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Abstract

The problem of critical velocities in superfluids, that is the comprehension of superfluidity breakdown by flow, has been long
standing. One difficulty stems from the existence of several breakdown mechanisms. A major advance has come from the ob-
servation of single 2π phase slips, which arise from the nucleation of quantised vortices, that is, their creation ex nihilo. The
statistical properties of the nucleation process in both the thermal regime and the quantum regime are identified and analysed:
vortex nucleation provides a well-documented case of macroscopic quantum tunnelling (MQT). In particular, a close scrutiny of
the experimental data obtained on ultra-pure 4He reveals the influence of damping on tunnelling, a rare occurrence where the effect
of the environment on MQT can be studied. To cite this article: É. Varoquaux, C. R. Physique 7 (2006).
© 2006 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Vitesses critiques dans les superfluides et nucléation de tourbillons. La vitesse critique dans les superfluides, c’est-à-dire la
destruction de la superfluidité par l’écoulement du fluide, pose un problème qui perdure. Une des difficultés réside dans l’exis-
tence de plusieurs mécanismes pour cette destruction. L’observation de sauts de phase individuels de 2π , qui proviennent de la
nucléation de tourbillons quantifiés, a constitué une avancée importante. L’identification et l’analyse des propriétés stochastiques
du processus de nucléation, tant dans le régime classique que quantique, ont conduit à l’étude très circonstanciée d’un cas spéci-
fique d’effet tunnel macroscopique. En particulier, l’examen fouillé des données expérimentales obtenues avec l’hélium ultra-pur
a révélé l’influence de la dissipation sur l’effet tunnel, donnant par là un exemple rare d’interaction d’un processus tunnel avec son
environnement macroscopique. Pour citer cet article : É. Varoquaux, C. R. Physique 7 (2006).
© 2006 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

The critical velocity in a superfluid is the threshold above which the flow of the superfluid component becomes
dissipative, that is, the property of superfluidity is lost. This rather broad definition encompasses a number of different
physical situations. The following overview starts with a brief description of the different brands of velocities that
comply with this definition. It then joins the main trend of this Dossier by focusing on that which involves a nucleation
phenomenon, namely, the nucleation of superfluid vortices.

Neither the problem of critical velocities in superfluids nor that of the nucleation of vortices is new. The former is
as old as the discovery of superfluidity (see the monograph by Wilks [1]). The latter, first discussed by Vinen in the
early sixties [2], has met a more tortuous fate. It was first thought, still is in some quarters, to be impossible [2] on the
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grounds that such an extended hydrodynamical object as a vortex with a finite (quantised) circulation, involving the
motion of a large number of helium atoms, would have a vanishingly small probability of occurring spontaneously.
For classical ideal fluids, this is the essence of the Kelvin–Helmholtz theorem, which states that vorticity is conserved
for isentropic motion of inviscid fluids. More recent experiments, probing superflow on a finer scale of length [3–5],
have shown otherwise.

I give below a short account of these problems, which is hardly more than a guided tour of the four references [6–9]
written by the author and his colleagues over the course of many years. More extended discussions can be found in
these articles as well as more complete bibliographies. Also, a more comprehensive review is in preparation.

1. Critical velocities in superfluids

1.1. The Landau criterion

Landau [1] explained the superfluidity of helium-4 by the sharpness of the dispersion curve for elementary exci-
tations, phonons and rotons, shown in Fig. 1, which is a property associated with the existence of a Bose–Einstein
condensate. Elementary excitation energy levels ε(p) being well-defined, that is, having a negligible spread in energy,
very low-lying states, energy-wise and momentum-wise, are extremely scarce. An impurity, or a solid obstacle, can
only exchange an energy ε(p) at momentum p that exactly matches the energy of an elementary excitation of the fluid.
Unless this condition can be precisely met, there is no dissipative interaction between the fluid and its surroundings:
the flow is viscousless at small flow velocities.

If the superfluid moves at velocity vs, the energy of elementary excitations in the frame of reference at rest becomes
ε+vs ·p [1,10]. The same holds for a moving obstacle, by Galilean invariance. If this energy turns negative, elementary
excitations proliferate and superfluidity is lost. The condition on the superfluid velocity for this to happen reads:

vs � vL = ε(p)

p

∣∣∣∣
min

� ε(p)

p
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roton

(1)

The minimum value of ε/p for helium is very close to the roton minimum, as shown in Fig. 1. In 4He at low
pressure, vL � 60 m/s. The Landau critical velocity vL is smaller than the sound velocity c = 220 m/s but larger than
most critical velocities measured in various experiments. For the much less dense Bose–Einstein condensed gases,
which do not exhibit roton-like features, the minimum is the sound velocity, c = ε(p)/p|p=0.

1.2. Feynman’s approach

Feynman [1], following Onsager, realised that, not only would vorticity be quantised in 4He in units of the quan-
tum of circulation κ4 = 2πh̄/m4 � 10−3 cm2/s, m4 being the mass of the helium-4 atom (which is also a property
associated with the existence of a Bose–Einstein condensate), but that these vortices would be responsible for the
onset of dissipation and for a critical velocity in the superfluid. The basic reason for this, as spelled out clearly by

Fig. 1. Dispersion curve of the elementary excitations in superfluid 4He.
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Anderson [11], is that vortices can exchange energy with the potential superflow and carry this energy away, thus
causing an energy loss to the superflow.

In order to evaluate a characteristic velocity associated with this process, let us consider a vortex ring of radius R.
Its energy ER and impulse PR are expressed by [12–14]

ER = 1

2
ρsκ

2
4 R

(
ln

R

a0
− 7

4

)
+O

(
a0

R

)
(2)

PR = πρsκ4R
2 (3)

where a0 is the vortex core radius, taken here as the superfluid coherence length.
Let us treat such a vortex as an elementary excitation of the superfluid, which it rightfully is, and apply Landau’s

criterion. The limiting velocity is reached for a radius R such that ER/PR is at a minimum, which occurs when R is
as large as feasible, that is of the order of the channel size d . This minimum value sets the velocity at which vortices
can start to appear and defines the Feynman critical velocity:

vF � κ4

2πd
ln

(
d

a0

)
(4)

As discussed below, vF is much closer to experimental values than the Landau critical velocity for rotons. Although
this agreement is heartening, it also raises fresh questions: how do these vortices come about?

1.3. The phase slips

The phase slippage experiments that were carried out starting from the mid-eighties [5,15] confirmed Feynman and
Anderson’s views on dissipation in superflows [11] and brought a large measure of clarification in the critical velocity
problem [6] and in the formation of vortices in superfluid 4He [7]. These experimental results and their interpretation
have since been largely confirmed [16–18].

Phase slips can be studied with the help of a miniature hydro-mechanical device, which is basically a flexible-
diaphragm Helmholtz resonator as represented schematically in Fig. 2. This resonator is immersed in the superfluid
bath. The flexible diaphragm is constituted by a Kapton membrane coated with aluminium. In the version shown in
Fig. 2, there are two openings connecting the resonator chamber to the superfluid bath. One is a micro-aperture in
which the critical velocity phenomenon takes place. The critical event consists in a sudden jump in the resonance am-
plitude which corresponds to an abrupt change in the flow velocity through the micro-aperture and a loss of resonator
energy. These dissipation events are interpreted as resulting from single vortex emission, to which is associated a slip
by 2π of the quantum phase difference across the micro-aperture, δϕ, caused by the motion of the vortex across the
flow stream.

The other opening is a relatively open duct and provides a parallel path to the superfluid along which the quantum
phase remains well determined even when the phase slips in the micro-aperture. A quantum of circulation builds up
for each 2π slip along the superfluid closed loop threading the two openings. The operation of these resonators is
described in detail in the literature (see, for instance [5,19–22]).

The resonator is driven on resonance by an electrostatic ac-drive applied to the aluminium-coated flexible mem-
brane at a constant level. In the absence of dissipation, the resonance motion increases linearly in amplitude under

Fig. 2. Schematic drawing of the flexible-diaphragm Helmholtz resonator.
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Fig. 3. Peak amplitude charts at 100.7 mK (top) and 201.5 mK (bottom) at saturated vapour pressure in ultra-pure 4He with a 3He impurity
concentration less than 10−9. Peak absolute amplitudes during each half-cycle of the resonator motion at 12.5 Hz are plotted as a function of
half-cycle index; time runs from left to right. The peak membrane amplitude Am is normalised to the amplitude jump of a single slip �A1. The
traces at the very top and bottom of the graph, expanded from the main traces as indicated by curly arrows, show the slip sizes in signed winding
numbers of the quantum phase (according to flow direction, in and out of the resonator chamber).

the action of the drive. The displacement of the membrane, which is proportional to the total flow in and out of the
resonator, is monitored by an electrodynamic displacement sensor with a SQUID amplifier,1 the output of which is
converted into a digital signal by a fast analogue-to-digital converter. The peak amplitudes of the membrane motion
Am for each successive positive-going and negative-going half-cycle of the resonance are measured and stored digi-
tally in real time. The raw data consist of peak amplitude charts as represented in Fig. 3. Phase slips are seen as sudden
drops of the peak amplitude from one half-cycle to the next.

The pattern of these peak amplitude data is processed numerically to identify all the slips and their multiplicity,
and to obtain the state of quantised circulation trapped in the resonator loop, labelled j . The actual flow in the micro-
aperture is the sum of the flow driven by the membrane and of the persistent flow threading the micro-aperture and the
parallel channel, which depends on the quantum state of the loop j . The amplitude drop �A1 caused by a single phase
slip in a given half-cycle of the resonance corresponds to a change of δϕ by exactly 2π . Normalising the membrane
displacement Am by �A1 as done in Fig. 3 provides a self-calibration of the data that is independent of less well
known quantities such as the membrane stiffness, and the calibration factor of the displacement sensor.

In the following, aperture velocities are expressed by the number of turns δϕ/2π by which the quantum-mechanical
phase winds across the aperture.2 The actual flow velocity averaged over the cross-section of the micro-aperture is
proportional to δϕ, the multiplying factor being h̄/m4lh. The hydraulic length lh of the micro-aperture is of the order
of 1 µm in the experiments shown in Fig. 3.

1.4. Phase-slippage experimental results

The observation of phase slips in 4He has led to a number of quite significant results that have shed light onto the
previously indecipherable critical velocity problem. I summarise below the most important qualitative features and
their implications:

1 SQUID is an acronym for Superconducting QUantum Interferometric Device. The present sensitivity of the displacement sensor is ∼10−15 m.
2 Phase winding numbers are related to velocities in cm/s by multiplication by lh/κ4, the “hydraulic” length lh characterising the geometry of the

aperture. For a phase slip by 2π , the phase winding number changes by one unit and the trapped circulation in the resonator loop by one quantum.
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1. The critical velocity threshold, which can be seen on time charts such as that shown in Fig. 3, is markedly
temperature-dependent down to below 200 mK and reaches a well-defined plateau below 150 mK. These features
can been seen in Fig. 5 and will be discussed below. As the thermodynamic properties of superfluid 4He are very
nearly independent of temperature below 1 K, this observation indicates that the critical process in action is not
governed solely by hydrodynamics. It can be suspected that statistical mechanics plays a leading role.

2. Aperture-size is not found to be a relevant factor. This feature and the temperature dependence mentioned above
are in sharp contrast with the Feynman critical velocity, which, according to Eq. (4), exhibits a well-characterised
dependence on size and none on temperature.

3. The actual velocity threshold for phase slips shows significant scatter from one slip to the next in a given se-
quence, as can be seen in Fig. 3. This scatter lies much above the background noise level of detection of the peak
amplitudes of the resonator motion. It represents a genuine stochastic property of the process at work, which turns
out to display a temperature dependence similar to that of the critical velocity shown in Fig. 6.

4. The phase slip pattern shows quite reproducible properties in the course of a given cool-down as long as the
experimental cell is kept at a temperature below 10–15 K. If the temperature is cycled up to nitrogen temperature
or above, small changes to the critical threshold and the pattern itself can occur. This is likely due to changes in
the surface state of the cell, i.e. contamination of the micro-aperture walls by solidified gases.

5. Quite importantly, phase slips are the signature that quantised vortices are created in aperture flow above a well-
defined threshold of flow velocity. This statement arises from the highly reproducible phase change, which is
measured to be very nearly 2π and to amount to changes of precisely one quantum of circulation in the superfluid
loop threading the micro-aperture and the long parallel channel (see Fig. 2). A detailed scenario for the occurrence
and development of phase slips that shows how the phase difference by 2π develops has been described by
Burkhart et al. [23] and is discussed below. Different mechanisms have been proposed [24–26] for which it is
unclear that the end product of the nucleation process is actually a vortex.

Critical velocities and phase slips in the superfluid phases of 3He show different features that will be briefly touched
upon in Section 5.

1.5. Several kinds of critical velocities

The compilation of the critical velocity data in various apertures and channels from various sources available in the
literature presented at the Exeter Meeting in 1990 [6] and shown in Fig. 4 has not been updated. Two different critical
velocity regimes appear clearly on the graph in Fig. 4, a fast regime for small apertures, of the phase-slip type, and
a slower regime for larger channels, of the Feynman type. More recent data confirm this behaviour. In some occasions,
switching between these two types of critical velocity has been observed in the course of the same cool-down [27,28].

Fig. 4. Critical velocity data vs channel width �—older data [1]; ◦ and �—temperature-dependent and temperature-independent data, from Ref. [6].
For the temperature-dependent data, the highest value, i.e. that at the lowest temperature, has been retained. The dash–dash line is obtained from
the Feynman criterion, Eq. (4).
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The data points from various sources [6] for these two different types of critical velocity do not fall on well-defined
lines as can be seen in Fig. 4 but merely bunch into clusters of points. As already stated, critical velocity values in
apertures and capillaries are not very reproducible from experiment to experiment, indicating that some less-well-
controlled parameters, besides size, temperature and pressure, also exert an influence.

As a basis for comparison, it is worthwhile to also mention the findings of the ion propagation studies in superfluid
4He at various pressures, which have been reviewed by McClintock and Bowley [29,30]. Ions can be created in
liquid helium and accelerated by an electric field until they reach a critical velocity. The resulting drift velocities are
measured by time-of-flight techniques. For negative ions, hollow bubbles 30 Å in diameter with an electron inside,
two different behaviours are observed:

• Below about 10 bars, vortex rings are created, on the core of which the electron gets trapped: the drift velocity
suddenly drops from that of the negatively charged bubble to the much slower vortex velocity [31].

• Above 10 bars, the accelerated ion runs into the roton creation barrier before vortex rings can be created. The
Landau critical velocity is observed to decrease from about 60 m/s at SVP down to 46 m/s at 24 bars as the roton
parameters change with pressure while the vortex creation velocity increases with pressure.

• Around 10 bars, both critical velocities, the Landau critical velocity for the formation of rotons and that for the
formation of vortex rings can be observed to occur simultaneously because ions can be accelerated above the
threshold for roton emission.

These ion propagation measurements provide a vivid illustration not only of the existence of a critical velocity
obeying the Landau criterion but also that roton creation and vortex formation constitute different phenomena and
can exist concurrently.3 The vortex emission threshold displays other noteworthy features. It depends on temperature
in a non-trivial way, comparable to that of the phase-slip critical velocity with the appearance of a plateau below
∼300 mK. It also shows the marked dependence on 3He impurity concentration observed for phase slips in micro-
aperture flows but not in larger channels. In both ion propagation and aperture flow measurements, vortex formation
displays very similar features.

Altogether, a careful study of the experimental data in superfluid 4He reveals three different, well-defined, types of
critical velocities, one which is the celebrated Landau critical velocity, another which seems related to the Feynman
criterion with all the uncertainties on the hydrodynamical process of vortex creation in larger channels, and a third,
for phase slips, which is in want of an explanation: how are the vortices of phase slips in aperture flow created, and
how does the situation differ from that in larger channels?

The short answer, based on qualitative evidence, is that the temperature dependence of vc and its stochastic prop-
erties clearly point toward a process of nucleation by thermal activation above ∼150 mK or so and by quantum
tunnelling below. This conclusion contradicts our daily observations of the formation of whirlpools and eddies. It will
be seen to hold in 4He because the nucleated vortices have nanometric size, a fact that came to be appreciated because
of the detailed analysis of phase slippage observations that I briefly relate below.

2. Phase slip critical velocity

A more firmly established answer to the questions formulated above comes from a quantitative analysis of the
experimental data for phase slips. These experiments do provide clues that, pieced together, conclusively show that, in
small apertures, vortices are indeed nucleated by thermal activation above about 150 mK, and by quantum tunnelling
below.

Let me begin with some preliminary remarks. A glance at Fig. 3 reveals that the critical velocity threshold itself
needs to be defined. Also, the local value of the critical velocity is not measured directly. Experiments record the
mean value of the volume flow, which is assumed to be proportional to the local values of the flow field velocity; this
assumption breaks down in the presence of vorticity and has to be taken with a grain of salt (see Section 5). The value
of the critical threshold is not even reproducible from one cool-down to the next with the same experimental cell. This

3 A noteworthy attempt to by-pass this experimental finding is that of Ref. [26].
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Fig. 5. Critical velocity, normalised to the zero temperature linear extrapolation value v0, vs T , in kelvin: (�), Ref. [7], for ultra-pure 4He; (�),
Ref. [32]. The plain curves are computed from the half-ring model (see Section 4) for a0 = 2.2, 3.2, 4.5, 6.0 Å and are normalised to match the
experimental value at 0.5 K. The inset shows the influence of 3He impurities on vc: (◦), 3 ppb 3He in 4He; (�), 45 ppb, from Ref. [33].

lack of reproducibility in the measurements, both in micro-apertures and in larger channels, has obscured the critical
velocity problem for a long time. It must, however, be considered as an integral part of the problem.

Now, on with the real topic of this Dossier: nucleation. The first piece of evidence for the nucleation of vortices, that
is their creation ex nihilo, rests on the temperature dependence of the phase-slip critical velocity shown in Fig. 5, which
increases in a near-linear manner when the temperature decreases from 2 to ∼0.2 K. I mean by linear a functional
dependence going as vc = v0(1 − T/T0). As can be seen in Fig. 5, the data depart from this linear dependence below
200 mK, where they reach a plateau, and above 2 K because the critical velocity goes to zero at Tλ.

This temperature dependence, first observed in 1985 at Orsay [5] is now a well-established experimental fact [8]. It
came as a surprise at first because the critical velocities observed before were temperature-independent below ∼1 K.
As the quantum fluid is nearly fully in its ground state below 1 K—the normal fluid fraction becomes less than 1%—
one is led to suspect, as was done in Ref. [5], that an Arrhenius-type process must come into play. If such is the
case, that is, if a thermal fluctuation in the fluid with an energy of at most a few kBT can trigger the appearance of
a fully-formed vortex out of nowhere, the energy of this vortex must also be of the order of a few kBT : it must be
a very small vortex. But very small vortices require rather large superfluid velocities to sustain themselves. A careful
analysis of the situation is thus in order.

The nucleation rate for thermally activated process is given in terms of the activation energy by Arrhenius’ law:

ΓK = ω0

2π

[(
1 + α2)1/2 − α

]
exp

{
− Ea

kBT

}
(5)

where ω0/2π is the attempt frequency and Ea the activation energy. The correction for dissipation has been introduced
by Kramers to describe the escape of a particle trapped in a potential well and interacting with a thermal bath in
its environment. The particle undergoes Brownian motion fluctuations and experiences dissipation. This dissipation
is characterised by a dimensionless coefficient α = 1/2ω0τ , τ being the time of relaxation of the system toward
equilibrium. In superfluid helium, dissipation is small, although some dissipation is necessary for the system to reach
equilibrium with its environment. Its influence on the thermal activation rate is very small and will be neglected in the
following. However, this will not be the case anymore in the quantum regime.

Let us derive the expression for the critical velocity that stems from the Arrhenius rate, Eq. (5). In experiments
performed in a Helmholtz resonator, such as those shown in Fig. 3, the velocity varies periodically at the resonance
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Fig. 6. Statistical width of the critical velocity transition, normalised to the linear extrapolation limit at T = 0, v0, in terms of temperature:
(♦), Ref. [7]; (�), Ref. [32]; (×), Ref. [34].

frequency as vp cos(ωt), vp being the peak velocity. The probability that a phase slip takes place during the half-cycle
ωti = −π/2, ωtf = π/2 is

p = 1 − exp

{
−

tf∫
ti

Γ
(
P,T , vp cos(ωt ′)

)}
dt ′ = 1 − exp

{
− ω0

2πω

√
−2πkBT

vp∂Ea/∂v|t=0
exp

{
− Ea

kBT

}}
(6)

Eq. (6) results from an asymptotic evaluation of the integral at the saddle point t = 0. The accuracy of the asymptotic
evaluation (6) becomes questionable for T → 0 as the energy barrier vanishes. But, as we shall see, quantum effects
take over and the energy barrier never actually vanishes.

The critical velocity vc is defined as the velocity for which p = 1/2. This definition is independent of the experi-
mental setup, except for the occurrence in Eq. (6) of the natural frequency of the Helmholtz resonator ω. The implicit
relation between vc and Ea then reads:

ω0

2πω

√
−2πkBT

vc∂Ea/∂v|vc

exp

{
−Ea(P,T , vc)

kBT

}
= ln 2 (7)

We note that, in Eq. (7), the attempt frequency is normalised by the resonator drive frequency: the Brownian
particle attempts to escape from the potential well at rate ω0/2π but an escape event is likely only in the time window
in a given half-cycle of the resonance during which the energy barrier stays close to its minimum value Ea(vc). This
time interval is inversely proportional to ω, which explains why an instrumental parameter gets its way into Eqs. (6)
and (7).

The velocity at which individual critical events take place is a stochastic quantity. Its statistical spread can be
characterised by the ‘width’ of the probability distribution defined [7,35] as the inverse of the slope of the distribution
at vc, (∂p/∂v|vc)

−1. This critical width is found to be expressed by:

�vc = − 2

ln 2

[
1

2

{
1

vc
+ ∂2Ea

∂v2

∣∣∣∣
vc

/
∂Ea

∂v

∣∣∣∣
vc

}
+ 1

kBT

∂Ea

∂v

∣∣∣∣
vc

]−1

(8)

In the experiments, at low temperatures and large critical velocities, the quantity in curly brackets in the right-
hand side of Eq. (8) is small with respect to the last term so that the width is simply expressed as �vc =
−(2/ln 2)kBT (∂Ea/∂v|vc)

−1. Thus, the statistical width is an approximate measure of the inverse of the slope of Ea
in terms of v.
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Fig. 7. Left: Probability p vs slip velocity in winding number. The plain curve is a non-linear least square fit to the analytical form (6), which
contains two unknown parameters, vc and �vc. The critical velocity is defined as that for which p = 1/2. Right: Nucleation rate Γ expressed
in s−1 vs slip velocity in winding number in ultra-pure 4He at 17.70 mK and saturated vapour pressure on a semi-logarithmic scale. The line is
a linear fit to the data.

We now have precise definitions for vc and �vc. These quantities are derived from p, itself obtained by integrating
the histograms of the number of nucleation events ordered in velocity bins. The outcome of this procedure is illustrated
in Fig. 7: p shows an asymmetric-S shape characteristic of the double exponential dependence of p on v, Eq. (6),
a consequence of Arrhenius’ law, Eq. (5), being plugged into a Poisson probability distribution. The observation of this
asymmetric-S probability distribution constitutes another experimental clue for the existence of a nucleation process.

The quantities vc and �vc are easily extracted from the probability curves p(v), but going from vc and �vc =
−(2/ln 2)kBT (∂Ea/∂v|vc)

−1 back to Ea(v) and ω by numerical integration of the differential equation (7) requires
more work and introduces additional errors. As discussed in Ref. [9], an improved procedure consists in obtaining
directly the escape rate Γ from the phase slip data. This quantity is the ratio, for a given velocity bin, of the number
of slips which have occurred at that velocity to the total time spent by the system at that given velocity. The outcome
of this procedure is illustrated in Fig. 7. The slope of lnΓ (v) directly yields ∂Ea/∂v|vc ; the value of lnΓ at vc gives
a combination of lnω0 and Ea(vc), which is still not easy to cleanly disentangle [36].

However, the experiment itself offers help4 as I now describe.

3. Vortex nucleation: thermal vs quantum

Below 0.15 K, vc ceases abruptly to vary with T , as seen in Fig. 5. For ultra-pure 4He (less than 1 part in 109 of 3He
impurities), vc(T ) remains flat down to the lowest temperatures (∼12 mK) reached in the experiment. The crossover
from one regime to the other is very sharp. At the same crossover temperature Tq, �vc also levels off sharply. It is
believed on experimental grounds that this saturation is intrinsic and is not due to stray heating or parasitic mechanical
vibrations; this question is of paramount importance and considerable efforts have been devoted to lift all uncertainties
and completely elucidate the matter [7].

Even if all possibilities of an experimental artifact are cleared out, the mere observation of a plateau in vc is no
sufficient proof for a crossover from the thermal regime to the quantum one: the effect of 3He impurities, shown in
the insert of Fig. 5, also gives a levelling-off of vc vs T . This effect has been studied in detail in Ref. [33] and is
well understood. Incidentally, it shows that the phase slip phenomenon taking place in the micro-aperture tracks the
temperature down to below ∼12 mK, the lowest temperature in these experiments: there is no spurious temperature
saturation effect.

If the nucleation barrier were undergoing an abrupt change at Tq, for instance because of a bifurcation toward
a vortex instability of a different nature [24], in all likelihood �vc would jump to a different value characteristic of

4 “Nature is trying to tell us something”, an idiom often used by Douglas Osheroff in connection with helium physics.
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the new process (presumably small since vc reaches a plateau). Such a jump is not observed in Fig. 6. Furthermore,
vc levels off below Tq, which would imply through Eq. (7) that Ea becomes a very steep function of v, but �vc also
levels off, which, through Eq. (8), would imply the contrary. This remark leads us to investigate the possibility that,
below Tq, thermally-assisted escape over the barrier gives way to quantum tunnelling under the barrier [37]. This
transition would induce plateaus below Tq for both vc and �vc.

I state again that, during the course of these investigations at Orsay-Saclay, the group of Peter McClintock at Lan-
caster concluded in their ion propagation studies, that there existed a crossover around 300 mK from a thermal to
a quantum regime for the nucleation of vortices [38], as predicted by Muirhead, Vinen, and Donnelly [4]. There cer-
tainly are significant differences between the ion limiting drift velocity and aperture critical flow—in particular, the
latter is nearly one order of magnitude smaller—but the qualitative similarities are striking. We thus have two com-
pletely different types of experiments that point toward vortex nucleation, both in a thermal regime and in a quantum
one.

3.1. The macroscopic quantum tunnelling rate

To proceed with our investigation, let us now make the assumption that below Tq, zero point fluctuations do take
over thermal fluctuations. The potential barrier is not surmounted with the assistance of a large thermal fluctuation, it
is tunnelled under quantum-mechanically; non-conservation of energy is not a problem if it is brief enough, as stated
by the Heisenberg uncertainty principle for energy. The quantum-tunnelling event is “assisted” by the zero point
fluctuations [39]. What is remarkable here, and not necessarily easy to admit, is that such an energy non-conserving
process does affect a macroscopic number of atoms, that are necessary to form a vortex of about 50 Å in length, as we
shall see below.

Such “macroscopic quantum tunnelling” (MQT) processes have been the object of numerous experimental and
theoretical studies, mainly in superconducting Josephson devices. The case of vortices in helium can be treated in
a very similar manner, as done in Ref. [9]. Before giving a brief relation of MQT for vortices in 4He, I summarise
some of the basic results of the extended body of theoretical studies that followed Caldeira and Leggett’s original
work [40].

The quantum tunnelling rate of escape out of a potential well V (q) is a textbook problem [41]. The rate is propor-
tional to exp(−S/h̄), S being, in the WKB approximation, the action of the escaping particle along the saddle-point
trajectory at the top of the potential barrier, the so-called “bounce” [42]. For a particle of mass m and energy E

escaping from a one-dimensional barrier V (q), this action reads

S = 2

q2∫
q1

dq

√
2m

[
V (q) − E

]
(9)

The determination of the bounce yields the points q1 and q2 at which the particle enters and leaves the barrier.
A discussion of the quantum tunnelling of vortices thus requires a Lagrangian formulation of vortex dynamics.

Such a formulation has been carried out in particular by Sonin [14] (see also Ref. [43] for an extended discussion).
However, analytical results can be obtained only at the cost of approximations and yield less than fair comparison
with experiments (see the discussion in Ref. [8]).

Here, I follow, as in Ref. [9], the usual approach taken in the literature for Josephson devices [40,44], which is to
choose for V (q) a simple analytic form limited to a parabolic and cubic term in q:

V (q) = V0 + 1

2
mω2

0q
2
(

1 − 2q

3qb

)
(10)

where ω0 is the angular frequency of the lowest mode of the trapped particle and qb the generalised coordinate of the
barrier top location. The barrier height Eb is equal to mω2

0q
2
b/6.

This simple form is of general applicability when the applied velocity is close to the limit, which I call vc0, where
the energy barrier vanishes and the system “runs away”, the so-called “lability” point. At this point, the critical velocity
is reached even in the absence of thermal or quantum fluctuations. Such a hydrodynamic instability threshold at which
vortices appear spontaneously has been shown to occur in numerical simulations of flows past an obstacle using the
Gross–Pitaevskii equation by Frisch et al. [45] and others [46–48].
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The zero-temperature WKB tunnelling rate for the cubic-plus-parabolic potential Eb, Eq. (10), is found to be [40]

Γ0 = ω0

2π

(
120π

S0

h̄

)1/2

exp

(
−S0

h̄

)
(11)

the action S0 being equal to 36Eb/5ω0.
From this result, we may anticipate that the crossover between the quantum and the thermal regime lies around

a temperature close to that for which the exponents in Eqs. (5) and (11) are equal, namely T = 5ω0/36kB—assuming
that the activation energy in Eq. (5), Ea, reduces to the simple cubic-plus-parabolic form, Eb. A more precise study
of the mathematical properties of the quantum channel for escape leads to the following relation [49]5

h̄ω0 = 2πkBTq (12)

Once the crossover temperature has been determined from experiment, ω0 is fixed to pinpoint accuracy compared to
the fitting procedure outlined in the previous section. This is where we get help from the experiment because both the
value of ω0 is now completely pinned down and the interpretation of the experiment in terms of a nucleation process
is confirmed. The values of the barrier height Eb at each given velocity then follow easily, using the full expressions
for the rate in terms in terms of Eb, ω0 and, also, the damping parameter α.

3.2. Friction in MQT

Damping turns out to matter significantly in the quantum tunnelling of semi-macroscopic objects. The relevance
and applicability of the concept of quantum tunnelling to macroscopic quantities such as the electric current through
a Josephson junction or the flow of superfluid through a micro-aperture, although still sometimes questioned, have
been checked in detail for the Josephson effect case [50]. One of the conceptual difficulties, besides the large number
of particles involved, is that the macroscopic system is coupled to an environment that acts as a thermal bath; this
coupling gives rise to a source of fluctuations and semi-classical friction. This issue was tackled by Caldeira and
Leggett [40], and a number of other authors (see, for instance, [49]). In the case of weak ohmic damping (α � 1) and
for the cubic-plus-parabolic potential, the tunnelling rate takes the form [40,51,52]:

Γqt = ω0

2π

(
864π

Eb

h̄ω0

)1/2

exp

{
−36

5

Eb

h̄ω0

[
1 + 45ζ(3)

π3
α

]
+ 18

π
α

T 2

T 2
q

+O
(

α2, α
T 4

T 4
q

)}
(13)

Thus, according to Eq. (13), damping depresses the MQT escape rate at T = 0—α is a positive quantity—and intro-
duces a temperature dependence that increases the rate as T increases. These effects are large, even for weak damping,
because they enter the exponent of the exponential factor in Eq. (13). Relation (12) between Tq and ω0 is nearly un-
affected by damping: ω0 is simply changed into ω0[(1 + α2)1/2 − α] according to Eq. (5), a minor modification for
α � 1.

Eq. (13) is valid up to about Tq/2. From Tq/2 to ∼Tq, one has to resort to numerical calculations [51]. In the thermal
activation regime, T � Tq, quantum corrections affect the Kramers escape rate up to about 3Tq and can be evaluated
analytically. These high-temperature quantum corrections depend only weakly on friction. A complete solution of the
problem of the influence of friction, weak, moderate or strong, in the regime where thermal fluctuations still prevail but
quantum corrections cannot be neglected has first been worked out in the classical regime (T 	 Tq) by Grabert [53].
The extension to the temperature range T � Tq was then carried out by Rips and Pollak [54] who showed that the rate
for arbitrary damping in the temperature range T > Tq can be factorised into physically meaningful terms:

Γ = fqΥ ΓK (14)

namely, the classical Kramers rate ΓK, the quantum correction factor fq, and the depopulation factor Υ . The high
temperature limit of fq is

fq = exp

{
h̄2

24

(ω2
0 + ω2

b)

(kBT )2
+O

(
α/T 3,1/T 4)} (15)

in which ω0 and ωb are the confining potential parameters depicted in Fig. 8. Analytic results for fq are known to
slightly below Tq [51,55].

5 See Ref. [9] for further justifications and references to the literature.
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Fig. 8. Potential well trapping a particle in
one dimension. The particle can escape to the
continuum of states to the right. The lowest
mode at the bottom of the well has angular
frequency ω0; ωb would be the corresponding
quantity if the potential was inverted bottom
over top. There can exist intermediate energy
levels within the well, which are populated
according to the Boltzmann factor.

Fig. 9. Logarithm of the escape rate normalised to the
attempt frequency in terms of inverse temperature, also
normalised to ω0 for various value of the damping pa-
rameter, adapted from Ref. [51]. The dot–dot line is a
hand-sketch of the situation where α increases with tem-
perature, starting from zero at T = 0.

The depopulation factor Υ describes the fact that the escape process eventually depletes the occupancy of the
energy levels inside the potential well. This factor, the expression of which is too bulky to be reproduced here (see
Ref. [54]), is unity at large α when the coupling of the Brownian particle with the thermal bath is large. It decreases to
zero as α → 0 and the system becomes effectively decoupled from the environment. In the quantum regime, dominated
by zero point fluctuations, level depletion does not take place and Υ is unity. For the nucleation of vortices, friction
turns out to always be both sufficient and not too large so that depopulation corrections remain small and Υ ∼ 1.

The escape rate calculated for three values of the damping parameter α over the full temperature range is shown in
Fig. 9. A hand sketch shows the influence of a temperature dependence in the damping coefficient. Such a situation is
found in the nucleation of vortices in 4He as I now describe.

3.3. Experimental energy barrier and damping coefficient

From this knowledge of the theoretical analytical and numerical expressions for the rate Γ , obtained for the cubic-
plus-parabolic potential, it becomes possible to extract from the measured nucleation rate and crossover temperature
the values of the energy barrier in terms of vc. The value of ω0 given by Eq. (12) (ω0/2π = 2 × 1010 Hz for Tq =
0.147 K) is consistent with the attempt frequency appropriate to the thermally-activated regime [36] and that found
directly from the fits to the probability p as shown in Fig. 7. Furthermore, it agrees well (for a0 = 4.5 Å) with the
eigenfrequency of the highest Kelvin mode that a vortex filament in 4He can sustain, ω+ = κ4/πa2

0 = ω0. The final
step consists to extract the values for the energy barrier Eb from the measured escape rate. These values of Eb in the
case of the experiments on ultra-pure 4He analysed in Ref. [9] are shown in Fig. 10.

The self-consistency of the procedure can be checked by using the values of ω0 and Eb derived from this analysis
of the nucleation rate to compute vc and �vc using Eqs. (7) and (8), mutatis mutandis, and compare with the experi-
mentally determined values. We thus have a form of closure procedure to check the analysis, from which we conclude
that our assumption according to which vortices are nucleated by quantum tunnelling below Tq shows full consistency
with the thermally-assisted nucleation regime that prevails above Tq.

The quantitative analysis can be carried out one step further by constructing a Arrhenius plot from the experimental
data and comparing directly the outcome to the results from theory. Arrhenius plots are drawn at constant Eb and
varying temperature. Our results here are obtained at velocities that vary with temperature, hence at varying Eb’s.
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Fig. 10. The barrier energy Eb in kelvin vs v, the velocity in
the aperture expressed in phase winding number obtained:
(�), from the LT data transformed using the numerical ta-
bles in Ref. [51]; (♦), from the high temperature data. The
high T and low T analyses yield consistent results in the
region where they overlap.

Fig. 11. lnΓ (v) vs 1/T , Γ being expressed in s−1 and T in K:
(♦), as measured at varying T and vc; (∗), corrected for the change
of the velocity with T as explained in the text. The raw data from
the run with the second sample of ultra-pure 4He, (�), (�), agree
very well with that of the first sample. In the inset, lnΓ (vq), (�),
has been obtained with smoothed values of vc. The curves repre-
sent the calculated values of lnΓ (vq) with α = 0 (dash–dash) or
varying with T (plain) as explained in the text. The dot–dot curve
is the extrapolation to 1/T = 0 of a linear fit to the high tempera-
ture portion of the data.

As can be noted in Fig. 11, the raw experimental, velocity-dependent, rates exhibit little variation over the range
of parameters: escape rates are only observed in a certain window determined by experimental techniques. At low
temperatures, T < Tq, the critical velocity is close to its zero temperature limit vq and the corrections to Γ are small.
As T increases above Tq, vc decreases and Γ has to be determined by piecewise integration of d lnΓ/dv. The high
temperature extrapolation for Γ obtained in such a manner does display the expected 1/T dependence, as seen in
Fig. 11.

The low temperature corrected Γ shows, as can be seen in the inset of Fig. 11, a small, but real, drop below its zero
temperature limit as the temperature is raised, thereby simply following the trend of the measured Γ . As illustrated
in Fig. 9, this drop reveals the influence of damping. A damping coefficient α that increases from 0 at T = 0 to ∼0.1
around Tq and more slowly above accounts for the observed drop [9]. This T -dependent dissipation also makes the
crossover between the thermal and the quantum regimes even sharper than for α = 0, and closer to observations. The
nucleation of vortices in 4He thus offers a rare observation of the effect of damping on MQT.

4. The vortex half-ring model

As described in the previous section, there is strong evidence that the experimental features of the phase slip data
result from quantised vortex nucleation. The nucleation barrier Eb is of the order of a few kelvins (see Fig. 10). The
attempt frequency ∼2 × 1010 Hz is of the order of the highest Kelvin waves mode. In this section, I wish to describe
a simple model that will account for the features described above. This model, the nucleation of vortex half-rings at
a prominent asperity on the walls, finds its roots in the work of Langer, Fischer, and Reppy [3,56], Volovik [57], and
Muirhead, Vinen and Donnelly [4]. It was further developed and put on firm experimental findings in Ref. [7].

The model premise is quite simple. Consider, as done by Langer and Reppy in Ref. [3], the homogeneous nucleation
of a vortex ring in a homogeneous flow vs. When the ring has reached radius R in a plane perpendicular to the flow, its
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Fig. 12. Energy barrier Ev vs R, the vortex radius, in the simple half-ring model at various superfluid flow velocities. This figure is taken from
Ref. [7] and applies for the model and with the units used in that reference. It is given here for illustration purposes, namely that potentials of the
form of Eq. (16) give rise to confining wells.

energy in the laboratory frame, where the observer is at rest and sees the superfluid moving at velocity vs, is expressed
by

Ev = ER − PRvs (16)

The rest energy ER and impulse PR of the vortex ring are given by Eqs. (2) and (3). The minus sign in the right-hand
side of Eq. (16) arises because I have implicitly assumed that the vortex opposes the flow, i.e., that its impulse PR

points straight against vs: this configuration minimises Ev.
The rest energy ER increases with vortex size as R lnR and the impulse PR as R2: the impulse term becomes dom-

inant at large radii and causes Ev to become negative. The variation of Ev in terms of R has the shape of a confining
well potential, which becomes shallower and shallower with increasing vs, as depicted in Fig. 12. The barrier height
can easily be computed numerically and substituted into the expression for vc, Eq. (7). An analytical approximation
for vc involving the neglect of logarithmic terms and valid for large vortices (R 	 a0) has been given by Langer and
Reppy [3].

Such a critical velocity would be for the formation of a mist of vortices in the bulk of the superfluid. However, this
sort of vorticity condensation does not take place for two reasons. Firstly, the velocity of potential flows, which follows
from the Laplace equation, reaches its maximum value at the boundaries, not in the bulk. Secondly, the nucleation of
a vortex half-ring at the boundary itself involves a half of the energy given by Eq. (16). Hence, half-ring nucleation
at the wall is always much more probable at the same velocity vs than full ring nucleation in the bulk. Half of the
energy for the half-ring holds for classical hydrodynamics, the other half being taken care of by the image in the plane
boundary. For a superfluid vortex, the actual energy of a half-ring is smaller than in the classical ideal fluid because
the superfluid density is depleted at the solid wall and the core radius increases. This effect strengthens the case for
half-rings, as discussed in Ref. [23].

The barrier height can easily be computed and substituted into the expressions for vc and �vc, Eqs. (7) and (8).
Critical velocities vc and statistical widths �vc computed in such a manner are shown as a function of temperature in
Figs. 5 and 6 for several values of the vortex core parameter a0. A value of 4.5 Å gives near-quantitative agreement
with the experimental observations over the entire temperature range. This value of a0 is compatible not only with
the temperature variations of vc and �vc but also with the magnitude of the local vc found to be 20–22 m/s using
3He impurities as a local velocity probe [33]. It exceeds that in the bulk (a0 � 2.5 Å), which is thought to reflect the
proximity of the wall as discussed in greater details in Ref. [8]. With this value, the nucleating half-ring has a radius
of approximately 15 Å at the top of the barrier.

Once nucleated, the vortex floats away, carried out by the superfluid stream at the local superfluid velocity and by its
own velocity, vR = ∂ER/∂PR . It can be noted that, at the top of the barrier, ∂Ev/∂R = 0 and the vortex self-velocity
vR exactly balances the applied vs: the nucleating vortex is at a near standstill.

If the flow is uniform, with parallel streamlines, nothing much happens; the vortex wanders away and the interaction
with the normal fluid and with the wall causes a loss of vortex energy that eventually leads to its disappearance. If the
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Fig. 13. 2D (left) and 3D (right) views of the vortex half-ring trajectory over a point-like orifice in an infinite plane. The dash–dash lines on the 2D
plot are the potential flow lines that emerge from the orifice.

flow is divergent, as in Fig. 13, the vortex tends to follow the local streamlines and grows under the combined action
of the potential flow and its own self-velocity: it then gains energy at the expense of the potential flow. In such a way,
it can expand from nanometric to micrometric sizes and above. The vortex in its motion away from the micro-aperture
takes a finite lump of energy to remote places of the cell. This energy loss reduces the Helmholtz resonance amplitude
in a fairly sudden manner. Such a dissipative event gives the signature of single phase slips that is seen in Fig. 3.

This scenario for a phase slip involves a change of the phase difference between the two sides of the micro-aperture
of exactly 2π because the vortex ends up crossing all the streamlines, as pictured in Fig. 13. This crossing causes the
velocity circulation to change by exactly one quantum κ4 on all the superfluid paths extending from one side of the
aperture to the other.

5. Pinning, vortex mills, collapses and all that

Single phase slips are observed in experimental situations which may be loosely characterised as “clean”, that
is, for uncontaminated apertures of relatively small sizes (a few micrometres at the most), with low background of
mechanical and acoustical interferences, etc., and with probing techniques that do not manhandle the superfluid,
namely, with low frequency Helmholtz resonators. When these conditions are not met, flow dissipation occurs in
a more or less erratic manner in large bursts—multiple phase slips or ‘collapses’ of the superflow.

Multiple phase slips and collapses constitute an apparent disruption of the vortex nucleation mechanism described
in the previous section. Their properties have been studied in detail in Ref. [22] and are briefly mentioned below,
together with possible mechanisms for their formation. It is likely that these events provide a bridge between the
“clean” single phase slip case and the usual situation of the Feynman type critical velocities that are temperature-
independent below 1 K and dependent on the channel size. This problem, which is not fully resolved at present,
almost certainly involves some form of pre-existing vorticity.

5.1. Remnant vorticity and vortex mills

Remnant vorticity in 4He, which has long been assumed, has been shown directly to exist by Awschalom and
Schwarz by looking at the trapping of ions by vortex lines [58]. Vortices, presumably nucleated at the λ transition
where the critical velocity is very low, remain stuck in various places of the superfluid sample container. This trapped
vorticity, according to Adams et al. [59], either is quite loosely bound to the substrate and disappears rapidly, or is
strongly pinned and is dislodged only by strong perturbations.

To account for laboratory observations and with the outcomes of numerous numerical simulations of vortex dy-
namics, Schwarz has proposed the following formula for the velocity at which vortices unpin [60],

vu � κ4

2πD
ln

(
b

a0

)
(17)

D being the size of the pinned vortex and b being a characteristic size of the pinning asperity. Eq. (17) bears a strong
resemblance with that for the Feynman critical velocity, Eq. (4). Long vortices unpin at very low velocities unless they
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are perched on a tall pedestal, but very small vortices pinned on microscopic defects at the cell walls can in principle
exist under a wide range of superflow velocities; a 200 nm long vortex filament pinned at both ends on 20 Å asperities
resists transverse flows of velocities up to 10 cm/s.

In connection with the critical velocity problem, the long standing suggestion by Glaberson and Donnelly [61] of
vortex mills still prevails. In these authors’ views, imposing a flow on a vortex pinned between the opposite lips of
an aperture would induce deformations such that the vortex would twist on itself, undergo self-reconnections, and
mill out free vortex loops. First, we note that, according to Eq. (17), such a mill must involve a pinned vortex of
sub-micrometric size for any flow velocity above ∼1 cm/s in order for the pinned vortex not to be washed away.
Thus, it cannot as such account for Feynman-type critical velocities found in large channels. Also, as shown by
numerical simulations of 3D flows involving few vortices only [62], vortex loops and filaments are stable even against
large deformations. Vortices are not prone to twist on themselves and foster loops. It takes the complex flow fields
associated with fully developed vortex tangles to produce small rings [63,64]. And it takes some quite special vortex
pinning geometry to set up a mill that actually works.

Schwarz has demonstrated the existence of such a mill by numerical simulations [65]. Let us take a vortex pinned
at one end and floating along the flow streamlines with its other end moving freely on the wall; this vortex develops
a helical motion, a sort of driven Kelvin wave, and reconnects sporadically to the wall when the amplitude of the
helical motion grows large enough. This helical mill, which has to be of sub-micrometric size to stand the flow, does
churn out fresh vortices.

Vortex mills are thus unlikely to explain the critical velocities of the Feynman type in the simple scheme suggested
by Glaberson and Donnelly [61]. However, the occurrence of multiple slips, which can be seen in Fig. 3, is probably
caused by some form of vortex mills on a microscopic size. Before coming to this topic, I need to describe multiple
slips in greater details. But, at this point, the above remarks on the stability of vortex loops or half-loops in their course
already make it unlikely that multiple slips be due to the production of small rings by the nucleating vortices twisting
on themselves à la Glaberson–Donnelly, as suggested by Amar et al. [66]. We have to dig a little further to devise
a scheme that works.

5.2. The two types of large slips

Besides the usual single slip pattern, there appears in Fig. 3 occasional double slips (i.e. involving phase changes
by 4π ) and infrequent triple slips. Raising the temperature to 80 mK, again for this particular cool-down, causes these
multiple slips to occur much more frequently and to involve more circulation quanta on the mean. These features are
described in detail in Ref. [22]. As the probability for a one-slip event per half-cycle is not large, that for a double slip
is small, and it becomes negligible for higher multiples. A separate mechanism for their formation must be found.

Some degree of understanding of the formation of multiple slips can be gained by plotting the mean value of the
phase slip sizes, expressed in number of quanta, against the flow velocity at which the slips take place [67]. This
flow velocity is close to the critical velocity for single phase slips, i.e. the vortex nucleation velocity; it varies with
temperature, pressure, and resonator drive level. A plot summarising these variations is shown in Fig. 14 for 〈n+〉, i.e.
in the flow direction conventionally chosen as the + direction. Slips in the opposite (−) direction behave qualitatively
in the same manner but the phenomenon displays a clear quantitative asymmetry. As can be seen in Fig. 14, the mean
slip size decreases, as does the nucleation velocity, on either side of the quantum plateau—a 3He impurity effect on
the low T side—a thermal effect on the high-T side. However, it increases with pressure, contrarily to the nucleation
velocity which decreases with increasing pressure.

We conclude from the organisation of the data with the various parameters in Fig. 14 that the magnitude of the
superflow velocity does not directly control, by itself, the occurrence of multiple slips. In turn, this implies, as will
be discussed further below, that the phenomenon under study is not purely ruled by hydrodynamics in the bulk of the
fluid but involves some complex interplay with the boundaries. As shown in Fig. 14, the velocity threshold for the
appearance of multiple slips depends on hydrostatic pressure; in fact, the P -dependence of the upturn of 〈n+〉 vs v

exactly tracks that of the critical velocity for single phase slip nucleation. This indicates that multiple slips appear
because of an alteration, or as a consequence, of the nucleation process itself.

The pattern of formation of multiple slips changes from cool-down of the cell from room temperature to cool-down
but remains stable for each given cool-down. It seems to depend on the degree of contamination of the cell, a degree
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Fig. 14. Mean size of (positive) multiple slips vs velocity in phase winding number in nominal purity 4He (100 ppb 3He): (�) pressure sweep
from 0.4 to 24 bars at 81.5 mK (all even values of the pressure P , and 0.4, 1, 3, 5, 7 bars)—(�) temperature sweep at 16 bars—(◦) temperature
sweep at 24 bars—(∗) drive level sweep at 24 bars, 81.5 mK—(�) temperature sweep at 0 bar. For the temperature sweeps, from 14 to 200 mK
approximately, v first increases, reaches the quantum plateau and then decreases, as shown in the insert of Fig. 5. Lines connect successive data
points in the temperature and pressure sweeps.

which cannot easily be controlled experimentally. The detailed microscopic configuration of the aperture wall where
nucleation takes place probably plays an major rôle in multiple slip formation.

Another kind of very large drops in the resonance amplitude of the resonator was also observed, which sometimes
resulted in a complete collapse of the resonance. These “singular” collapses, first observed by Hess [68], occur at flow
velocities that are lower than the critical velocity for phase slips, sometimes as low as vc/3. Multiple slips are different
from “singular” collapses and the underlying mechanisms responsible for both phenomena are bound to be different,
as discussed below.

5.3. In-situ contamination by atomic clusters: pinning and collapses

In a series of experiments conducted at Saclay [69,70], in which the experimental cell was deliberately heavily
contaminated by atomic clusters of air or H2, we observed that numerous multiple slips and collapses of the “singular”
type occurred. The peak amplitude charts of the resonator became mostly impossible to interpret, except in a few
instances where two apparent critical velocities for single phase slips were observed. The higher critical velocity
corresponds to the one observed in the absence of contamination. The lower critical velocity is thought to reveal the
influence of a vortex pinned in the immediate vicinity of the nucleation site. This vortex induces a local velocity which
adds to that of the applied flow and causes an apparent decrease in the critical velocity for phase slips. Because of
this change, the presence of the pinned vortex could be monitored, the lifetime in the pinned state and the unpinning
velocity could be measured, yielding precious information on the pinning process.

This observation, reported in detail in Refs. [69] and [70], shows that pinned vorticity can contribute to the nu-
cleation of new vortices at the walls of the experimental cell. Such pinned vortices as the one described above can,
instead of interacting with the nucleation site, set up a transient vortex mill of the helical type and generate a burst
of vortices. The existence of such pinned vortices is established; that they can form a micro-mill is highly plausible.
We thus have a possible explanation for multiple slip formation [8]. The pinning event would take place immediately
after nucleation when the velocity of the vortex relative to the boundary is still very small and the capture by a pinning
site easy. The micro-mill remains in activity as long as the flow is sufficient to maintain the helical instability, which
depends on the pinning stand geometry. As it is set up to withstand one flow direction, it is destroyed when the flow
velocity reverses itself in the resonance motion. It eventually re-establishes itself during a subsequent resonance cycle,
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causing a new multiple slip. This process depends on the precise details of the pinning site configuration and of the
primordial vortex trajectory, factors which allow for the variableness of multiple slips on contamination and pressure.

In the same experiments, we also observed that a large number of unpinning events were taking place at an “anom-
alously low” unpinning velocity. A parallel can be made [70] with the singular collapses that also occur at “subcritical”
velocities. In fact, both phenomena were seen quite frequently in these experiments, suggesting that they have a com-
mon cause. Noting furthermore that pinning and unpinning processes were also quite frequent, releasing a fair amount
of vagrant vorticity, it appears quite plausible that both singular collapses and low velocity unpinning events are
caused by vagrant vortices hopping from pinning sites to pinning sites, eventually passing by close to a pinned vortex
or a vortex nucleation site, and giving a transient boost to the local velocity, which pushes a pinned vortex off its perch
or causes a burst of vortices to be shed.

These observations, albeit incidental, have important consequences for the critical velocity problem: existing vor-
tices, either pinned or free-moving, can contribute to the nucleation of new vortices at the walls of the experimental
cell at apparent velocities much lower than the critical velocity for phase slips. We are thus provided with a mechanism
by which superflow dissipation sets in at mean velocities on the large scale much smaller the velocity for vortex nu-
cleation on the microscopic scale, possibly bridging the gap between phase slip and Feynman type critical velocities.
Vortex nucleation at the walls is also quite likely to take part in the build-up of self-sustaining vortex tangles forming
superfluid turbulence, up to now attributed solely to reconnection mechanisms [71].

To conclude, the critical velocities in superfluids that are true and proven include the Landau critical velocity
for roton creation, the formation of vortices by a hydrodynamical instability in BEC gases [72] and in 3He [73],
the nucleation of vortices by thermal activation and quantum tunnelling in 4He, both for ion propagation and in
aperture flow. I have presented rather compelling experimental evidence for the interplay between vortex nucleation
and pinned vorticity on a microscopic scale; this evidence points toward the existence of helical vortex micro-mills
that can generate vortices at fairly low applied velocities. Finally, vagrant vortices interacting with these mills, or with
vortex nucleation sites, are found to generate enough vorticity to completely kill the applied superflow and explain
singular collapses. The study of phase slippage has taken us a long way toward an explanation of critical velocities in
superfluid helium-4.
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