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Abstract

This article is devoted to the generation and the quantum correlations of triple photons, which correspond to the creation of three
highly correlated photons from the splitting of a single photon by a phase-matched third-order parametric nonlinear process. These
triples constitute a Greenberger–Horne–Zeilinger state of light and are interesting from a fundamental point of view but also for
new schemes of quantum cryptography. We give here the classical and quantum descriptions of triple photon generation, we report
on the first experimental demonstration of such a generation, and we calculate the Wigner function of three-photon quantum states
of light. To cite this article: K. Bencheikh et al., C. R. Physique 8 (2007).
© 2006 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Les triplets de photons : un défi pour l’optique non linéaire et l’optique quantique. Cet article est consacré à la generation et
aux corrélations quantiques des triplets de photons. Il s’agit de la création de trois photons fortement corrélés produits à partir de la
scission d’un seul photon par un processus non linéaire paramétrique du troisième ordre à l’accord de phase. Ces triplets constituent
un état Greenberger–Horne–Zeilinger de la lumière ; ils sont intéressants non seulement d’un point de vue fondamental mais aussi
pour de nouveaux protocoles de cryptographie quantique. Nous donnons ici la description à la fois classique et quantique de la
génération de triplets de photons, nous décrivons la première démonstration expérimentale d’une telle génération, et nous calculons
la fonction de Wigner des états quantiques à 3 photons. Pour citer cet article : K. Bencheikh et al., C. R. Physique 8 (2007).
© 2006 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
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1. Introduction: from twin to triple photons

It was only three years after the invention of the laser in 1958 by Arthur L. Schawlow and Charles H. Townes
that the first nonlinear optical effect has been observed by Franken et al. [1]. Thanks to the strong electromagnetic
field delivered by the ‘freshly’ invented laser, they observed the birth of a new electromagnetic field oscillating at the
second harmonic frequency of the laser field shining on a quartz crystal. This was the beginning of a still ongoing
story, where laser and crystal technologies play a major role and in which nonlinear optics reached a high level of
maturity. A long road full of fundamental demonstrations and real applications have been achieved. Indeed, nonlinear
optical effects such second and third harmonic generation, sum frequency or frequency mixing have become very
common.

Quantum mechanically, the development of nonlinear optics allowed the generation and manipulation of new quan-
tum states of light, going from the simplest and common one, the so-called coherent states [2], to squeezed states [3,4],
Fock states [5] or entangled states [6].

Among the various nonlinear processes, twin photon generation is one of the most fundamental in manipulating
the quantum properties of light. Twin-photon generation is a second order nonlinear process in which a pump photon
disappears leading to the creation of two photons with lower energy. This generation is driven by an optical pump field
oscillating at the frequency ωp: it can occur spontaneously, which is called parametric fluorescence, or it can be forced
by a seed field oscillating at one or both of the twin photon frequencies; this is the optical parametric amplification, or
optical parametric oscillator if the twin photon generation process is enhanced by a resonant cavity.

From the classical point of view, the main interest of a parametric twin beam based process relies in the possibility
of obtaining a widely tuneable optical source. Tuneability is associated to the choice of the emission frequency by the
phase-matching condition, which corresponds to photon momentum conservation. These types of sources are nowa-
days commercially available and are widely used in research laboratories. They largely and advantageously expand
the spectral regions attained by lasers. Although parametric amplifiers and oscillators are used as ‘lasers’ in most usual
applications, an inherent property makes them deeply different from lasers: in a laser, photons are emitted one-by-one
according to Poisson statistics; this is no longer the case in optical parametric twin-photon generators where the pho-
tons are emitted by pairs, altering drastically their behaviour at the very heart of several non classical properties, such
as second order coherence, quantum correlations between the twins, squeezing of quantum fluctuations and, the more
intriguing, quantum entanglement. Besides the tuneable optical parametric sources that are widely developed nowa-
days, these quantum aspects constitute the key feature in huge number of demonstrations such as noiseless optical
amplification [7], quantum cryptography [8] and quantum teleportation [9].

Since the twin photons have deeply influenced the history of nonlinear and quantum optics by their wide range of
applications and their paradigmatic place they stand in generating new quantum states of light, we can ask whether
the properties of triple photons can play a similar major role in the future of nonlinear and quantum optics.

From the classical point of view, triple photon generation is a real challenge. Indeed, a few attempts have been
made in the past ten years, but without any success. These failures were due in part to the weak magnitude of the
third order electric susceptibility, but also to partial knowledge of the specific of the corresponding processes, which
cannot be deduced from a simple analogy with second order interactions. The most symptomatic feature deals with
the phase-matching properties, since a third order parametric fluorescence would generate a broad continuum instead
of discrete wavelengths, which leads to a huge spreading of the energy and thus to a weak amount of photons per
generated spectral component. This behaviour is due to the existence of only two equations, i.e. the energy and
momentum conservations, to fix the values of three parameters, i.e. the wavelengths of the three generated photons.
The development of the classical theory of the third order nonlinear parametric interactions is then the starting point,
from which it will be possible to define the most suitable schemes to achieve an efficient triple photon generation and
hence to perform quantum experiments.

Quantum mechanically, triple photon generation is obviously the most direct way to produce pure quantum states
of light whose statistics go beyond the usual Gaussian statistics associated with coherent sources and optical para-
metric twin-photon generators. The simultaneous birth of three photons is indeed at the origin of intrinsic three-body
quantum properties such as three-particle Greenberger–Horne–Zeilinger quantum entanglement and Wigner functions
presenting quantum interferences and negativities.

From the seminal work of [10,11] on optical parametric conversion to the nowadays mature sources for both
classical and quantum optical applications, a long road has been covered thanks to the development of a classical and
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a quantum theoretical framework that has allowed one to drive the experimental efforts, and thanks to the development
of high-quality and highly second order nonlinear optical materials. As regards three-photon generation, the story
is only starting and efficient third order nonlinear materials beyond three-photon generation as efficient as those
permitting twin-photon generation are not yet available.

In this article, we consider the generation of triple photons where a pump field incident on a nonlinear material gives
birth simultaneously to three photons. We give a classical description of the phenomenon and a realistic scheme that
lead to the first experimental demonstration of an optical parametric amplification based on three-photon generation
in a KTP crystal. Furthermore, we calculate the efficiency of a third order parametric fluorescence process, and we
address, through the calculation of the Wigner function, the quantum properties of three-photon quantum states of
light, showing their purely non classical behaviour.

2. Classical theory of parametric third-order nonlinear optics

Two possible schemes of third-order nonlinear optical interactions can be distinguished according to energy con-
servation:

h̄ω0 + h̄ω1 = h̄ω2 + h̄ω3 (1)

h̄ω0 = h̄ω1 + h̄ω2 + h̄ω3 (2)

Relation (1) corresponds to a wide range of nonlinear processes such as a nonlinear index, two-photon absorption,
solitons, phase conjugation, four-wave mixing or Raman scattering, for example. These interactions are not able to
produce photon triples, since none of the four photons involved have an energy equal to the sum of the energy of the
three others, contrary to the situations described by relation (2). Actually in this last case, the splitting of a photon at
h̄ω0 can lead to the generation of three lower-energy photons at h̄ω1, h̄ω2 and h̄ω3, which corresponds to third order
parametric fluorescence as shown in Fig. 1.

Note that third order sum-frequency generation, like third harmonic generation for example, is the reverse process
of triple photon generation: it is also described by relation (2), but it corresponds to the fusion of three incoming
photons at h̄ω1, h̄ω2 and h̄ω3, leading to the generation of a photon at h̄ω0.

The Cartesian coordinates of the four spectral components of the macroscopic third order electronic polarization
of a unit volume corresponding to a nonlinear process described by relation (2) are given by [12]:

P
(3)
i (ωa) = ε0 ·

∑
j,k,l

(
χ

(3)
ijkl(ωa = ωb + ωc + ωd) · Ej(ωb) · Ek(ωc) · El(ωd)

)
(3)

with {ωb,ωc,ωd} = {ω1,ω2,ω3}, {ω0,−ω2,−ω3}, {ω0,−ω1,−ω3}, {ω0,−ω1,−ω2} for ωa = ω0,ω1,ω2,ω3 re-
spectively; the Cartesian indices i, j, k, and l are relative to the optical frame (O,x, y, z), the Eα are the components
of the complex amplitudes of the electric fields of the four interacting waves, and the χ

(3)
ijkl are the components of the

third order electric susceptibility tensor of the medium at the different circular frequencies.
χ(3) is a rank-four polar tensor: it has 81 independent components in the general case, but Kleinmann approx-

imation and the orientation symmetry of the medium according to the Neumann principle allow us to reduce this

Fig. 1. Photonic diagram of the parametric fluorescence governed by the third order electric susceptibility χ(3): an incoming photon at h̄ω0 is
splitted into three photons at h̄ω1, h̄ω2 and h̄ω3 in the nonlinear medium.



K. Bencheikh et al. / C. R. Physique 8 (2007) 206–220 209
number [13]. Both centrosymmetric and noncentrosymmetric crystal classes have a nonzero third order electric sus-
ceptibility, its magnitude being very weak and ranging typically between 10−21 m2/V2 and 10−19 m2/V2 [14].

In the case of non magnetic and non-conducting medium, the resolution of Maxwell equations leads to the follow-
ing propagation equations for each of the four interacting waves:

−→rot
(−→rot

( �E(ωi)
)) + μ0 · ε0 · εr(ωi) · ∂2 �E(ωi)

∂t2
= μ0 · ∂2 �P (3)

∂t2
(4)

where i = 0,1,2, or 3, and the Cartesian components of �P (3) are given by (3).
By considering that the four interacting waves propagate in the same direction, Z, by neglecting the absorption

and by assuming the slowly varying envelope and ABDP approximation, i.e., χ
(3)
ijkl(ω0 = ω1 +ω2 +ω3) = χ

(3)
j ikl(ω1 =

ω0 −ω2 −ω3) = χ
(3)
kij l(ω2 = ω0 −ω1 −ω3) = χ

(3)
lijk(ω3 = ω0 −ω1 −ω2) Eq. (4) leads to the following coupled system:

∂E(ωa)

∂Z
= j · π · χ(3)

eff

n(ωa) · λa. cos(γ (ωa))
· E(ωb) · E(ωc) · E(ωd) · ej.ξ.�k.Z (5)

with {ωb,ωc,ωd, ξ} = {ω1,ω2,ω3,−1}, {ω0,−ω2,−ω3 + 1}, {ω0,−ω1,−ω3,+1}, {ω0,−ω1,−ω2,+1} for ωa =
ω0,ω1,ω2,ω3 respectively.

n(ωi) is the refractive index corresponding to E(ωi), λi = 2π ·c
ωi

is the wavelength associated with ωi , and γ (ωi) is
the walk-off angle corresponding to the double refraction effect.

The effective coefficient, χ
(3)
eff , is the contraction between the third order electric susceptibility tensor χ(3) and the

field tensor F (3) [13]:

χ
(3)
eff = χ(3) · F (3) (6)

where F (3) is also a rank-four tensor expressed as the tensorial product ⊗ between the unit electric field vectors of the
four interacting waves:

F (3) = �e(ω0) ⊗ �e(ω1) ⊗ �e(ω2) ⊗ �e(ω3) (7)

The symmetry and the components of the field tensor are directly linked with the configuration of polarization of
the nonlinear process, and thus they are trigonometric functions of the direction of propagation [13]. So the effective
coefficient depends on both the linear and nonlinear optical properties.

The phase mismatch �k is given by:

�k = k0 − k1 − k2 − k3 (8)

where ki = ωi

c
n(ωi) is the modulus of the wave vector associated with �E(ωi). The product �k · Z represents the

dephasing between the nonlinear polarization �P (3)(ωi) and the corresponding radiated electric field �E(ωi). The trans-
fer of energy between the interacting waves is maximum for �k = 0, which defines phase-matching: it is realized
by the matching of the refractive indices using birefringence of anisotropic media. Phase-matching can be achieved
only if the direction of propagation has a birefringence that compensates the dispersion. Except for a propagation
along the optical axis, there are two possible values, n+ and n−, which are the two solutions of the Fresnel equation
[13], for each of the four refractive indices involved in relation (8). Thus, there are 24 possible combinations of re-
fractive indices, but only 7 are compatible with both the dispersion in frequency, the phase-matching relation (8) and
the energy conservation (2): {−,+,+,+}, {−,−,−,+}, {−,−,+,−}, {−,+,−,−}, {−,−,+,+}, {−,+,−,+}
and {−,+,+,−} corresponding to {n(ω0), n(ω1), n(ω2), n(ω3)} [13]. The loci of the phase-matching direction of
each of these configurations are calculated by using the corresponding phase-matching relation and the dispersion
equations of the principal refractive indices of the considered crystal. Note that from the point of view of the quan-
tum theory of light, the phase-matching of the waves corresponds to the total photon-momentum conservation, i.e.
h̄�k0 = h̄�k1 + h̄�k2 + h̄�k3. For a fixed direction of propagation and a given pump wavelength λ0, the triple (λ1, λ2, λ3)

generated by parametric fluorescence is not a single one but is spread over a broad continuum. Actually, there are
only two coupled relations, i.e. the energy and the momentum conservations, for the determination of three unknown
values. Note that it is different in the case of the second order parametric fluorescence for which there are only two
unknown values. Fig. 2 gives the example of a propagation along x-axis in a KTiOPO4 crystal with λ0 = 532 nm and
with the following configuration: λ

(−) → λ
(+) + λ

(−) + λ
(+).
0 1 2 3
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Fig. 2. Calculated phase-matching curves corresponding to the parametric fluorescence λ
(−)
0 → λ

(+)
1 + λ

(−)
2 + λ

(+)
3 along x-axis of KTP pumped

at λ0 = 532 nm.

The calculations show a huge spreading, which covers the range 950 to 4500 nm. Such a situation is strongly
detrimental to our objective. Actually, it is necessary to concentrate the energy on a single triple if we want to be
able to make any observation and measurement, all the more so since the amplitude of χ(3) is weak. An alternative
to avoid any spreading is to fix the value of the wavelength of one photon of the triple: it can be done by irradiating
the nonlinear medium with the pump beam at λ0 and an injection beam at λ1, λ2 or λ3. This process corresponds to a
parametric difference-frequency mixing. From the quantum point of view, this process can be seen as the stimulated
splitting of the pump photon by the injection photon, and thus the corresponding generated optical state contains a
mix of (ω1,ω2,ω3) triple photons and injection photons at ω1, ω2 or ω3. Note that the triple generation can also be
stimulated by two injection photons.

Contrary to χ(2) processes, the quasi-phase-matching of χ(3) interactions is not possible in periodically poled
crystals such as PPLN and PPKTP, or any other ferroelectric crystals: the technique of Z-axis reversal does not lead
to the reversal of the sign of the highest third order nonlinear coefficient, χ

(3)
zzzz, since this coefficient is relative to an

even number of the Z-Cartesian index. Note that in the case of an odd number, the quasi-phase-matching of a third
order parametric process would be possible.

The complex electric field amplitudes in Eq. (5) are written E(ωi) = |E(ωi)| · ejφi , where i stands for 0, 1, 2 and
3, and the angles φi correspond to the initial phases. In the case of phase-matching, i.e. �k = 0, system (5) becomes:

∂|E(ωa)| · ejφa

∂Z
= j · π · χ(3)

eff

n(ωa) · λa · cos(γ (ωa))
· ∣∣E(ωb)

∣∣ · ∣∣E(ωc)
∣∣ · ∣∣E(ωd)

∣∣ · ej (φb+φc+φd) (9)

with {(ωb,φb), (ωc,φc), (ωd,φd)} = {(ω1, φ1), (ω2, φ2), (ω3, φ3)}, {(ω0, φ0), (−ω2,−φ2), (−ω3,−φ3)}, {(ω0, φ0),

(−ω1,−φ1), (−ω3,−φ3)}, {(ω0, φ0), (−ω1,−φ1), (−ω2,−φ2)} for ωa = ω0,ω1,ω2,ω3, respectively.

In the case of the generation of triple photons, which corresponds to ∂|E(ω0)|
∂Z

< 0 and
∂|E(ωi �=0)|

∂Z
> 0, the initial

phases are necessary locked such as φ0 − φ1 − φ2 − φ3 = −π/2. This situation is considered for the following
calculations.

We take the example of a triple photon generation pumped at ω0 and stimulated by two injection photons at ω1

and ω2, which corresponds to |E(ωi �=1,Z = 0)| �= 0 and to |E(ω1,Z = 0)| = 0. Then the integration of Eqs. (9)
over the crystal length L leads to the intensity of each of the four interacting beams, according to I (ωi,Z = L) =
1
2n(ωi)

√
ε0
μ

|E(ωi,Z = L)|2 [15]:

0
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Fig. 3. Calculated intensities of a phase-matched parametric third order frequency mixing along the direction of propagation in a KTP crystal;
ω0 = 3ω, ω1 = ω2 = ω3 = ω.⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

I (ω0,Z = L) = I (ω0,Z = 0) · (γ31 + γ01) · cn2(a1 · L|1 − m1)

Γ

I (ω1,Z = L) = γ31 · γ01 · sn2(a1 · L|1 − m1)

Γ

I (ω2,3,Z = L) = I (ω2,3,Z = 0) · (γ31 + γ01) · (β2,3 · sn2(a1 · L|1 − m1) + cn2(a1 · L|1 − m1))

Γ

(10)

where sn(u|m) and cn(u|m) are Jacobi elliptic functions,

Γ = γ31 · m1 · sn2(a1 · L|1 − m1) + (γ31 + γ01) · cn2(a1 · L|1 − m1)

γij = λi

λj

I (ωi,Z = 0) + I (ωj ,Z = 0)

β2 = 1, β3 = m1 with m1 = γ21 · (γ01 + γ31)

γ31 · (γ01 + γ21)
, and

a1 = Λ1

2
· √γ31 · (γ01 + γ21) with Λ1 =

√
μ0

ε0
· 4π · χ(3)

eff√
n(ω0) · n(ω1) · n(ω2) · n(ω3)

·
√

λ1

λ0 · λ2 · λ3

We consider as a numerical example the interaction 3ω− → ω+ + ω+ + ω−, with λω = 1620 nm, I (ω0 = 3ω,Z =
0) = 21 GW/cm2 and I (ω2 = ω,Z = 0) = I (ω3 = ω,Z = 0) = 1 GW/cm2, phase-matched along the X-axis of KTP.
The corresponding curves are plotted in Fig. 3.

According to the periodic evolution of the Jacobi elliptic functions, the intensities of the four interacting fields have
a periodic evolution: the photon fusion ω+ + ω+ + ω− → 3ω− starts up when the pump at 3ω is completely depleted
by the splitting 3ω− → ω+ + ω+ + ω−, and so on. That kind of behaviour is the same than for the second order
parametric interactions [16].

Having established the main theoretical framework able to describe classically the three-photon generation, we will
in the next section address the quantum aspect of three-photon generation.

3. Parametric three-photon fluorescence

The generated three photons are analogous to the Greenberger–Horne–Zeilinger (GHZ) states. They are very attrac-
tive because of their three-body quantum correlations that can find a wide range of applications in quantum information
domain and more particularly in quantum cryptography. The starting point to the quantum description of three-photon
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generation is the estimation of the number of the triplets generated in the fluorescence process by which a pump pho-
ton with energy h̄ω0 incident on a third order nonlinear crystal splits into three highly correlated photons following
the energy conservation relation given by Eq. (2), and the photon momentum conservation:

�k0 = �k1 + �k2 + �k3 (11)

In this process, the only fixed quantities are the pump frequency ω0 and the pump momentum vector �k0. The determi-
nation of the fluorescence power is based on the Fermi golden rule [17]

W = 2π

h̄

∣∣〈�k1, �k2, �k3
∣∣Ĥi |0,0,0〉∣∣2

ρ (12)

that gives the rate of transition from the three-photon quantum state |0,0,0〉 containing no photons in each mode to
the three-photon quantum state |�k1, �k2, �k3〉 with a single photon having a momentum �ki in each of the three modes. In
Eq. (12), ρ is the density per unit energy of the final states and the Hamiltonian Ĥi describes the third order nonlinear
interaction process responsible of the generation of triple photons. It is expressed as following:

Ĥi = 3

4
ε0χ

(3)

(
2h̄

ε0L3

)2 √
ω0ω1ω2ω3

n0n1n2n3
α0

∫
d3�r (

f (�r)â+
1 â+

2 â+
3 e+i��k.�r−i�ωt + h.c.

)
(13)

where h.c. denotes the Hermitian conjugate. α0 is a complex number representing the amplitude of the pump field
that is supposed strong enough to be described classically; â+

i (i = 1,2,3) are the creation operators describing the
triple photons, L3 is the quantification volume and f (�r) = √

2/π(L/w0) exp(−�r2/w2
0) is a normalization function

that accounts for the Gaussian profile of the pump field having a waist size w0. In Eq. (13), the quantities ��k =
�k0 −�k1 −�k2 −�k3 and �ω = ω0 −ω1 −ω2 −ω3 denote the photon-momentum and the energy mismatches, respectively.

The density of final states per unit energy is deduced from the number of modes contained in the element
d3 �k1 d3�k2 d3�k3. It is given by:

ρ = 1

(2π/L3)3

(
n1

h̄c

)3

E2
1 d3�k2 d3�k3 (14)

where E1 = h̄ω1 and 2π/L3 being the elementary volume occupied by a single mode. The radiated power in the
frequency interval dω2 along the direction �k2 within the solid angle dΩ2 is obtained by multiplying (12) by h̄ω2 and
integrating over d3�k3. Using (12)–(14), we obtain:

P2 = 9h̄2

128π4ε2
0c

7

[
χ(3)

]2 n1n2

n0n
2
3

P0Lintω
3
1ω

4
2ω3 dω2 dΩ2

= 288h̄2π5c2

8ε2
0

[
χ(3)

]2 n1n2

n0n
2
3

P0Lint
dλ2 dΩ2

λ3
1λ

6
2λ3

(15)

For comparison, we recall the expression of the integrated signal power generated in the case of twin-photon paramet-
ric fluorescence ωP → ωs + ωi [17]:

Ps = h̄

πε0c3

d2

n2
p

PpLint
ω3

s ω
2
i

ωp

dωs = 32h̄π4c

ε0

d2

n2
p

PpLint
λp

λ5
s λ

2
i

dλs (16)

where the subscripts p, s and i stand for the pump, signal and idler photons, respectively; d is the effective second
order nonlinear coefficient. Eq. (16) can be compared to Eq. (15), making abstraction of the solid angle dΩ2, which
vanishes after the integration.

As in the case of twin-photon, triple-photon parametric fluorescence is proportional to the pump power and to the
interaction length Lint. However, Eq. (15) shows that the generated power varies like the reciprocal of the tenth power
of the triple-photons wavelengths. In comparison, the fluorescence power of the generated twin-photons given by (16)
shows a dependence to the inverse of the seventh power of the twin-photons wavelengths. Though the efficiency is
strongly dependent on the wavelength, triple-photon generation is more severely limited by the rather low values of
the third order nonlinear susceptibility, i.e. χ(3) ≈ 10−21 m2/V2, of the most known materials at present days.

Considering the laser source and nonlinear crystal that are used in the present study, we can easily make an estimate
from Eq. (15) of the number of triplets we expect to generate with the maximum available pump intensity of about
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350 GW/cm2, corresponding to a pump power P0 = 37 MW, within the 25-mm-long KTP crystal. For simplicity, we
suppose that all three wavelengths are equal and are taken to be λ1 = λ2 = λ3 ≈ 1665 nm. For a detection bandwith
dλ = 50 nm and dΩ = 10−5 str, we find that the generated power is about P2 ≈ 3 × 10−17 W, which is very low
to be detected. Indeed, if we consider a 10 Hz repetition rate and a 22 ps pulse duration laser source, we expect to
produce less than 0.01 triplets per day, whereas, according to Eq. (16), about 106 twins per day are generated if we
consider the twin-photon generation process in the same KTP crystal pumped with same pump power at 532 nm and
when the phase-matching condition is fulfilled in order to produce degenerate twin photons at 1064 nm, the second
order nonlinear susceptibility of the crystal being taken at d ≈ 1 pm/V. At this stage, the efficiency of triple-photon
parametric fluorescence is still very low in comparison with twin-photon fluorescence. This prevents us performing
any parametric fluorescence experiments to detect the triplets and studying their quantum properties.

Thus the main conclusion of this quantum description is that it will be necessary to stimulate the photon splitting
to achieve an efficient triple photon generation, as proposed above within the framework of the classical description
on the basis of the phase-matching analysis.

4. Three-photon quantum states of light

A full quantum theoretical analysis of the three-photon states is contained in the Wigner function [18]:

W(q,p) = 1

2π

+∞∫
−∞

eipx〈q − x/2|ρ̂|q + x/2〉dx (17)

that has proven to be very helpful to visualize in the phase space — the amplitude q and phase p quadratures —
quantum mechanical system defined by its density matrix ρ̂ = |ψ〉〈ψ |. This has already been the case for some
quantum states of light such as the coherent state, the squeezed vacuum or the bright squeezed state [19,20], whose
Wigner function has been experimental reconstructed using homodyne quantum tomography, a technique that allows
the measurement of the marginal probability distribution

P(q, θ) = 1

2π

+∞∫
−∞

W(q cos θ − p sin θ, q sin θ + p cos θ)dp (18)

that expresses the quadrature amplitude distribution.
More generally, the Wigner function contains the full information about the quantum states. More particularly, it

allows us to establish the quantum correlations between the different generated modes in the case of twin photons or
photon triplets. The Wigner function is a positive definite function in the phase space for classical states with Gaussian
marginal probability distributions. However, it can be negative in some circumstances for particular quantum states of
light. These negativities are the signature of highly nonclassical behaviour of a quantum state as it has been observed
for a quantum state of light prepared in a single-photon Fock state [5]. These quantum negativities are also present
in the case of complete degenerate three-photon states obtained by third order optical parametric fluorescence or
amplification. This particular case has been investigated by K. Banaszek et al. [21] and T. Felbinger et al. [22], who
showed that the Wigner function has a shape of star with three branches in the phase space.

According to the definition (17), the knowledge of the Wigner function depends on the determination of the density
operator of the quantum state and thus on the determination of the wave function itself:∣∣ψ(t)

〉 = eiĤi t/h̄
∣∣ψ(0)

〉
(19)

where Ĥi = h̄g(âpâ+2
e â+

o + â+
p â2

oâe) is the interaction Hamiltonian accounting for the nonlinear process through the

third order nonlinear coefficient g proportional to χ(3) and where the annihilation (creation) of a pump photon leads
to the creation (annihilation) of two photons in the extraordinary mode e and one photon in the ordinary mode o. Here,
we consider the relevant situation where 2 photons (called e) out of 3 are degenerate. We also suppose that all three
photons have the same energy h̄ω. This particular configuration is suited to describe theoretically the experimental
situation of the next section. The two degenerate e modes are easily obtained by a linear superposition of the modes
λ+ = λ− = 1665nm. The o mode is that corresponding to λ− = 1474 nm.
2 3 1



214 K. Bencheikh et al. / C. R. Physique 8 (2007) 206–220
At instant t = 0, the wave function of the quantum system can be decomposed as:∣∣ψ(0)
〉 = |β,α,0〉 =

∞∑
n=0

∞∑
m=0

e−(|β|2+|α|2)/2 βnαm

√
n!m! |n,m,0〉 (20)

where the pump and extraordinary modes are considered to be coherent states |β〉 and |α〉. The state |n,m,0〉 =
|n〉|m〉|0〉 is the product of the Fock states with n photon in the pump mode, m photon in the extraordinary mode and
no photon in the ordinary mode. The case |α �= 0〉 corresponds to the injection at λ+

2 = λ−
3 = 1665 nm in the seeded

KTP-based optical parametric amplifier. The particular situation of no photon in the extraordinary mode can easy be
deduced by reducing the sum over m to the first term m = 0. Since the free-field Hamiltonian Ĥ0 = 3h̄ωâ+

p âp +
2h̄ωâ+

e âe + h̄ωâ+
o âo is a constant of motion, the total photon number 3〈â+

p âp〉 + 2〈â+
e âe〉 + 〈â+

o âo〉 is conserved.

Moreover, it is easy to show that the set of quantum states �Ψ T = {|n − k,m + 2k, k〉, k = 0, . . . , n} are eigenstates
of the Hamiltonian Ĥ0. Our calculations of the Wigner function corresponding to the state (19) are inspired by the
pioneering work of D.F. Walls and R. Barakat in the early 1970s [23]. A preliminary step is the calculation of the state
|ψ(t)〉 itself. This is done by first computing the eigenstates and the eigenvalues of the interaction Hamiltonian Ĥi , or
in other words diagonalize the (n + 1) × (n + 1) matrix A such that:

Hi
�Ψ T = h̄gA. �Ψ T (21)

and where:

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 a1 · · · 0
a1 0 a2

0 a2 0 a3
...

. . .
...

. . . 0
0 · · · 0 an−1 0 an

0 · · · 0 an 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(22)

with al = √
(n − k + l)(m + 2l + 1)(m + 2l + 2)l, l = 1, . . . , n.

The eigenstates �Φ of the Hamiltonian Ĥi are linear superpositions of the free-field Hamiltonian eigenstates �Ψ .
This is expressed through the relation �ΦT = U. �Ψ T where U is a (n + 1) × (n + 1) matrix whose each row i elements
are the eigenstates of the matrix A with the eigenvalue λi . After some mathematical manipulations, we deduce the
three-photon quantum state:

∣∣ψ(t)
〉 = e−(|β|2+|α|2)/2

∞∑
n=0

∞∑
m=0

n+1∑
l=1

n∑
k=0

βnαm

√
n!m!e−irλl ul,1ul,k+1|n − k,m + 2k, k〉 (23)

where r = g × t , with t being the interaction time, and ui,j are the matrix U elements. Eq. (23) expresses that the final
quantum state can be written as a complex linear superposition of the Fock states |n − k,m + 2k, k〉.

Fig. 4 shows the so-called star state Wigner function in the case of completely degenerate three photons generation.
This Wigner function is obtained by setting α = 1 and m = 0 in Eq. (23). We obtain:

∣∣ψ(t)
〉 = e−|β|2/2

∞∑
n=0

n+1∑
l=1

n∑
k=0

βn

√
n!e

−irλl ul,1ul,k+1|n − k,3k〉 (24)

and the corresponding density operator:

ρ̂ = Trp
(∣∣ψ(t)

〉〈
ψ(t)

∣∣) =
∞∑

j=0

〈
j |ψ(t)

〉〈
ψ(t)|j 〉

(25)

where the trace is made over the Fock states |j 〉 of the pump mode. The Wigner function represented in Fig. 4 is
obtained for a pump field in the coherent state |β = 2〉. Such weak pump field is considered in order to reduce the
long calculation times. The Wigner function in Fig. 5 shows a star-state shape with interferences that can take negative
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Fig. 4. Wigner function of a degenerate three-photon quantum state for |ψ(t = 0)〉 = |β = 2,0〉.

Fig. 5. Left: Wigner function of degenerate triplet photons for a pump field in the Fock number state |1〉. Right: Wigner function of a Fock number
state |3〉.

Fig. 6. Left: Wigner function of degenerate triplet photons for a pump field in the Fock number state |2〉. Right: Wigner function of a Fock number
state |6〉.

values as predicted in Refs. [21,22]. This confirms the validity of our calculations. Moreover, if we consider a pump
field in a single photon Fock state |n3ω = 1〉, the Wigner function (Fig. 5) associated with the quantum state of the
generated three photons is similar to the Wigner function of the Fock state |nω = 3〉 as we expect. Similarly, we obtain
a Wigner function (Fig. 6) close to the one of the Fock state |nω = 6〉 when the pump field is in the photon number
state |n3ω = 2〉.
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Consider now the situation in which the annihilation of a pump photon leads to the generation of two degenerated
photons in the extraordinary mode e and to the creation of a third photon in the ordinary o mode. This situation
corresponds to the experimental configuration described in the next paragraph. The quantum state of these photons
is given by the wave function (23). The Wigner representation in Fig. 7 of the quantum state of the photons in the
e mode is obtained after calculating the density operator traced over the Fock states |jp〉 and |fo〉 of the pump and
ordinary modes:

ρ̂e = Trp+o

(∣∣ψ(t)
〉〈
ψ(t)

∣∣) =
∞∑

jp=0

∞∑
fo=0

〈
jp,fo

∣∣ψ(t)
〉〈
ψ(t)

∣∣jp,fo

〉
(26)

whereas the Wigner function (Fig. 7) of the quantum state of the photons in mode o is obtained using the density
operator:

ρ̂o = Trp+e

(∣∣ψ(t)
〉〈
ψ(t)

∣∣) =
∞∑

jp=0

∞∑
fe=0

〈
jp,fe

∣∣ψ(t)
〉〈
ψ(t)

∣∣jp,fe

〉
(27)

where the trace operation is made this time over the Fock states |jp〉 and |fe〉 of the pump and extraordinary modes.
Though the Wigner functions of both modes show non-Gaussian shapes, they do not take negative values like the
Wigner function of fully degenerated three-photon state.

The ordinary and extraordinary modes are experimentally distinguishable since they have different wavelengths
and can thus be separated. The quantum correlations between the quadratures of the two modes can be theoretically
estimated using their joint probability distribution defined as:

P(Xo,Xe) =
+∞∫

−∞

∣∣〈X̂p, X̂o, X̂e

∣∣ψ(t)
〉∣∣2 dXp (28)

and represented in Fig. 8 for different pump fields and r parameters. The figure shows cross shaped probability
distributions revealing quantum correlations between the o and e mode quadratures. Indeed, when measuring the
quadrature of the mode o photons, it is most likely to obtain the same quadrature value for the e mode photons.
However, at this stage, the observation of such quantum correlations is strongly limited due to the low efficiency in
generating triple photons. This is equivalent to have r � 1 in our calculations.

5. First experiments in triple photon generation

We considered a triple generation pumped at ω0 and stimulated by two injection photons, at ω2 and ω3. We identi-
fied KTP as a good potential material: its third order non-linearity is high, of about 10−21 m2/V2 [24], phase-matching
is allowed for standard pump wavelengths, and big size crystals with very high optical quality are available. How-
ever, our motivation being to generate a pure optical triple state, we have to take care of any possible second order
processes which may occur during the wanted third order interaction since KTP is a noncentrosymmetric crystal. Ac-
tually, three possible second order cascading interactions with nonzero effective coefficients can occur in the direction
of propagation where the third order process is phase-matched:

χ(2)(ω2 + ω3 → Ωa) : χ(2)(ω0 − Ωa → ω1), χ(2)(ω0 − ω2 → Ωb) : χ(2)(Ωb − ω3 → ω1) and

χ(2)(ω0 − ω3 → Ωc) : χ(2)(Ωc − ω2 → ω1)

These interactions can pollute the triple photon experiment because they involve the same incident photons, at
ω0, ω2, ω3, and produce photons at ω1, the generation at the new circular frequencies Ωa , Ωb and Ωc revealing the
occurrence of such events. Even if the quadratic processes are not phase-matched, they might be more efficient than
the phase-matched cubic process itself because of the relative amplitudes of the χ(2) and χ(3) coefficients. It is then of
prime importance to minimize the contributions of all the cascading processes. We performed a complete calculation
that takes into account both the second- and third-order processes by assuming that the pump and injection beams are
undepleted, i.e. ∂E(ω0) = ∂E(ω2) = ∂E(ω3) = 0 [25]. It is then possible to calculate the cascading rate, which is the
∂Z ∂Z ∂Z
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Fig. 7. Left: Wigner function of the photons in the ordinary mode. Right: Wigner function of the photon in the extraordinary mode. For both modes,
the pump field is in the coherent state |β = 1〉 and the nonlinear interaction parameter r = 5.6.

Fig. 8. Density of the joint probability distribution of the ordinary and extraordinary three photons. The pump field and the r parameter are: (a)
|β = 1, α = 0,0〉 and r = 1.0; (b) |β = 2, α = 0,0〉 and r = 0.5; (c) |β = 3, α = 0,0〉 and r = 0.3.
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Fig. 9. Generated intensity at λ1 = 1474 nm along the X-axis of KTP as a function of the pump intensity at λ0 = 532 nm; the injection intensity at
λ2 = λ3 = 1665 nm is maintained at 100 GW/cm2. The crystal length is L = 25 mm. The circles are the experimental data, and the straight line is
the associated linear fit.

ratio between the intensity generated at ω1 by the cascading process only, I (2)(ω1,Z = L), and by the phase-matched
third order interaction, I (3)(ω1,Z = L) [25]:

η = I (2)(ω1,Z = L)

I (3)(ω1,Z = L)
=

(∑
i

(− π

n(Ωi)·λΩ,i ·cos2(γ (Ωi))
· χ

(2)-I
eff,i ·χ(2)-II

eff,i

�k
quad
i

)
χ

(3)
eff

)2

(29)

where the index i = a, b, c refers to the ith cascading process involving the intermediate circular frequency Ωi ; the
phase-mismatch �k

quad
i , and the effective coefficients of the two associated quadratic interactions, χ

(2)-I
eff,i and χ

(2)-II
eff,i .

Note that �k
quad-I
i = −�k

quad-II
i (= �k

quad
i ) since the χ(3) process is phase-matched.

Among the seven possible χ(3) phase-matching types and all the corresponding directions in KTP, we chose to re-
alize the experiment of triple photon generation with the mode combinations {−,+,+,−} for {n(ω0), n(ω1), n(ω2),

n(ω3)} and the X-axis because the corresponding third order effective coefficient is maximal, the walk-off angle is
nil, the cascading rate is weak, i.e. η = 0.5%, and the waves at ω2 = ω3 can be easily separated because their polar-
izations are orthogonal [25]. The 25-mm-long KTP crystal cut along the X-axis is pumped with a doubled Nd:YAG
laser at λ0 = 532 nm with a pulse duration of 22 ps (FWHM) and a 10 Hz repetition rate. The injection beam at
λ2 = λ3 is emitted by a tuneable Optical Parametric Generator pumped with the third harmonic of the Nd:YAG laser.
The polarizations of the pump and injection beams are adjusted according to the chosen phase-matching configu-
ration, i.e. {−,+,+,−}. The injection wavelength λ2 = λ3 corresponding to a perfect phase-matching is found at
1665 nm. The wavelength of the associated generated beam is measured at λ1 = 1474 nm, which is exactly equal to
(λ−1

0 −λ−1
2 −λ−1

3 )−1 according to the energy conservation. Our photodiode cannot detect any signal at λa = 832.5 nm
or at λb = λc = 781.8 nm that correspond to the intermediate wavelengths involved in the second order cascading
processes, while photons at λ1 = 1474 nm can be detected. These processes are then negligible with regard to the
third order parametric interaction, as expected from the calculation. The measured intensity I (λ1,Z = L) is plotted
in Fig. 9 as a function of the pump intensity, I (λ0,Z = L), the injection intensity, I (λ2,Z = L) + I (λ3,Z = L) with
I (λ2,Z = L) = I (λ3,Z = L), being maintained at a fixed value of 50 GW/cm2 [26]. The amount of the generated
intensity is such that an undepleted pump and injection approximation can be assumed for the fit. Thus I (λ1,Z = L),
which is given by the combination of Jacobian elliptic functions (10), reduces to a simple linear function of the
product of the three incident intensities, i.e. I (λ0,Z = L).I (λ2,Z = L).I (λ3,Z = L). These first results are encour-
aging: we obtained as much as 4.5 µJ/pulse at λ1 = 1474 nm, which corresponds to N(ω1,Z = L) = 3.34 × 1013

photons/pulse [26]. That means that 3.34 × 1013{ω1,ω2,ω3} triple photons/pulse are created, since the generation at
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ω1 is symptomatic of the triple photon generation. Note that the photons at ω2 and ω3 that belong to the triple state are
mixed with the injection photons, i.e. N(ω2,Z = 0) = 4.19 × 1014 photons/pulse and N(ω3,Z = 0) = 4.19 × 1014

photons/pulse, the number of pump photons being N(ω0,Z = 0) = 2.0 × 1015 photons/pulse.

6. Conclusion

The experiment described in the last section has demonstrated the feasibility of the generation of triple photons in
the travelling wave regime based on a double injection scheme in a phase-matched KTP crystal, opening the door to
quantum correlations measurements.

Despite of this good result, KTP is probably not the best material for the purpose, the magnitude of its third order
electric susceptibility being not so high. The identification of a better phase-matched crystal with a higher cubic
nonlinearity is then an open issue. Recently, we shown that TiO2 rutile could be an interesting candidate, with a
figure of merit 7.5 times that of KTP [27]. Furthermore it is a centrosymmetric crystal, so that no quadratic processes
able to pollute the triple photons can occur. Other materials, like photonic crystals or fibers have also to be seriously
considered.

Finally, by achieving the triple photon generation inside a resonant cavity, which corresponds to a third order
optical parametric oscillator, it may be possible to increase the ratio between the generated photons and the injection
ones.
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