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction

This article reports on some recent advances in research on integral equation methods for the iterative solution
of high-frequency wave scattering problems. A first direction of investigations, building on the generalisation of the
combined source equations using an admittance operator, has been initiated in 1998 at the Electromagnetism and Radar
Department of ONERA. This research has been pursued since 2002 in a collaborative effort with the Laboratory of
Mathematics of the University Paris XI at Orsay. The results of Section 5 have been obtained in this context through
a PhD thesis [1]. A second direction of investigation has been undertaken, seeking to stabilise the combined field
integral equation by means of a dedicated parametrix. The latter approach, without having attained the same level of
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maturity as the first one, nevertheless presents a complementary angle of view on the same problem. Therefore, it
seems interesting to present these two approaches jointly.

We shall consider the solution of scattering problems through integral equation methods in the time-harmonic case.
The purpose of our developments is to improve on the convergence properties of iterative solution techniques. Indeed,
we aim at minimising the number of iterations needed to construct acceptable approximations to given problems. It
is a well-known fact that integral equations lack stability in the sense that their discretization leads to ill-conditioned
systems of linear equations and hence are difficult to solve iteratively. For that reason, it is common to resort to pre-
conditioners; that means, multiplying the system with some matrix which supposedly gives a good approximation
to the inverse such that the conditioning of the resulting system be better. However, the construction of such pre-
conditioners can be very costly and the purely algebraic nature of the construction does not benefit from the properties
which could be implied from the operators the matrices are derived from. The gain to be expected from such methods
from numerical algebra are not amenable for theoretical work and the efficiency of the methods is, accordingly, quite
doubtful.

For these reasons, we propose to work on the stabilisation of integral equation formulations, not in an ‘a posteriori’
way (after discretization of a given integral equation) but in an ‘a priori’ way and, indeed, before the integral equation
formulation of the scattering problem itself. We have to recognise that there is not just one way to transform a scatter-
ing problem into an integral equation and we have in fact many possibilities to do so. The two formulations presented
in the Sections 4 and 5, show in which way physical and mathematical information concerning the problem at hand
can be used to establish integral equations which are intrinsically well-conditioned, and hence leading to fast iterative
solution without pre-conditioners.

The history of research on the applicability of stable integral equations is quite recent and coincides with the emer-
gence of modern computing machines. Starting from about 1960, when the numerical solution of integral equations
became technically possible, the question of the stability of these equations has been clearly stated. At that time, it
became apparent that a number of integral equations initially preferred for their ease of implementation and imme-
diate relation to the physical problem, appeared to be actually ill-posed and leading to numerical inaccuracies. In
the time harmonic case, for example, one noticed that the solvability of an integral equation can depend on the fre-
quency. For certain frequencies, called irregular or internal resonance frequencies, the null-space of the operator is
no longer trivial and hence uniqueness of the solution is lost. By adapting ideas which had been developed before by
the Russian school, principally by Kupradze [2], Brackhage and Werner [3], and also Panich [4] contribute decisive
solutions to these internal resonance problems. These authors observe that the linear combination of equations which
do not show the same set of internal resonance frequencies, leads, when choosing the coefficients appropriately, to a
new equation without irregular frequencies. This technique applied to electromagnetics has shown to be particularly
fruitful. For example, Mitzner proposed a Combined Field Integral Equation (CFIE) [5] and Mautz and Harrington a
Combined Source Integral Equation (CSIE) [6]. From these ‘twin’ equations, the CFIE has become the most popular
and nowadays belongs to the standard options for large scale industrial electromagnetic computations.

Having, finally then, some stable equations as well as iterative solution methods well adapted to them (the
GMRES [7] is very important in this context), research in the 1980s has turned to the important problem of the
computational cost of the matrix-vector product evaluation, which can become an obstacle with very large problems.
This product has to be carried out as much as the number of iterations (say niter) needed to get a satisfactory solu-
tion. Now, it is specific for integral equations that the system matrices are full. The numerical cost of a solution is
therefore of the order of O(niterN

2) operations, for a rank N system matrix. For that reason, ideas have been put
forward to make these matrices more sparse or to compress them, often by trying to benefit from the specifics of high
frequency scattering, which is one of the most frequent situations where large matrices arise. Without claiming ex-
haustiveness, in a domain where contributions are numerous, we want to quote the methods proposed by Canning [8]
and DeLaBourdonnaye [9], which have been exemplary for that period. The most significant breakthrough has been
achieved by Rokhlin [10], with the Fast Multipole Method (FMM) which allowed for matrix vector products at a cost
of O(N logN) operations. This has initiated a revolution, making problems with millions of unknowns within the
reach of integral equation methods.

Ever since the emergence of the FMM, we can note a renewed interest for the stability problems. The success of
the FMM had been so impressive, that the hope to do even better seemed vain. On the other hand, by the very power
of the new methods, the large problems being currently handled showed more clearly than before the problems of
them being ill-conditioned. This explains, the recent appearing of new methods to stabilise the integral equations. In
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addition to the unique-existence problem, which directed the search for numerically stable equations in the sixties, we
find nowadays more detailed investigation into the spectral properties of the underlying operators. The first authors
paving the way to these considerations are probably McLean and Tran [11] and Steinbach [12]. The emerging idea is
that the construction of efficient pre-conditioners consists of discretizing the parametrix of the initial operators defining
the equation one tries to solve. In fact, systems pre-conditioned in this way can be interpreted as discretizations of
equations which one might qualify as intrinsically well-conditioned integral equations. This is the point of view we
shall adopt in this paper.

The research we present here is based on the conviction that we can still improve on the stability of well-defined
integral equations. We aim at the solution of very large systems with iterative algorithms. In this context, any method
pretending to be efficient, has to consider fast matrix vector products. The methods we propose here are therefore
compatible with the fast multipole method for the eventual matrix vector products.

2. Competitive integral equations, combined sources and combined fields

In this section, we recall the model problem to which our further developments will apply as well as the various
integral equation formulations which can be chosen. This will be the occasion to single out two different approaches:
combined source equations and combined field equations.

We consider the scattering by an obstacle with boundary Γ , equipped with an orientation given by a normal field
n, pointing out from the obstacle. We define the space W+, in which we find the solution of the external boundary
value problem, as the set of electric fields radiating to infinity and having a tangential trace on Γ . The boundary value
problem is

Find E ∈ W+ such that n × E = −n × Einc (1)

This defines the scattering by a perfectly conducting obstacle in an incident wave given by Einc.
A natural way to solve such a problem by means of integral equations consists of a parameterisation of the space of

admissible waves, W+, by a functional which establishes a link between current distributions on Γ and electric fields
in W+,

V :D′(Γ ) → W+ (2)

The integral equations associated to this potential V is then

n × V (u) = −n × Einc (3)

Note that in this way, the unknown u does not necessarily have a physical interpretation, or, in mathematical terms, is
not necessarily part of the Cauchy data of the field E solving the original boundary value problem (1).

The most easily accessible potentials are

L = 1

ik
∇ × ∇ × G, K = ∇ × G

where G denotes the vector potential (depending on the wave number k) which associates to any field, u, of tangent
vectors on Γ , a vector field defined in all x ∈ R

3\Γ by:

Gu(x) = −1

4π

∫
Γ

eik‖x−y‖

‖x − y‖u(y)dy (4)

where ‖ ‖ denotes the euclidean norm on R
3.

However, equations constructed along the lines of (3) with such potentials can be ill-conditioned (irregular fre-
quency problem). A method to circumvent this problem is to combine the potentials. An illustration of this is the
equation of Mautz–Harrington [6], where the underlying potential is V u = Lu − K(αn × u). In the same spirit, we
might take

V u = L(αn × u) − Ku

This leads to the combined source equation:

n × L(αn × u) − n × Ku = −n × Einc (CSIE) (5)
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which is a well-defined equation for all frequencies if �e(α) > 0. It is this equation which we will generalise in
Section 5.

Although natural from the theoretical point of view, the approach of combined sources has been superseded, in
applications, by another construction. This second family of integral equations, consists of integral equations for-
mulations where the unknowns are the Cauchy data of the boundary value problems. There derivation relies on the
Stratton–Chu integral representations, which express the electric fields, E, and the magnetic fields, H, of a field in
W+ in terms of their tangential boundary traces.

E = L(n × H) − K(n × E), H = −K(n × H) − L(n × E) (6)

Note that Einc is not in W+ (because it does not satisfy the radiation condition) and instead of the Stratton–Chu
formulas we have the following equalities,

0 = L
(
n × Hinc) − K

(
n × Einc), 0 = −K

(
n × Hinc) − L

(
n × Einc) (7)

To sum up, using (6) and (7) and the perfect conductor boundary conditions, we get the electric field integral equation
and the magnetic field integral equation

L(J) = −Einc (EFIE), n × K(J) + J = n × Hinc (MFIE) (8)

where the unknown J equals n × (H + Hinc). In order to dispose of the problem of irregular frequencies, from which
suffer both of these equations, Mitzner [5] suggested to combine the two to obtain an equation which is well-defined
at all frequencies

αL(J) + n × K(J) + J = −αEinc + n × Hinc (CFIE) (9)

Although this equation has very good stability properties, we present, in Section 4, an improvement of this equation
which makes it even more stable.

From the two competing equations, combined source and combined field, it is clear that the latter has been the
more popular one. It seems that this success is primarily due to the fact that the unknowns are the physical current
distributions on the obstacle. Bendali, in the introduction to his fundamental work on the EFIE [13], conjectures
that “the most used methods and the most interesting ones are those where the unknowns have a clear physical
interpretation.” However, the desire to deal with unknowns with a physical interpretation imposes a constraint which
severely restricts the possibilities to construct stable formulations. The equations derived from general potentials
are much richer and provide tools for the composition of formulations with better properties than their ‘physical’
counterparts. This is the conjecture, which we shall corroborate in Section 5, where we present an integral equation
which remains very stable at high frequencies.

Putting aside this controversy, which formally separates the two equations, we want to emphasise that, essentially
both are the fruit of the same stabilisation strategy which we shall now comment on more detail.

3. Comments on the stabilisation strategy

Let us define some notations for the rest of this paper. The Hilbert space of finite energy current on Γ will be
denotes by H (i.e., u ∈ H if u · n = 0 and

∫
Γ

‖u(x)‖2 dx < +∞). The approximation space, Xh, which we shall
use is the Hdiv conforming finite element space (Raviart and Thomas [14]), which can be defined on a triangulation
of Γ with a mesh-size indicated by the parameter h > 0. The degree of freedom associated to the ith edge of the
triangulation is denoted by ei .

The strategy which we want to develop, and which we wish to apply in the Sections 4 and 5, consists of constructing
intrinsically well-conditioned equations by modifying classical equations (for example Mitzner’s CFIE and the CSIE
of Mautz and Harrington), such that the operator of the new integral equation appears as a compact perturbation of
positive operators in the space H of finite energy currents on Γ . This needs some comments.

Suppose then that we want to solve the stabilised equation in H ,

Lx = b (10)

We denote by [L]h the Galerkin matrix of L in the basis (ei ) of the approximation space Xh. If we write Mh for
the mass-matrix pertaining to that basis, the fact that L is a compact perturbation of a positive operator, the spectral
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condition number κh
1 of M−1

h [L]h converges to the one of L. We note that, hence, the condition number κh be-
comes independent of the mesh-size and favourable to an iterative solution. The preferred discretization scheme for
an iterative solution therefore seems to be

M−1
h [L]hXh = M−1

h Bh (11)

where Bh is the vector C
N(h) listing the coupling between b and each of the basis elements (ei ).

One of the major problems is that, in practice, L involves a product of non-local operators of first order, which
excludes a direct computation of the Galerkin matrix [L]h. We, therefore, have to replace this matrix by a linear
operator Lh, giving the best possible approximation to [L]h. We propose the new scheme

M−1
h LhXh = M−1

h Bh (12)

We shall see that the risk of inaccuracies in the results, due to the fact that this new scheme is not derived from a
Galerkin type variational approach as in (11), is easily circumvented in practice. However, it is highly probable that,
in contradistinction to M−1

h [L]h, the condition number of M−1
h Lh no longer converges to the one of L. Nevertheless,

in the case where the iteration algorithm allows for an functional counterpart, i.e., can be given in a Hilbert space
without limits on the dimension,2 it is possible to give a certain consistency to the discretization scheme (12).

For example, the solution of Eq. (10), conjugate gradient algorithm (CG) constructs a sequence (xi ) of approxima-
tions of x by the recurrence relation xi = xi−1 +αipi . The sequences (αi) and (pi ) are also derived from a recurrence
relation involving the sequence of residues (ri ) according to

pi = f
(
ri−1, ri−2,pi−1), αi = g

(
ri−1,pi ,Lpi

)
, ri = h

(
ri−1, αi,Lpi

)
where the functions f , g, and h are continuous and independent of L, b and the iteration index i. The functions f

and g are also in the approximation space Xh if ri−1, ri−2 and pi−1 are.
We next introduce a Hilbert space X subspace of H , which in turn contains Xh. The L2 projection of X on Xh will

be denoted by Qh (i.e., 〈u,uh〉 = 〈Qhu,uh〉,∀u ∈ X,∀uh ∈ Xh). If we equip Xh with the norm of X, Qh :X → Xh ⊂
X is still continuous on X. Recall that when the operator norms (|Qh|X)h>0 are bounded, one calls Qh stable on X.
We shall denote by ih, the mapping which associates to each numerical vector Uh ∈ CN(h) the current uh = ∑

U
j
hej ∈

Xh. With this isomorphism, we can translate in a natural way Eq. (12) into an equation on Xh more amenable for
mathematical analysis

Lhxh = ihM
−1
h Bh with Lh = ihM

−1
h Lhi

−1
h (13)

The numerical analysis of the stabilisation technique which we propose relies on two fundamental properties:

(P1) The projection Qh, in L2 sense, of X on Xh is stable;
(P2) If a sequence (uh) of elements of Xh converges to u in X, then (Lhuh) converges to Lu in X.

In practice, (P2) often arises as a consequence of (P1), which itself can be seen as a consequence of the regularity of
the mesh underlying Xh (cf., for instance, [15,16] or [17]).

We shall now study the Conjugate Gradient method applied to Eq. (13), which generates, at the ith iteration, the
quantities xi

h, αi
h, pi

h and ri
h. If the right hand side of the functional equation (10) is in X, then, due to (P1), ihM

−1
h Bh

tends to b in X. Through recurrence on i and by using (P2), we can show that xi
h, αi

h, pi
h and ri

h converge to xi , αi , pi

and ri , respectively, being the quantities produced by a CG method to the functional equation (10). In other words, the
CG method applied to the functional equation (10) or to its discretized version (13) is asymptotically (in h) equivalent.

From the previous discussion, it appears that the iterative algorithm which seems the most appropriate for the
solution of the system (12) results by translation, through ih, of the CG method applied to Eq. (13). We get,

Pi
h = i−1

h f
(
ihRi−1

h , ihRi−2
h , ihPi−1

h

)
, αi = g

(
ihRi−1

h , ihPi
h, ihM

−1
h LhPi

h

)
Ri

h = i−1
h h

(
ihRi−1

h ,αi, ihM
−1
h LhPi

h

)
(14)

1 Ratio of the absolute values of the largest and smallest eigenvalues.
2 As is the case with the most performing, non-stationary, methods of the Krylov type.
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which is an unconditionally (on h) stable algorithm, because the convergence is identical (by giving C
N(h) the induced

norm through ih) to the CG applied to (13), itself identical (asymptotically in h) to the convergence for the functional
equation (10).

In fact, the new algorithm (14) differs little from the CG, as almost all the operation contained in f , g and h

commute with ih (i.e., i−1
h Op(ihUh) = Op(Uh)) like for example the operator evaluation on a vector. Only the scalar

product has to be rewritten. In our applications, we have not taken this modification into account. We think that,
nevertheless, it may be important to do so. This issue is currently being investigated.

4. Stabilisation of the CFIE equation by means of a parametrix

4.1. The PCFIE equation

The technique we are going to apply here, is undoubtedly the most directly leading to realising the objectives
announced in the previous section. For a classical equation, Ax = b, we propose a preconditioned equation BAx = Bb
where B is a pre-conditioner of A in a weak sense.3

The are two favourable situation for finding such parametrices rapidly. For example, if the equation is elliptic4

with principal symbol σ(ξ), it suffices to solve the ‘quantisation problem’ consisting of finding an explicit definition
of an operator which has the principal symbol σ(ξ)−1. This is particularly well-adapted to acoustics, for example,
where integral equation formulations are mostly elliptic. On the contrary, numerous integral equation formulations
of electromagnetics are not elliptic in this sense, like, for example the EFIE. However, the latter equation has a
particularity which makes it nevertheless a suitable candidate for this type of methods. A well-known consequence
of the Calderón projection relations makes that the operator of this equation is its own parametrix. This result may
be surprising, as the operator is of order 1, but is in a way related to its non-ellipticity. One can find examples of
apparently well performing pre-conditioners for the EFIE in [19] and [20].

In this paper, we are interested in the CFIE of Mitzner (9), a very popular equation solved by many industrial
numerical electromagnetics codes. An essential reason for its success is that the CFIE is an equation without inter-
nal resonance problems and, in principle, well-adapted to high-frequency computations (cf. the PhD theses on the
FMM [21,22] and [23]). On the other hand, experience with very large systems (with more than a million degrees of
freedom like an aircraft radar cross-section computation as several GHz) shows that convergence can be very slow
even when applying pre-conditioners from numerical linear algebra.

This motivates our research on the stabilisation of this equation by means of a pseudo-differential technique in-
dicated above. For the case of the CFIE, the Calderón projection relations do not directly lead to a parametrix. So
we have to pursue a more profound analysis, which has already been the subject of a previous publication [24], from
which we use the results here without reproducing the proofs. This analysis clearly shows the role played by the
Helmholtz decomposition which expresses any current distributions on Γ into a solenoidal one and an irrotational
one. One of the projectors underlying this decomposition is the L2 projector on the solenoidal currents, denoted by
Πloop. We can show that there exists an operator B , explicitly defined and numerically constructible, of which the
composition with the operator A of the CFIE, gives a compact perturbation of the identity.

B = i4k

α
G0 + 2Πloop

where G0 is the tangential trace of the vector potential (4) for k = 0. This is another case where the non-ellipticity of
the integral operators of electromagnetics comes into play: B is an order 0 operator which nevertheless regularises the
order 1 operator A. We conjecture that the Pre-conditioned Combined Field Integral Equation (PCFIE)

BAJ = B
(−αEinc + n × Hinc) (PCFIE) (15)

is intrinsically well-conditioned. An essential point is that we can also show that the operator B has no internal
resonances, which makes the PCFIE (15) a well-conditioned integral equation for all frequencies.

3 That means one only requires that the order of BA − Id be strictly negative.
4 Adopting the interpretation this term has in the theory of pseudo-differential operators [18].
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Note, finally, that this work has allowed us to establish a new result in the form of a discrete Inf–Sup inequality for
A uniform in h. In this way it has been shown that the numerical solution of the CFIE converges to the exact solution,
in the energy norm for the currents and in the H−1/2 norm for the charges [24]. To the best of the author’s knowledge,
this is the only numerical convergence result for the CFIE thusfar.

4.2. Discretization scheme

With the notations and the ideas of Section 3, the discretization of the PCFIE reads,

M−1
h [BA]hJh = M−1

h

[
BJinc]

h
with Jinc = −αEinc + n × Hinc

However, the numerical computation of the Galerkin matrix [BA]h cannot be done in the classical way because the
operator kernel of BA is not explicitly known. Also we do not have [BA]h = [B]h[A]h because the discretization is
not done on an orthogonal basis. However, considering that QhA is a good approximation of A on Xh, we propose
to approximate [BA]h by [BQhA]h, which is equal to [B]hM−1

h [A]h. But [B]h cannot be computed directly either,
because Xh does not have an exact Helmholtz decomposition. We therefore decide to approximate the behaviour of
B on Xh by B̃ = i4kG0/α + 2Πh

loop where Πh
loop is the L2 projector on the solenoidal currents of Xh. The discrete

version of the PCFIE (15) then becomes

Ph[A]hJh = Ph

[
Jinc]

h
with Ph = M−1

h

[
B̃

]
h
M−1

h (16)

It is remarkable that the constraint to approximate the matrix [BA]h does not hinder the precision of the numerical
solution. Indeed, the choice of the discretization which we made can be interpreted as the action of a pre-conditioner
(the operator Ph) dedicated to the CFIE, which we apply to the variational Galerkin scheme which one conventionally
uses for discretizing this equation. By the way, this is the point of view of our previous paper [24]. In this way, the
solutions of the CFIE and the PCFIE are the same.

From the spectral point of view, things are less evident. One can show, indeed, that for sufficiently small h, the
discrete equation (16) is not singular. But it appears difficult to show, in contrast to what happens with κ(M−1

h [BA]h),
that κ(Ph[A]h) converges to κ(BA). Nevertheless, it has been shown in [24] that there exists a subspace X of H , on
which, under the condition that property (P1) holds (i.e., a sufficiently fine mesh), we have property (P2) of Section 3.
As a consequence, we can predict that, asymptotically in h, the convergence of a Krylov type iterative algorithm will
be the same for the functional equation (15) and for the discretized version (16).

In an iterative solution, the most expensive operation is the matrix vector product. In the case of the PCFIE, the
extra cost with respect to the CFIE is in the product of a vector with an operator which is the sum of a convolution
operator (with 1/r kernel) and a projector (projecting on the solenoidal currents in Xh). The numerical cost of such
an operation is a priori competitive, because the convolution part can be reduced using a fast multi-pole method and
the projection can be done in O(N(h)) operations. Of course, the inversion of the ‘mass matrix’ Mh, which appears
in (16) is also done iteratively.

4.3. First numerical results

The numerical results which we present here are rather preliminary and only serve to illustrate the ideas. The
electrostatic potential G0 having not yet been discretized with an FMM technique, we could only deal with quite small
problems. We have tested the PCFIE both on a sphere, with unit radius carrying 3072 degrees of freedom (DoF), and
on a spherical cavity, as described in [19] carrying 2880 DoF (cf. Fig. 3). These objects have been illuminated by
plane waves at frequencies of 75 and 150 MHz. The iterative solution algorithm we applied is the GCR [25].

We compare the performances of the PCFIE and the CFIE, both with a coupling coefficient of α = 1. The curves
on the Figs. 1 and 2 give the values of the residues (in l2-norm) for each of the equations. We can observe the desired
effects of the pre-conditioning. For all cases, the convergence of the PCFIE is the fastest. Above all, though, the
convergence remains linear even when the residue attains very small values. Such a property is not innocuous (cf. [19]
for a counter example). It confirms, that in spite of the approximations we had to introduce into the approximation of
the Galerkin matrix, the regularisation procedure is well preserved. In fact, we can bet that the spectral contents of the
residues (or the descent vectors) is more and more rich as the convergence progresses. We can easily imagine that the
corrections are of spatially high frequency nature. At the same time, the quality of the product of such excitations and
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Fig. 1. Convergence curves for the PCFIE on a sphere at 75 MHz (left) and 150 MHz (right).

Fig. 2. Convergence curves for the PCFIE on a spherical cavity at 75 MHz (left) and 150 MHz (right).

the operator underlying the linear system depends essentially on the accurateness with which the principal symbol of
the operator has been accounted for in the Galerkin matrix. Looking at the curves we obtain, this seems to be correct.

5. Generalisation of a CSIE equation using an admittance operator

5.1. The GCSIE formulation

The integral equation formalism presented in this section, is based on previous ideas (see [26]) initially given in
the context of acoustics. This formulation, by the way, is not restricted to wave propagation alone. One finds in [27],
for example, an axiomatic approach showing that the method can be translated to any physical situation where the
modelling consists of boundary value problems for elliptic partial differential equations for which a numerically
constructible Green kernel exists. In addition, more general impedance boundary conditions than those used in the
present paper (i.e., those for perfect conductors) are possible.

One particularity of our formulation is that it relies on methods which inherit from both of the classical approaches
(cf. Section 2). By means of a reformulation of the boundary value problem (1), relying on a particular choice of a
potential, we aim at the construction of a well defined integral equation. But this construction involves the classical
field representation formulas (6), and hence defines a link to the field representation based methods. In the end, though,
the unknown of the resulting equation does not have a physical interpretation and we have to classify the method of
the general potential type.

At the heart of the new formalism is the observation that the Stratton–Chu formulas (6) can be rewritten to involve
only one of the traces n × E and n × H. The well-posedness of the exterior boundary value problem (1), which
has exactly one solution, allows for the definition of a relation between the components of the electromagnetic field
on Γ in terms of an operator. For example, the trace of the magnetic field for any field in W+ can be expressed
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as the image of the electric field trace under an operator which establishes a bijection between the two field traces.
We shall write n × H = Y+(n × E). Mathematicians will speak of Y+ as the Dirichlet-to-Neumann operator (in the
scalar case) or of the Steklov–Poincaré operator, whereas physicists will speak of the admittance operator. With
this operator, we can write for each E ∈ W+: E = LY+(n × E) − K(n × E). As a consequence, on Γ , we have
n × E = n × L(Y+n × E) − n × K(n × E). This means that if one chooses to solve (1) by means of a source integral
equation, the best choice ever is to choose the potential V u = LY+u − Ku, because from the previous relation one
has, n × V = Id and the solution of the corresponding equation (3), is nothing but the right-hand side.

Of course, this reasoning is entirely formal as, except from some canonical geometries, we do not have explicit
knowledge of Y+. However, if we can construct a numerical approximation, Ỹ+, to this operator we suggest to adopt
the potential V u = LỸ+u − Ku. In this way, we obtain an equation which generalises the CSIE (5)

n × LỸ+u − n × Ku = −n × Einc (GCSIE) (17)

Indeed, if Ỹ+ = αn×, we get Mautz–Harrington’s CSIE back. Because the operator of this equation reduces to the
identity when Ỹ+ = Y+, we conjecture that (17) will be the better conditioned the better Ỹ+ approximates Y+.

5.2. A well-posed equation at high frequencies

The GSIE formalism is very general indeed. It is dependent of the choice of an approximation to the exterior
admittance operator of the scattering obstacle. Various ways for the construction of such approximations can be
pursued, the pertinence of which depends on the application context. For example, one does not want the same type
of approximations at high frequencies as one wants at low frequencies. In this paper, we shall only be concerned with
high frequency applications, and the approximation we choose will be very close to the one which has previously been
proposed for acoustics and analysed in detail in [28].

Let us note that in the case of acoustics, another approach, based on a micro-local approximation of the Dirichlet-
to-Neumann operator has been proposed in [29,30]. The results are encouraging, but the technique has not yet been
applied to electromagnetics.

It is well known that in the high-frequency regime, scattering phenomena tend to localize (e.g., asymptotic theories
prove that the energy at high frequency localize near the rays given by geometrical optics). We therefore conjecture
that the admittance operator itself tends to localize at high frequencies, and −2n × L being the admittance of an
infinite metallic plate, we propose to set5

Ỹ+ = −2
∑
p

χpn × Lχp (18)

where (Up,χp) is a quadratic partition of unity on Γ . This means that (Up)p is a family of open sets of Γ such that⋃
p Up = Γ , and (χp)p is a family of smooth functions such that the support of χp is included in Up for all p and∑
p χ2

p = 1.
Concerning the model (18), one should always keep in mind that each patch Up has to be chosen sufficiently small

in order to be locally comparable with the tangent plane. However, this high-frequency approximation of the admit-
tance does not pretend (nor does it need to) cover globally non-convex objects, where multiple-reflections destroy
localization. It is precisely the role of Eq. (17) to take into account more complex (and non local) phenomena such as
for instance diffraction, creeping waves, or multiple-reflections.

It is possible to prove that under a natural condition on (χp), Eq. (17) equipped with (18) is well-posed on H for
sufficiently high frequencies. The strategy is classical, and consists in using Fredholm’s theory. We first demonstrate
that the GCSIE’s operator is a compact perturbation of a coercive order 0 operator, and then that is one-to-one.
A complete proof is given in [1], but a sketch of the proof is the following.

If the one-to-one property is not very difficult to show, using the classical tool of Rellich’s lemma, the compact
perturbation property needs an accurate symbolic analysis of the equation. Indeed, the principal symbol of the operator,

5 This elegant technique of localization has been suggested to the author during his PhD [28] by B.L. Michielsen.



D.P. Levadoux / C. R. Physique 7 (2006) 518–532 527
curiously enough, is not the identity as is the case in the acoustics counter part of the equation [28]. More precisely,
in electromagnetism, the symbol is

σ(ξ) = Id + 1

2k‖ξ‖4

∑
p

(∇χp · n × ξ
)2n × ξ ⊗ ξn

where ξ ∈ T ∗Γ is identified to a tangent vector of the Riemannian manifold Γ . So, one can not conclude we have to
face a compact perturbation of identity. Nevertheless, σ(ξ) is also the principal symbol of the operator

Id − 1

2k
Πloop

∑
p

∇χp∇χp · Πloop

where Πloop is one of the projectors of the Helmholtz decomposition already encountered in Section 4.1. On the other
hand one can establish that this operator becomes coercive on H if

max
x∈Γ

(∑
p

‖∇χp(x)‖2
)

< 2k2 (19)

Consequently, under this condition, the underlying operator of the GCSIE is a compact perturbation of an index 0
operator, which we needed to prove.

In conclusion, we can say that the GCSIE formalism (17), with the admittance model given in (18), is a well-
posed equation in the high-frequency regime, because in this context criterion (19) is always verified. Moreover, the
operator of the equation appears as a compact perturbation of a coercive one, which is an indication of favourable
spectral properties.

5.3. Discretization scheme

Following the same discretization strategy as used for the PCFIE, applying the general principles stated in Sec-
tion 3, a first discretization scheme for the GCSIE is

M−1
h

([
n × LỸ+]

h
Jh − [n × K]hJh

) = −M−1
h

[
n × Einc]

h
(20)

The construction of the matrix [n×K]h is not problematic, since it is almost the same as the one built for the MFIE (8).
The main difficulty for the discretization of the GCSIE remains the construction of the matrix [n × LỸ+]h. It is not
possible to envisage a direct discretization of the operator resulting from the composition of the pseudo-differential
operators n ×L and Ỹ+. Therefore, we propose to compute this matrix as a product [n ×L]hỸ+

h , where Ỹ+
h is a linear

operator to construct. This construction must be such that the endomorphism Lh = ihM
−1
h [n×L]hỸ+

h i−1
h satisfies the

consistency property (P2) of Section 3. In other words, we have to search an endomorphism Ỹ+
h on Xh, being a good

approximation of Ỹ+ in the sense that (P2) holds for Lh = ihM
−1
h [n × L]hi−1

h Ỹ+
h . Afterwards, the linear operator we

want is

Ỹ+
h = i−1

h Ỹ+
h ih (21)

As the range of Ỹ+ is not included in the approximation space Xh, it is natural to seek for an approximation of Ỹ+
as Ỹ+

h = P hỸ+ where P h is a projector on Xh. Since Ỹ+ can be split into the sum of two operators −ikn×∑
p χpGχp

and (ik)−1n × ∑
p χp∇G∇ · χp of respective orders −1 and +1, it is probably more advisable to realize projections

adapted to each of these terms. We define the projection Πh
edgeu = ∑

i fi(u)ei where fi(u) denotes the flux of u

through the edge i (we suppose that the DoF are normalized by their flux). We also denote by Πh
node the projection on

the scalar P 1 finite element space Sh defined by Πh
nodeu = ∑

i u(xi)ei with ei the DoF attached to the node xi . Noting

that n × ∇(Sh) ⊂ Xh, we propose to approximate Ỹ+ on Xh by

Ỹ+
h = 1

ik

∑
p

χh
pn × ∇Πh

nodeG∇ · χh
p − ik

∑
p

χh
pΠh

edgen × Gχh
p (22)

The advantage of this approximation is that it takes into account, in an exact way, the surface curl n × ∇ , which is
essential for the regularization obtained in the composition n × LỸ+ the order of which is 0, whereas each of the
factors is of order 1.
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Numerical construction of the matrix Ỹ+
h from the formulas (21) and (22) does not pose any problems. However, it

is very important to note that such a matrix is sparse because, because of the localizations, only the coefficients (i, j),
corresponding to DoF (ei , ej ) with edges located on the same patch Up , do not vanish.

Finally, the new numerical scheme replacing the initial one (20) is

M−1
h

([n × L]hỸ+
h Jh − [n × K]hJh

) = −M−1
h

[
n × Einc]

h
(23)

At a first glance, this scheme may appear expensive, since we have to perform first the product with the sparse matrix
Ỹ+

h , and then two independent products involving [n ×L]h and [n ×K]h. However, a judicious discretization of these
two operators with FMM techniques, enables us to group the so-called ‘transfer’ and ‘reconstruction’ phases for L and
K . Therefore, the additional cost of this scheme compared with a classical equation is the cost of two sparse products,
one involving Ỹ+

h and the other a near FMM matrix, which is very competitive.
However, in contradistinction to the PCFIE case, the numerical analysis of the discretization scheme of the GCSIE

is at this time not achieved. It remains to find a well-adapted functional space X allowing to exhibit the consistency
property (P2) of the Section 3. It would prove the scheme to be unconditionally stable, regarding h, e.g., the conver-
gence would be independent of the mesh size. We continue to work on this problem.

Concerning the practical implementation, let us note that the truncation functions χp are generated as the tensor
product in three dimensions of a quadratic partition of unity over the real axis. A quadratic partition of the unity on Γ

is induced by the partition on R
3 by taking the restriction to the surface.

From a programming point of view, our scheme is relatively easy to implement, at least when starting from an
existing code having the FMM algorithms. Meshes are not modified and the FMM machinery does not want any
special tuning. This explains why the new equation has been implemented with success in ONERA’s development
environment PAME [31], where it appears as a new functionality of the industrial code Elsem3D [32].

5.4. Numerical results

In order to give an impression of the numerical behaviour of the GCSIE in situations usually known as ‘hard’ for
integral equations, we have selected the two scattering objects shown in Fig. 3. The hollow sphere is the same as the
one tested in [19]. It is a sphere of diameter 2.33 m, with a circular hole of radius approximately 80 cm. The other
object is the Channel cavity described in [33] modelling, at a small scale, an air-intake of an aircraft (its length is
about 1.36 m). We also tested scattering by a sphere with has a radius equal to 1 m.

In all following results, the mesh sizes, which necessarily depend on the frequency, comply with the criterion of
some 7 edges per wavelength.

The iterative solver used implements a GCR-method [25] and, without explicit statement of the contrary, the stop-
ping criterion on the relative residue is fixed to 10−4 in l2 norm.

5.4.1. Phenomenological aspects
The accuracy of the GCSIE equation appears to be approximately the same as of the CFIE. For instance, Fig. 4 gives

bi-static radar cross section (RCS) diagrams calculated with these two equations and shows the excellent accuracy
of the GCSIE for RCS applications. But this is not surprising, because GCSIE is a source kind equation whose

Fig. 3. Transparent view of the spherical cavity and the Channel air-intake used for tests.
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Fig. 4. Bi-static RCS of the hollow sphere at 2.8 GHz (left), and Channel cavity at 5 GHz (right).

Fig. 5. Real part of the solution of the GCSIE (left) and the right hand side (right).

Fig. 6. Iteration counts for the sphere, as a function of the wavelength (left), and as a function of the mesh size at 0.6 GHz (right).

potentials L and K are rigorously approximated with a Galerkin method. Approximations which perturb the numerical
scheme (23) only concern the construction of the Ỹ+ operator and cannot affect the precision of the final result.

On the other hand, the accuracy of the model approximating the admittance and the quality of the discretization
do indeed govern the convergence speed of the iterative method. Apart from the fact that the observed convergence
speeds are very satisfying (cf. Fig. 7), the performance of the GCSIE implementation can also be judged by comparing
the solution of the equation with the right-hand side (see Fig. 5). Indeed, these quantities are the same in the ideal case
where Ỹ+ = Y+. On a sphere, they appear to be very close, not only in the center of the illuminated region, but also
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where the incident plane wave impacts tangentially to the sphere. This confirms that the model (18) is a pertinent one,
providing a good approximation to the true admittance operator at high frequencies, even at grazing incidence.

In Section 5.2, we have seen that the theoretical analysis endorses the high-frequency assumption hidden behind
the construction of the model (18). For a constant quadratic partition of unity, the condition (19) implies that, for
a sufficiently high frequency, the equation GCSIE is well-posed, and that, on the contrary, the GCSIE may have a
bad behaviour at low frequency. On a sphere (with a radius of 1 m), when the frequency decreases, we observe an
explosion of the number of iterations required to attain a relative residue of 10−4 (Fig. 6, left). But, if we adapt the
cut-off functions χp to the frequency in such a way that the condition (19) is verified (by taking larger supports), we
can stabilize the iterative convergence.

Numerical experiments also reveal that the GCSIE is stable as to the mesh size. For the sphere at 0.6 GHz, Fig. 6
(right) shows that the number of iterations remains stable when the mesh becomes smaller and smaller.

5.4.2. Performance
Numerical experiments concerning the convergence speeds reveal a global advantage of the GCSIE over the con-

ventional integral equations. Obviously so, over the EFIE, but also, and less trivially so, over the CFIE which, among
the classical equations, is known to offer the best convergence results. In order to reach a certain residue, one spends,
according to the geometry, two to ten times more iterations with the CFIE than with the GCSIE. Fig. 7 is very reveal-
ing of the convergence dynamics whether the scattering object is globally convex or whether it encloses a cavity. It is
important to emphasize that, as observed in Section 4.3, the decrease of the residue does not show stagnation, even for
very small values. Showing again that the regularization process working at the ‘continuous’ level of the equation has
probably found a satisfactory translation at the discretization level. We should point out too that the gain in iteration
count still holds firm facing a CFIE preconditioned with an approximated inverse. Such algebraic pre-conditioners are

Fig. 7. Convergence curves for the sphere at 2 GHz meshed with 101568 DoF (left) and for the hollow sphere at 1.8 GHz meshed with 127509
DoF (right).

Fig. 8. Resolution time for the hollow sphere at 2.8 GHz with 264186 DoF (left) and the Channel cavity at 7 GHz with 309711 DoF (right).
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being used at ONERA in a production context. It consists of building, iteratively, the inverse of a sparse version of the
initial linear system to solve, in preserving only the biggest coefficients (around 60 per line) and cancelling the others.
However, if this pre-conditioner works on convex objects, it unfortunately fails to apply to cavities. Contrary to this
pre-conditioner, efficient only for convex obstacles, but whose behavior is uncertain for cavities, the GCSIE seems to
be efficient in any configuration.

With regard to resolution time, we notice almost the same benefits as those observed for the convergence speed.
Results presented in Fig. 8 correspond to computations run on 8 nodes of a parallel machine, where each node is
equipped with 4 processors (1.25 GHz) and have a working memory of 4 Gb. The residue criterion was fixed to 10−4

for both the hollow sphere and the Channel cavity. The resolution times depend on the incidence angle of the plane
wave excitation. Nevertheless, we can conclude that the resolution time for the GCSIE is about twice smaller than the
one obtained with the most efficient classical equation.

6. Conclusion

We hope that we have shown that returning to the more or less forgotten integral equation methods of the past,
which consisted of starting from general potentials instead of field representations, associated with an appropriate
stabilisation strategy (as explained in Section 3), opens new perspectives in the field of pre-conditioning of integral
equations. Indeed, it appears to us, that the two proposed equations illustrating this issue, make questionable two
well-established ideas and opinions:

– Firstly, that integral equations based on the Cauchy data are always the most appropriate ones;
– Secondly, that only Galerkin methods are attractive as to the warrants they imply on the theoretical level.

We have seen how fruitful it can be to counter the first one and to exploit the richer set of general potentials in order
to obtain intrinsically well-conditioned integral equations.

The second one is probably supported by the fact that the very popular EFIE and CFIE are first order and hence very
difficult to discretize on low order finite elements other than by ‘energy’ methods. For example, the field corresponding
to a 0-th order Raviart–Thomas element is singular on the edges and this complicates point collocation discretizations.
However, the equations we have presented here, while being well-defined at all frequencies, are of order 0. Their
iterative solution needs only consistency between the evaluation of the operator on the current distributions and the
matrix vector product of the discretized version. Certainly, the discretization uses the Galerkin matrices, but these
are only intermediate, as in the end, the ‘mass matrix’ serves to make the discretized system consistent with the
underlying functional equation. Supposing a higher order discretization, we can therefore conjecture that the same
level of stability will be obtained by simply using point collocation or Nyström like methods.

References

[1] S. Borel, Étude d’une équation intégrale stabilisée pour la résolution itérative de problèmes de diffractions d’ondes harmoniques en électro-
magnétisme, PhD thesis, Université Paris XI, 2006.

[2] V.D. Kupradze, Potential Methods in the Theory of Elasticity, Israel Program for Scientific Translations, Jerusalem, 1965.
[3] A. Brakhage, P. Werner, Archive für Mathematik 16 (1965) 325–329.
[4] O.I. Panich, On the question of the solvability of the exterior boundary problem for the wave equation and Maxwell’s equation, Uspekhi Mat.

Nauk 20 (1) (1965) 221–226 (in Russian).
[5] K.M. Mitzner, Numerical solution of the exterior scattering problem at eigenfrequencies of the interior problem, in: Int. Scientific Radio Union

Meeting, Boston, MA, March 1968.
[6] J.R. Mautz, R.F. Harrington, A combined-source solution for radiation and scattering from a perfectly conducting body, IEEE Trans. Antennas

Propag. AP-27 (4) (July 1979) 445–454.
[7] Y. Saad, M.H. Schultz, GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM J. Sci. Stat.

Comput. 7 (3) (1986) 856–869.
[8] F.X. Canning, Transformations that produce a sparse moment method matrix, J. Electromag. Waves Appl. 4 (9) (1990) 893–913.
[9] A. de La Bourdonnaye, High frequency approximation of integral equations modelling scattering phenomena, M2AN 28 (2) (March 1994)

223–241.
[10] V. Rokhlin, Diagonal form of translation operators for the Helmholtz equation in three dimensions, Appl. Comput. Harmon. Anal. 1 (1993)

82–93.



532 D.P. Levadoux / C. R. Physique 7 (2006) 518–532
[11] W. McLean, T. Tran, A preconditioning strategy for boundary element Galerkin methods, Numer. Methods Partial Differential Equations 13
(1997) 283–301.

[12] O. Steinbach, Gebietzerlegungsmethoden mit Randintegralgleichungen und effiziente numerische Lösungsverfahren für gemischte Randwert-
probleme, PhD thesis, University of Stuttgard, 1996.

[13] A. Bendali, Approximation par éléments finis de surface de problèmes de diffraction des ondes électromagnétiques, PhD thesis, École Poly-
technique, 1984.

[14] P.A. Raviart, J.-M. Thomas, A mixed finite element method for 2nd order elliptic problems, in: I. Galligani, E. Magenes (Eds.), Mathematical
Aspects of the Finite Element Method, in: Lecture Notes in Math., vol. 606, Springer-Verlag, 1975.

[15] O. Steinbach, W.L. Wendland, The construction of some efficient preconditioners in the boundary element method, Adv. Comput. Math. 9
(1–2) (1998) 191–216.

[16] O. Steinbach, On the stability of the L2 projection in fractional Sobolev spaces, Numer. Math. 88 (2001) 367–379.
[17] O. Steinbach, On a generalized L2 projection and some related stability estimates in Sobolev spaces, Numer. Math. 90 (2002) 775–786.
[18] L. Hörmander, Linear Partial Differential Operators, Springer-Verlag, 1969.
[19] S.H. Christiansen, J.-C. Nédélec, A preconditioner for the electric field integral equation based on Calderón formulas, SIAM J. Numer.

Anal. 40 (3) (2002) 1100–1135.
[20] R.J. Adams, Stabilisation procedure for electric field integral equation, Electron. Lett. 35 (23) (November 1999).
[21] J. Simon, Extension de méthodes multipôles rapides: résolution pour des seconds membres multiples et application aux objets diélectriques,

PhD thesis, Université de Versaille Saint-Quentin-en-Yvelines, 2003.
[22] G. Sylvand, La méthode multipôle rapide en électromagnétisme: performance, parallélisation, applications, PhD thesis, École Polytechnique,

2002.
[23] Q. Carayol, Développement et analyse d’une méthode multipôle multiniveau pour l’électromagnétisme, PhD thesis, Université Paris VI, 2002.
[24] D.P. Levadoux, Proposition de préconditionneurs pseudo-différentiels pour l’équation CFIE de l’électromagnétisme, M2AN 39 (1) (2005)

147–155.
[25] S.C. Eisenstat, H.C. Helman, M.H. Schultz, Variational iterative methods for nonsymmetric systems of linear equations, SIAM J. Numer.

Anal. 20 (1983) 345–357.
[26] D.P. Levadoux, B.L. Michielsen, Analysis of a boundary integral equation for high frequency Helmholtz problems, in: 4th International

Conference on Mathematical and Numerical Aspects of Wave Propagation, Golden, Colorado, 1–5 June 1998, pp. 765–767.
[27] D.P. Levadoux, B.L. Michielsen, A new class of integral equations for scattering problems, in: 6th International Conference on Mathematical

and Numerical Aspects of Wave Propagation, Jyvaskyla, Finland, June 30 – July 4, 2003.
[28] D.P. Levadoux, Étude d’une équation intégrale adaptée à la résolution hautes fréquences de l’équation de Helmholtz, PhD thesis, Université

Paris VI, 2001.
[29] M. Darbas, Préconditionneurs analytiques de type Calderón pour les formulations intégrales des problèmes de diffraction d’ondes, PhD thesis,

Université Paul-Sabatier, 2004.
[30] X. Antoine, M. Darbas, Alternative integral equations for the iterative solution of acoustic scattering problems, Quart. J. Mech. Appl.

Math. 58 (1) (2005) 107–128.
[31] V. Gobin, Définition des données métiers PAME, Technical Report AQ/DQO/PG/0502, ONERA, Janvier 1999.
[32] P. Soudais, Document de spécification détaillée du logiciel Elsem3D, Technical Report PAME/ELSEM3D/SD/0001, ONERA, 2001.
[33] A. Barka, P. Soudais, D. Volpert, Scattering from 3-D cavities with a plug and play numerical scheme combining IE, PDI, and modal tech-

niques, IEEE Trans. Antennas Propag. 48 (5) (May 2000) 704–712.


