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Abstract

Extreme ultraviolet lithography (EUVL) technology and infrastructure development has made excellent progress over the past
several years, and tool suppliers are delivering alpha tools to customers. However, requirements in source, mask, optics, and resist
are very challenging, and significant development efforts are still needed to support beta and production-level performance.

Some of the important advances in the past few years include increased source output power, tool and optics system development
and integration, and mask blank defect reduction. For example, source power has increased to levels approaching specification, but
reliable source operation at these power levels has yet to be fully demonstrated. Significant efforts are also needed to achieve the
resolution, line width roughness, and photospeed requirements for EUV photoresists.

Cost of ownership and extendibility to future nodes are key factors in determining the outlook for the manufacturing insertion of
EUVL. Since wafer throughput is a critical cost factor, source power, resist sensitivity, and system design all need to be carefully
considered. However, if the technical and business challenges can be met, then EUVL will be the likely technology of choice for
semiconductor manufacturing at the 32, 22, 16 and 11 nm half-pitch nodes. To cite this article: K. Kemp, S. Wurm, C. R. Physique
7 (2006).
© 2006 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Lithographie EUV. Le développement de la technologie et de l’infrastructure relatives à la lithographie en ultraviolet extrême
(EUVL) a fait d’excellents progrès ces dernières années et les fournisseurs d’équipements livrent des machines alpha à des clients.
Cependant les exigences sur la source, le masque, l’optique et la résine sont des défis difficiles et des efforts significatifs dans les
développements sont encore nécessaires pour permettre des performances au niveau d’équipements bêta ou de production.

Parmi les quelques avancées importantes de ces dernières années on compte la puissance de sortie accrue de la source, le
développement et l’intégration de l’équipement et du système optique, ainsi que la réduction des défauts des blancs de masque.
A titre d’exemple la puissance de la source a été augmentée à des niveaux approchant les spécifications, mais opérer la source de
manière fiable à ces niveaux de puissance n’a pas encore été complètement démontré. Des efforts significatifs sont aussi nécessaires
pour satisfaire les exigences sur les photo-résines EUV en termes de résolution, de rugosité de trait et de photosensibilité.

Le coût de possession et la capacité à étendre la technique à des nœuds futurs sont des facteurs clés pour déterminer les perspec-
tives d’insertion de l’EUVL en production. Puisque le débit de plaques est un facteur critique dans les coûts, la puissance de source,
la sensibilité de la résine et la conception du système ont besoin d’être tous pris soigneusement en considération. Cependant, si les
défis techniques et commerciaux peuvent être relevés, l’EUVL sera alors le choix technologique probable pour la fabrication de
semiconducteurs pour les nœuds aux demi pas de 32, 22, 16 et 11 nm. Pour citer cet article : K. Kemp, S. Wurm, C. R. Physique
7 (2006).
© 2006 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
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1. Introduction

Extreme ultraviolet lithography (EUVL) is an optical lithography technology that has many similarities with con-
ventional optical lithography. The optical imaging process follows Rayleigh’s laws, and EUVL systems make use of
reduction optics, mask and wafer scanning, and alignment and focusing architectures that are similar to those found
in current optical exposure tools. In addition, the lithography process builds largely on the experience of today’s semi-
conductor fabrication processes. A major attraction of EUVL is that it is an extendible technology that can likely
support patterning down to the 16 nm half-pitch (hp) node using binary masks and to the 11 nm hp node using more
advanced mask types.

However, there are some significant differences between conventional optical lithography and EUVL. Many of
these differences are a result of the very short wavelength light—13.5 nm—used in EUVL. Since all materials absorb
EUV radiation, special reflecting optics with multilayer Bragg reflectors and extremely high precision finishes must
be used. These reflecting optics are somewhat inefficient, resulting in an approximately 30% loss at each mirror. This
limits the practical number of optical elements that can be used and dictates the use of aspheric surfaces, making figure
and finish specifications even more difficult to achieve. The photomasks used for EUVL are also reflective, making the
optical system non-telecentric since the mask is illuminated slightly off the normal optical axis. New types of plasma
light sources are required to generate the short wavelength EUV light, and wafers must be exposed under vacuum to
minimize EUV intensity losses by gaseous absorption and contamination or oxidation of the optical elements.

Most of the early work on EUVL focused on meeting the challenges just described, and many of the EUVL
development efforts today are directed towards enabling the EUVL infrastructure and commercializing the technology
so that it can be implemented by semiconductor device manufacturers later in this decade.

2. A short history of EUVL

Early concepts for EUVL emerged from research in Japan and the U.S. during the 1980s using what were then
referred to as ‘soft X-rays’ in the 10 to 30 nm range. The first proposals to use EUV radiation for all-reflective
projection lithography were made in 1988 by groups from Lawrence Livermore National Laboratories (LLNL) [1]
and Bell Laboratories [2]. In 1989, a group from NTT demonstrated imaging of 0.5 µm features [3], and the first
nearly diffraction-limited imaging of 50 nm features was accomplished in 1990 by Bell Laboratories [4]. The first
EUVL system using a compact laser-produced plasma source [5] produced images at Sandia National Laboratories
(SNL) in 1991, and in 1996 SNL fabricated the first functioning device patterned with EUVL [6] using a microstepper
developed in collaboration with Bell Laboratories.

In the mid to late 1990s, several industry consortia started working on EUVL technology research and development.
The Extreme Ultraviolet Limited Liability Company (EUV LLC) was formed in the US in 1997 to develop key EUV
component technologies through close cooperation among six semiconductor manufacturers, three national laborato-
ries, and several other industry partners [7]. The EUV LLC effort culminated in building the first EUVL full field tool
prototype that produced its first full field images in early 2001 [8]. International SEMATECH started an EUVL pro-
gram in 1998 to support mask modeling, microstepper optic development, and other topics [9]. SEMATECH’s EUV
program has since built up unique capabilities critical to EUV infrastructure development, including a Mask Blank
Development Center (MBDC) and Resist Test Center (RTC) in Albany, New York [10,11]. The International Venture
for Nanolithography (INVENT) consortium, also in Albany, New York, has recently started working on EUVL and
received an EUV alpha tool in 2006.

In 1998, the European research program Extreme UV Concept Lithography Development System (EUCLIDES)
was formed to evaluate EUVL. It focused on mirror substrates, high reflectivity multilayer coatings, vacuum stages,
and a comparison of plasma and synchrotron EUV sources. The French PREUVE program was also initiated in 1999
with a focus on developing a 0.3 numerical aperture (NA) microfield exposure tool, EUV sources, optics, multilayers,
mask and resist modeling, and defect metrology. The PREUVE and EUCLIDES programs subsequently transitioned
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into the European MEDEA+ program [12]. In addition, IMEC in Leuven, Belgium, has begun an EUVL program and
received an EUVL alpha tool in 2006 [13].

The Japanese Association of Super-Advanced Electronics Technologies (ASET) program was also established in
1998 [14]. The EUV portion of the ASET program focused on multilayer, mask, resist, and process development. The
ASET program was later joined by the Extreme Ultraviolet Lithography System Development Association (EUVA)
program [15], and recently SELETE [16] has started its own EUV program and expects to install an EUVL alpha tool
in 2007.

The combined efforts of research consortia, semiconductor equipment manufacturers, and other infrastructure sup-
pliers have helped to position EUVL as a primary contender for volume manufacturing of semiconductor devices at
the 32 nm hp node and beyond [17]. However, it is important to recognize the significant advances that have been
made in extending 193 nm lithography to sub-wavelength imaging using sophisticated optical proximity correction
(OPC) methods; increased NA; and more recently, immersion imaging. Although some issues with 193 nm immersion
lithography remain, the technology is generally assumed to be the likely solution for volume manufacturing at the 45
nm hp node, and it may possibly be extended further using higher refractive index fluids, double exposure lithography
(DEL), and 193 nm double patterning lithography (DPL) techniques [18].

3. EUVL technology status

Detailed discussions of EUV tools and technology can be found in the literature [7,19–21]. This section provides a
brief overview of the key technology components with emphasis on their current development status and the remaining
issues that must be resolved to ensure successful introduction of the technology for volume manufacturing in the
semiconductor industry.

3.1. EUV optics

The projection optics system is at the heart of the performance of an EUVL tool, and tool and optics manufacturers
are working hard to develop and improve manufacturing technologies to achieve the required specifications. A key
challenge in EUV optics manufacturing is to simultaneously meet the stringent figure and finish requirements of the
reflecting surfaces. The total system wave front error (WFE) specification for a 0.25 NA six-mirror projection optic
system will be �0.27 nm rms. Assuming that surface figure errors in individual mirrors are uncorrelated, the figure
specification for each mirror will be �0.08 nm rms. In addition, the WFE must remain stable over the lifetime of
the optics and may need to be monitored in the field. Similarly, a flare requirement of less than 7–8% for production
tools demands tight control of mid-spatial frequency roughness (MSFR) on the optic surfaces without compromising
the surface figure. For future EUV tool generations with eight-mirror optics, these specifications will be even more
challenging.

The availability of accurate and reproducible metrology techniques for individual mirrors and assembled projec-
tion systems is also critical. WFE metrology systems for assembled EUV optics have been developed using variations
of at-wavelength phase shifting diffraction interferometry (PSDI) and lateral shearing interferometry (LSI) [22].
Visible light interferometry has also been used to overcome the logistical difficulty of relying on synchrotron-
based at-wavelength interferometry systems. Some progress has been made toward developing coherent EUV laser
sources [23], which may prove useful for constructing standalone at-wavelength interferometry tools or for imple-
menting in situ monitoring systems within EUV tools.

Another major challenge for EUV projection optics systems is reflectivity degradation. EUV optics must meet a
requirement of less than 1% non-recoverable reflectivity loss during 30 000 light-on hours, equivalent to a 10-year
operating lifetime. Because the projection optics cannot be heated to achieve ultra-high vacuum conditions (as this
would damage the reflective multilayers), they must operate in an environment with water vapor and hydrocarbons
present. Under EUV exposure in these conditions, the optics can be subject to recoverable and non-recoverable reflec-
tivity losses: water adsorbed on surfaces may be dissociated by EUV photons or by secondary electrons generated by
the photons, leading to oxidation of the reflecting surface and a non-recoverable reflectivity loss. The dissociation of
adsorbed hydrocarbons may also result in elemental carbon buildup, although this may be removed through reactions
with oxygen or hydrogen and evidence suggests that water vapor and hydro-carbon partial pressures can be optimized
for a given EUV photon flux such that carbon buildup and oxidation are balanced. However, if environmental control
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of individual mirrors or in situ mirror cleaning technologies should be needed to maintain optics performance, these
would add significant technical challenges and cost to the tool design.

Experimental data on EUV optics lifetime are quite sparse, with the longest duration tests published to date yielding
an estimated lifetime of 726 light-on hours [24]. Although progress is being made in understanding the fundamental
material science and surface physics/chemistry that govern EUV optics lifetime [25,26], the implementation of this
knowledge in engineering solutions that will achieve the 30 000 hour lifetime has yet to be demonstrated. In addi-
tion, tool manufacturers have begun to consider the potential need to monitor the reflectivity of EUV optics in situ.
Until more convincing data become available, the lifetime requirement for EUV optics has to be seen as extremely
challenging.

3.2. EUV sources

EUV light in the 13.5 nm wavelength band is produced by hot plasmas of a target material, usually Xe, Sn, or
Li [20]. The target material is excited either by a high power laser in laser produced plasma (LPP) sources or by
an electrical discharge in discharge produced plasma (DPP) sources. There are other methods of producing EUV
radiation in the 13.5 nm range; for example, low power laser-fiber sources could be used in metrology applications
such as at-wavelength inspection of EUV mask blanks, EUV optics interferometry, aerial image measurement systems,
or electron density measurements in source plasmas [20,27].

Fig. 1 summarizes the progress in EUV source power over the past 5 years. By convention, power is measured as
the EUV power flux in a 2% bandwidth window around the 13.5 nm wavelength at the intermediate focus (IF) position
that follows the collector optic. The best Sn DPP sources today can deliver peak power of around 80 W when operated
in burst mode; they are currently in a leading position to achieve the 115–180 W requirement for the first production
generation of EUV exposure tools. The choice of target material is significant because the conversion efficiency (CE)
of electrical or laser input power to generated EUV power is a strong function of the target. Specifically, Sn and Li (ap-
proximately 5% and 2% CE) have been demonstrated to produce significantly higher output than Xe (approximately
1% CE), which was used in most early source development work. On the other hand, Xe gas is considerably easier to
manage in the source than solid Sn or Li target materials and produces much less damaging debris.

The 115 W power specification assumes that EUV photoresists with 5 mJ/cm2 sensitivity will be available to
support an exposure throughput of around 100 wafers per hour. Because a 5 mJ/cm2 resist may not be available
in time to support the first production tools, the power specification has been raised by one supplier to 180 W at IF.
Further complicating the source power requirement are two other issues that must be addressed: radiation produced by

Fig. 1. Performance data for EUV sources reported at SEMATECH EUV source workshops [28]. The data points show EUV power levels at the IF
for different source types and target materials.
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the source that is outside the 2% bandwidth, the so-called out-of-band (OOB) radiation, must be suppressed to prevent
image contrast loss in the resist. One possible solution is to implement a spectral purity filter (SPF) at or near the IF
position; however, any such filter will need to be highly selective to avoid attenuating the in-band EUV power. The
second requirement is that high energy debris from the plasma source must not degrade the collector optic. This may
require the use of a debris filter or other mitigation device that may also increase the EUV source power requirement.

Despite the progress illustrated in Fig. 1, it is also apparent that the rate of improvement is decelerating. For DPP
sources, this is largely due to the increasing heat load generated at the discharge electrodes. Some innovative solutions
such as rotating electrodes [29,30] have been proposed, but the problem of heat loading on the nearby collector optic,
which is difficult to cool given its construction and location inside the vacuum environment, remains.

For LPP sources, the availability of affordable high power lasers is a problem. If over the next several years,
diode-pumped solid state lasers should become significantly less expensive and more reliable, or if some innovation
in efficient laser power delivery were to be demonstrated, then there could be a resurgence of interest in LPP sources.

With respect to EUVL readiness for manufacturing, the major concern with EUV sources is no longer just achieving
higher peak power, but also solving source reliability issues and improving cost of ownership. EUV sources with
power levels exceeding 60 W need to operate continuously for several months with uptime and cost of ownership
comparable to that of current optical lithography sources. This performance needs to be achieved in the next 1 to 2
years to demonstrate a credible path to meeting the requirements for volume manufacturing later this decade.

3.3. EUV masks

EUV masks are made by depositing a multilayer Bragg reflector film stack on an ultra low thermal expansion glass
substrate, followed by a series of buffer, absorber, and anti-reflecting layers. The absorbing layers are subsequently
patterned using conventional optical mask-making technology to generate features with high reflection contrast at the
EUV wavelength. Industry specifications have been published for both the substrate (SEMI P37-1102 [31]) and the
unpatterned mask blank (SEMI P38-1103 [32]).

To prevent defects from being imaged on the wafer, the mask needs to be manufactured and maintained free of
defects throughout its useful lifetime. This requires that the substrate, reflecting multilayer, and absorber stack are
produced with zero defects. Fortunately over the past several years, a substantial amount of work has been directed
at developing defect-free EUV masks. For example, Fig. 2 shows the progress in reducing mask blank defects at
SEMATECH as well as the remaining progress needed to meet the manufacturing requirement of less than 0.003
defects/cm2 at �25 nm. Some of the remaining challenges include the development of affordable manufacturing
processes for defect-free substrates and thin film deposition, defect inspection, cleaning and repair technologies, and
an EUV mask-handling infrastructure that builds on standards currently under development [33].

EUV mask substrates must meet stringent specifications for coefficient of thermal expansion (CTE), flatness, de-
fectivity, and surface micro-roughness. The materials that have been developed for EUV mask substrates currently
have CTE values in the region of 10 to 15 ppb/◦C; these need to be improved to less than 5 ppb/◦C. Flatness as
measured by the peak-to-valley surface deviation is currently about 2X larger than the requirement of 50 nm, although
local slope variation (another key measure of flatness) has already been demonstrated to meet the production speci-
fication [34]. Surface micro-roughness is acceptable using current polishing processes, but new polishing processes
developed to achieve flatness or reduce defects may compromise this performance. Substrate suppliers have reduced
substrate defect levels considerably and have simultaneously developed cleaning technologies that can efficiently re-
move particles as small as 50 nm [35]. Pit-type defects in the substrate remain a significant challenge, and attempts
are being made to address this by developing multilayer ‘smoothing’ techniques that can reduce their impact on the
final mask topography.

Several approaches have been proposed to reduce the impact of defects on EUV mask blanks. Defect avoidance and
mitigation include intelligent absorber pattern placement to cover existing defects and ‘defect-OPC’ to reduce defect
printability. If these techniques are combined with other defect repair techniques, then usable mask blank yields in the
range of 60 to 70% could be achieved even with native defect levels at 0.03 defect/cm2. This strategy would imply
higher mask costs initially, but it would allow early introduction of the technology while defect reduction efforts
continued.

Effective defect control also requires highly sensitive defect inspection capability. Today this is done using sophis-
ticated visible light inspection tools that typically are capable of finding 50 to 60 nm defects. More sensitive tools will
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Fig. 2. SEMATECH Mask Blank Development Center (MBDC) progress in mask blank defect reduction.

be required to achieve the 25 nm defect sensitivity required for EUV masks at the 32 nm hp node, but there is also a
concern that visible light tools may not effectively capture some defects that print using EUV light because these tools
do not test the resonant structure of the multilayer stack. For example, one study showed that a 25 nm spherical defect
buried under a 40-bilayer Mo/Si multilayer produced a surface bump 1.5 nm high and 65 nm wide. Although this
defect could not be detected by a visible light tool, it was sufficient to produce a 20% critical dimension (CD) change
in a printed line [36–38]. In addition, there is some evidence that the laser power used in visible light inspection may
damage the thermally sensitive EUV multilayer stack. Therefore, at-wavelength EUV inspection may ultimately be
required to find defects that visible inspection techniques cannot detect. Although a few experimental at-wavelength
inspection tools have been built, it would likely require several years to produce a commercial tool.

The patterning of EUV mask absorber layers is expected to use conventional e-beam writing, dry etch, inspection,
and repair technologies. One significant advantage of the high imaging resolution of EUVL is that masks will not
require the extensive OPC that is currently used for optical masks (although some correction for pattern-dependent
EUV flare may be required). Without extensive OPC, the cost and cycle time associated with patterning EUV masks
are expected to be significantly less than that of advanced optical masks. However, an issue related to chucking EUV
masks during the patterning process still needs to be addressed. Because the EUV imaging path is not telecentric,
EUV masks must be held almost perfectly flat to minimize pattern distortion across the imaging field. Exposure
tools will use electrostatic chucks to hold the mask flat under vacuum; therefore, mask writer and pattern placement
metrology tools will need to either hold the mask electrostatically or make complex coordinate corrections to account
for distortions introduced by other chucking methods.

Once defect-free EUV masks are available, they must be protected from environmental defects and contamination.
Optical masks use a fixed, transparent pellicle to keep particles away from the imaging surface of the mask. Although
similar approaches have been attempted for EUV masks [39], the significant absorption losses during exposure would
need to be offset by even further increases in source power. Therefore, a solution has been proposed that uses a pellicle
that is temporarily attached to the mask and removed only during exposure inside the EUVL tool. Several variations
of this removable pellicle concept as well as modifications to standard mask carrier designs have been proposed and
are under evaluation [33]. As shown in Fig. 3, at least one of those solutions used in conjunction with automated
handling equipment has demonstrated a >100X reduction in handling-related defects compared to an unprotected
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Fig. 3. Pseudo pellicles combined with automated handling demonstrated a >100X reduction in handling added defects [40].

Fig. 4. Resist images recorded with the SEMATECH MET; pictures courtesy of AMD [41].

mask [40]. Common standards for EUV mask storage and shipping carriers are also being developed to avoid costly
incompatibilities among exposure, inspection, and other mask-handling tools [33].

In summary, good progress has been made in all aspects of EUV mask technology. To achieve the manufacturing
requirements for the 32 nm hp node and beyond, these current focused efforts of industry and consortia need to be
continued. Defect reduction, avoidance, and repair strategies will be particularly critical for the technology to achieve
acceptable mask yields.

3.4. EUV photoresists

The primary challenge for EUV resists is to simultaneously meet the specifications for resolution, line edge rough-
ness (LER), and photospeed [17]. EUV resists also need to meet stringent outgassing specifications so that they do
not contaminate EUV projection optics. The resolution and LER requirements apply to 193 nm immersion resists as
well, but the sensitivity challenge is specific to EUVL because of the limited power available from EUV sources.

The best EUV resist performance demonstrated to date for 32.5 nm dense lines and spaces is 4.3 nm 3σ LER and
11 mJ/cm2 sensitivity [41]. A cross section of this resist patterned using a 0.3 NA microfield exposure tool (MET) at
Lawrence Berkeley National Laboratory is shown in Fig. 4. Resolution of approximately 28 nm with 4 nm LER has
also been demonstrated for isolated lines using a resist with 8 to 9 mJ/cm2 sensitivity [42].

A key problem is that resist suppliers require access to EUV exposure tools to make progress in developing new
resist formulations, and until recently such access has been very limited. However, four 0.3 NA METs have be-
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come available within the past 2 years: one at SEMATECH in Albany, New York; one sponsored by SEMATECH at
Lawrence Berkeley National Laboratory in Berkeley, California; one at Intel in Hillsboro, Oregon; and one at ASET
in Atsugi, Japan. Synchrotron-based interference lithography (IL) tools have also been used to achieve high resolution
EUV imaging.

It is not clear yet if the resist requirements for the 32 nm hp node can be fully met with current chemically amplified
resist (CAR) platforms. If new chemistry platforms are required, their development will have to accelerate dramatically
to have them ready for manufacturing insertion before the end of this decade. Ultimately, the development of improved
EUV resists will require a fundamentally different level of understanding of the relevant physical, chemical, and
electronic processes. For example, it has been widely acknowledged that secondary electrons play an important role
in EUV resist exposure, but little work has been done to characterize secondary electron yield and energy distribution.
It will probably be necessary to use such data, in conjunction with nano- and meso-scale modeling of resists, to
develop EUV resists with faster, higher resolution and less LER.

3.5. Tool throughput

Throughput is both a technical and an economic issue, since EUVL can be commercially successful only if the
processing throughput is sufficient to amortize the substantial tool, mask, and other processing costs. For this discus-
sion, a simple throughput model can be used to examine the status of the technology and its impact on successive
technology generations. Wafer throughput in wafers per hour (wph) is given by,

TP[wph] = 3600 s

Toverhead + Texp soure
= 3600 s

Toverhead + Ewfr
Pwfr

(1)

where Texposure is the actual wafer exposure time in seconds and Toverhead includes the time to move, align, and focus
the wafer, along with stage settling time and other losses incurred during the exposure process. Ewfr is the total energy
required to expose the wafer, and Pwfr is the available EUV power at the wafer plane.

Fig. 5 illustrates the relationship between source power and Toverhead for a range of resist sensitivities at a 100 wph
throughput. For example, the current power specification of 115 W at IF was derived for a six-mirror EUVL tool
exposing a 5 mJ/cm2 resist at 100 wph [43]. In this case, the exposure time is 9 s and Toverhead is 27 s. If a 10 mJ/cm2

resist were to be used, then Texposure would double to 18 s and the throughput would drop to 80 wph. To maintain
a 100 wph throughput for the 10 mJ/cm2 resist, the EUV source power would need to be doubled to 230 W. Alter-
natively, a 30% improvement in Toverhead to 18 s would achieve the same goal. Clearly, reducing Toverhead provides

Fig. 5. Trade-off between exposure time and overhead time illustrated for a range of resist sensitivities.
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Fig. 6. Projection of system throughput for several EUV tool generations using four different resist sensitivities.

significant leverage for reducing the source power requirement. Even with 10 mJ/cm2 resist sensitivity, 60 W source
power, and a moderate improvement in tool overhead, it should be possible to achieve throughput of approximately
60 wph to support initial pilot production using EUVL.

It is also interesting to consider the impact of future lithography generations. To achieve higher imaging resolution,
second or third generation EUV tools will likely be designed with higher NA optics which will require eight-mirror
projection optics instead of the six-mirror systems used in first generation tools. Losses at the two additional mirror
surfaces (each with 70% reflectivity) will increase the source power requirement by a factor of 2. Fortunately, light
collected from the source increases as the square of the NA. Thus, if the source and collector optics are designed
appropriately, the losses imposed by additional mirrors may be more or less offset by the higher numerical aperture
design [44,45]. Fig. 6 shows the results of an analysis of system throughput for six different cases spanning several
generations of tools and resist sensitivities from 5 to 20 mJ/cm2 at a source power of 115 W indicating that it should
also be possible to maintain throughput if the sources and illuminations systems can be designed appropriately.

The previous discussion suggests that an EUV throughput of approximately 100 wph is feasible if efforts to im-
prove EUV source power, tool overhead time, and/or resist sensitivity are successful. Arguably the greatest risk to
achieving 100 wph throughput is the problem of achieving resists having 5 mJ/cm2 sensitivity together with the re-
quired resolution and LER. It is therefore imperative that efforts to increase source power and minimize tool overhead
command a high level of attention. This will also allow resist suppliers to focus on meeting the increasingly aggressive
resolution and LER requirements, while potentially opening up a broader range of materials that may be considered.

4. Outlook

Some of the critical issues facing the introduction of EUVL have been discussed. However, the ultimate decision
to implement EUVL will also depend on the relative capabilities, costs, and risks associated with competing tech-
nologies. This section compares the lithographic potential of EUV with that of 193 nm optical immersion lithography,
including variations that could extend its useful lifetime.

Two fundamental properties of an optical projection system are resolution (R) and depth of focus (DOF), as char-
acterized by Rayleigh’s equations [46],

R = k1 · λ

NA
(2)

DOF = ±k2 · λ

NA2
(3)

where λ is the optical wavelength and NA is the numerical aperture of the projection system. The classical Rayleigh
limits for k1 and k2 are 0.5. In practice, the ultimate resolution and depth of focus depend on the characteristics of
the lithographic process, such as the contrast of the resist system and the extent to which various optical enhancement
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techniques (e.g., phase shifting, OPC, and off-axis and polarized illumination) are used [47,48]. Thus, the actual value
of k1 (as measured by the minimum half pitch of the printed feature) in leading-edge semiconductor manufacturing is
in the region of 0.4 to 0.45 for random logic and 0.3 to 0.35 for highly repetitive layouts such as memory.

Eq. (2) also reflects the historical improvements in lithographic resolution that have been achieved by incremental
reductions in wavelength and increases in NA; Eq. (3) also highlights the shrinking DOF and corresponding process
latitude that have resulted from these advances.

4.1. The limits of 193 nm lithography

By interposing a fluid between the projection lens and wafer, immersion lithography allows the NA to be increased
beyond the limit that is achievable in air. It also provides the advantage of increasing DOF proportional to the refractive
index of the fluid [49]. A 193 nm water-based immersion lithography may be introduced for volume semiconductor
manufacturing at the 65 nm hp node, with 1.2 NA optics providing a k1 value of 0.40. At the 45 nm hp node, the
maximum NA achievable using water as the immersion fluid is of 1.35, yielding a k1 value of 0.31. A fluid with a
higher refractive index could allow the NA to be increased up to 1.55 using conventional fused silica lens materials,
providing a k1 value of 0.36 at 45 nm hp. Assuming higher refractive index lens materials can be developed, 1.70 NA
would yield a k1 value of 0.28 at the 32 nm hp node. Very sophisticated optical enhancement techniques will probably
be needed to realize this resolution in volume manufacturing.

Another possibility at the 32 nm hp node is to use two interleaved exposures at twice the targeted pitch. This would
enable an effective keff

1 value for the combined exposure that would be half the value of the k1 for the respective single
exposures. Two possible variations have been proposed: double exposure lithography (DEL) would use either a highly
non-linear or a ‘memoryless’ resist to allow two exposures to be made before developing the resist, while double
patterning lithography (DPL) would use two complete expose/develop/etch cycles to form the pattern [50]. Suitable
resists for DEL do not exist yet, and DPL would effectively double the cost of the lithography process as well as require
improvements in tool overlay capability. However, DEL or DPL could conceivably extend 193 nm optical lithography
to the 22 nm hp node if used in conjunction with high index resists and lens materials. The effective resolution and
k1 or keff

1 value of each of the above approaches are shown in Fig. 7 and compared with the corresponding resolution
scenarios for EUVL.

4.2. EUV lithography limits

The situation is somewhat different for EUV, where resolution is achieved at a much shorter wavelength and
relatively relaxed k1 values. Thus the k1 values for EUVL using 0.25 NA optics at the 45 and 32 nm hp nodes are 0.83
and 0.59, respectively. While 0.25 NA optics would also support development work at the 22 nm hp node with a k1

value of 0.41, 0.35 NA optics would increase the k1 value to 0.57 and potentially allow more power to be collected
from the source. At the 16 nm hp node, 0.35 NA optics would yield a k1 value of 0.41, and resolution to the 11 nm hp
node is conceivable using 0.4 to 0.5 NA optics. However, at this point the DOF of EUVL (less than 75 nm) becomes a
serious concern and optical enhancement technologies such as OPC and phase shifting will probably also be required.

4.3. Summary: technical and business challenges

As noted previously, selection of the appropriate technology at each node will depend on the technical status, cost,
and perceived risk of each technology. Single exposure 193 nm immersion lithography appears to be feasible only up
to the 32 nm hp node, at which point k1 values are extremely aggressive even if suitable high refractive index, lens
materials, and resist can be developed. Double exposure techniques provide a potentially more relaxed k1 solution,
but at a significant throughput and cost penalty.

Masks for 193 nm immersion lithography at the 32 nm hp node will also be a technical and cost challenge. Exten-
sive OPC will be required, including new OPC techniques to address polarized illumination and the effects of mask
topography. Extremely high NA imaging optics will be significantly larger and more difficult to manufacture than
today’s optics and much more expensive.
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Fig. 7. Comparison of k1 values for possible EUVL and 193/193i scenarios. EUVL will likely allow the industry to stay above k1 = 0.50 down to
22 nm hp and above k1 = 0.40 at 16 nm hp.

The successful introduction of EUVL requires continued progress in source power, resist resolution and sensitivity,
mask defectivity, and optics lifetime. If these challenges can be overcome, EUV will likely be the technology of choice
at the 32 nm hp node, with a clear path to the 11 nm hp node.
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