Corrigendum to the Note "Time inversion in the representation analysis of magnetic structures" [C. R. Physique 6 (2005) 375-384]

Jacques Schweizer
CEA-Grenoble, DSM/DRFMC/SPSMS/MDN, 38054 Grenoble cedex 9, France

Available online 14 September 2006
Presented by Jacques Villain

In the article [1], the magnetic little group $G_{\mathbf{k}}^{\Theta}$ of the \mathbf{k} vector was introduced. It was correctly stated that the operators of $G_{\mathbf{k}}^{\Theta}$ act on a space whose dimension (or number of basis vectors) is twice as large than for the ordinary little group $G_{\mathbf{k}}$. Unfortunately, it was incorrectly stated that when the magnetic corepresentation and the irreducible corepresentations are real, one can choose real basis vectors and this remove the factor two. As a matter of fact, this reduction is not possible. However, the method proposed in [1] can be used, but the results, in the case of a 'black and white' group, may be different.

In the example of CeAl_{2} treated in [1], the transformation operators of $G_{\mathbf{k}}^{\Theta}$ act on $\mathbf{m}_{j \alpha}^{\mathbf{k}}$ and $\mathbf{m}_{j \alpha}^{-\mathbf{k}}$, i.e., on 12 components. The corresponding corepresentation $c \Gamma$ is therefore of dimension 12. Table 8 of [1] has to be corrected as follows:
(i) The caption should be "action of the operators of $G_{\mathbf{k}}^{\Theta}$ on the components $\mathbf{m}_{j \alpha}^{\mathbf{k}}$ and $\left(\mathbf{m}_{j \alpha}^{\mathbf{k}}\right)^{*}$ of CeAl_{2} ";
(ii) in the last two columns, the components $\mathbf{m}_{j \alpha}^{\mathbf{k}}$ should be replaced by $\left(\mathbf{m}_{j \alpha}^{\mathbf{k}}\right)^{*}$;
(iii) 6 additional lines should be inserted, which describe the action of the 4 operators on the 6 components $\left(\mathbf{m}_{j \alpha}^{\mathbf{k}}\right)^{*}$;
(iv) in the last line the character χ is 12 for h_{1} (instead of 6) and 0 for the other 3 operators.

The decomposition of the corepresentation is

$$
c \Gamma=3 c \tau_{1}^{+}+3 c \tau_{1}^{-}+3 c \tau_{2}^{+}+3 c \tau_{2}^{-}
$$

The basis vectors for each irreducible corepresentation $c \tau_{v}^{ \pm}$are:

$$
\mathbf{m}_{v^{ \pm}}^{\mathbf{k} 1}=\left(\mathbf{m}_{1 \mathbf{x}}^{\mathbf{k}}+\varepsilon^{\prime} \mathbf{m}_{2 \mathbf{y}}^{\mathbf{k}}\right)+\varepsilon\left(\mathbf{m}_{1 \mathbf{y}}^{\mathbf{k}}+\varepsilon^{\prime} \mathbf{m}_{2 \mathbf{x}}^{\mathbf{k}}\right)^{*} ; \quad \mathbf{m}_{v^{ \pm}}^{\mathbf{k} 2}=\varepsilon\left(\mathbf{m}_{v^{ \pm}}^{\mathbf{k} 1}\right)^{*} ; \quad \mathbf{m}_{v^{ \pm}}^{\mathbf{k} 3}=\left(\mathbf{m}_{1 \mathbf{z}}^{\mathbf{k}}+\varepsilon^{\prime} \mathbf{m}_{2 \mathbf{z}}^{\mathbf{k}}\right)+\varepsilon\left(\mathbf{m}_{1 \mathbf{z}}^{\mathbf{k}}+\varepsilon^{\prime} \mathbf{m}_{2 \mathbf{z}}^{\mathbf{k}}\right)^{*}
$$

where $\varepsilon=+1$ for $c \tau_{v}^{+}, \varepsilon=-1$ for $c \tau_{v}^{-}$and where $\varepsilon^{\prime}=-1$ for $c \tau_{1}^{ \pm}$and $\varepsilon^{\prime}=+1$ for $c \tau_{2}^{ \pm}$. Contrarily to what was written in [1], corepresentations $c \tau_{1}^{+}$and $c \tau_{1}^{-}$are equivalent (as well as $c \tau_{2}^{+}$and $c \tau_{2}^{-}$).

The magnetic structure, as deduced from the experiment, corresponds to corepresentation $c \tau_{1}^{+}$. It is defined by:

$$
m_{2 x}^{k}=-m_{1 y}^{k} ; \quad m_{2 y}^{k}=-m_{1 x}^{k} ; \quad m_{2 z}^{k}=-m_{1 z}^{k}
$$

[^0]in agreement with [1]. However, the additional condition [1] $m_{1 x}^{\mathbf{k}}=m_{1 y}^{\mathbf{k}}$ is wrong and should be replaced by
$$
m_{1 x}^{k}=\varepsilon\left(m_{1 y}^{k}\right)^{*}
$$

Concerning CeAl_{2}, this replacement is the essential point of this appendix.
More details will be presented elsewhere [2].

Acknowledgements

The author thanks J. Villain (CEA-Grenoble) and A.B. Harris.

References

[1] J. Schweizer, C. R. Physique 6 (2005) 375-384.
[2] J. Schweizer, J. Villain, A.B. Harris, in preparation.

[^0]: DOI of original article: 10.1016/j.crhy.2005.01.009.
 E-mail address: schweizer@cea.fr (J. Schweizer).

