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Abstract

The old idea of the Higgs as a pseudo-Goldstone boson has been revived and re-energized as a possible solution to the little
hierarchy puzzle in the Standard Model. Its most natural implementation may be in the context of models with supersymmetry not
far above the electroweak breaking scale. To cite this article: H. Georgi, C. R. Physique 8 (2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Le Higgs comme un pseudo boson de Goldstone. L’idée ancienne selon laquelle le Higgs pourrait correspondre à un pseudo
boson de Goldstone a récemment connu un regain d’intérêt du fait de la solution qu’elle apporte au conflit de petite hiérarchie au
sein du modèle standard. Elle trouve sans doute sa réalisation la plus naturelle dans le contexte de théories supersymétriques à une
échelle proche de l’échelle de brisure de la symétrie électrofaible. Pour citer cet article : H. Georgi, C. R. Physique 8 (2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
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1. Introduction

The idea of the Higgs as a Pseudo-Goldstone Boson (PGB) [1–4] was revived in 2001 by the development of ‘little
higgs’ models [5]. One can see this dramatically by looking at the citations to [4] histogrammed in Fig. 1. In the last
five years, many new examples of models with a pseudo-Goldstone Higgs (PGH) have been constructed and studied,
both within (see [6–80]) and outside (see [81–89]) the little higgs structure. In this review, I hope to introduce the
reader to these developments. There are excellent reviews of the little higgs [90–92], and partly for this reason, I do
not plan to review little higgs models myself in any comprehensive way. Rather, I want to try to put this class of
theories into some context, to discuss the important theoretical ideas, and to discuss how other PGH theories fit in.
I will focus particularly on the things that I find particularly beautiful and the things that have surprised me.

2. Accidental symmetry—then and now

The idea of a pseudo-Goldstone boson is in some sense quite old, since the light pseudoscalar mesons of QCD qual-
ify. However, the precise modern formulation is due to Weinberg [1], suggested in the tumultuous times of the early
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Fig. 1. Citations to [4] by year.

1970s. The issue that Weinberg addressed was the puzzle of approximate symmetries. He showed how they could arise
in renormalizable quantum field theories (QFTs) as ‘accidental’ consequences of the constraints of renormalizability.
The issue is always the ‘accidental’ part. It had long been known how symmetries could be imposed on a QFT, and
how, once imposed, they were (in the absence of explicit anomalies) impervious to quantum corrections. But it did not
seem to make sense to ‘impose’ an approximate symmetry when the symmetry breaking corrections were generally
subject to renormalization and thus (at least in the prevalent view at the time) completely unknown. This seemed (and
still seems to some of us) no better than just assuming the answer you wanted from the beginning. Weinberg noticed
that in some QFTs symmetries of part of the Lagrangian arose automatically from the constraints of renormalizability
without being imposed. If these symmetries were not shared by the rest of the Lagrangian, the symmetry breaking
quantum corrections to the symmetric part would be non-zero, but they would be protected by renormalizability and
they would get a finite and calculable contribution from the Coleman–Weinberg terms [93,1,94].

If an accidental symmetry is spontaneously broken, the result is a pseudo-Goldstone boson. It’s mass and non-
derivative interactions are symmetry breaking effects, finite and calculable quantum corrections. Weinberg hoped that
this might be related to the approximate Goldstone nature of the pion, as indeed, it was. Such was the rate of progress
in those times that the actual connection began to emerge in a matter of months. We now know that the approximate
chiral SU(3) × SU(3) symmetry of low-energy QCD is an automatic consequence of the fact that the light quark
masses are small compared to the QCD scale. No symmetry has been imposed by hand.

The reliance of the original definition of accidental symmetry on renormalizability here may seem somewhat
quaint, but in fact the idea of accidental symmetry has proven to be extremely robust. But it is important to mention
one extension of the original idea. All that is necessary for a PGB is an automatic degeneracy of the surface of
minimum potential and this can come about in various ways [3]. In particular, the surface of minimum potential may
have a symmetry that is not shared by the full potential. In fact, the only important difference if the symmetry is
broken away from the surface of minimum potential is that there are then Coleman–Weinberg contributions to the
PGB masses from scalar boson loops. The authors of [3] chose not to introduce a new term for this, and to simply
extend the definition of accidental symmetry. Thus the notion of accidental symmetry has broadened somewhat. since
its original definition.

The first real examples of PGH theories [4,95–98] made use of composite pseudo-Goldstone bosons built explicitly
as pairs of fermions bound by a strong ‘ultracolor’ gauge interaction. In the simplest ultracolor SU(3) theory, the strong
ultracolor dynamics is just a stronger version of QCD with three massless quarks, electroweak SU(2) is the analog
of isospin, and the PGH is the analog of the K meson doublet, part of the octet of Goldstone bosons associated with
the spontaneous breakdown of chiral SU(3) × SU(3) to Gell-Mann’s flavor SU(3). The point of references [4,95–97]
was to explain how additional interactions (and/or masses) of the ultrafermions could break the chiral symmetries that
made the Higgs a Goldstone boson and dynamically build a Higgs potential that gives rise to electroweak symmetry
breaking. In [98], the authors performed a similar construction for an ultracolor theory that spontaneously breaks
SU(5) down to SO(5).1

1 This is what we believe happens for an SO(n) color group.
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So why is it that the authors of [4,95–98] did not discover little higgs models?
In all these works, fine tuning was required to make the ultracolor scale of Higgs compositeness much larger

than the electroweak symmetry breaking scale, which was (and now is much more) required for phenomenological
consistency. Note that this is perfectly consistent with the fact that the Higgs itself is a pseudo-Goldstone boson, and
therefore has a mass much smaller than the ultracolor scale. The point is that in these models, generically, the Higgs
mass is a symmetry breaking effect that is in some sense small because the Higgs is a pseudo-Goldstone boson. But
the VEV is large because the VEV is a ratio of the Higgs mass to the square root of the quartic Higgs coupling.
The global approximate symmetry that makes the Higgs pseudo-Goldstone boson generically suppresses both the
Higgs mass and the quartic Higgs coupling by roughly the same factor, so the VEV remains large in the absence
of fine tuning. The problem is to make the Higgs parameter even smaller, higher order in some symmetry breaking
parameter, while retaining the leading symmetry breaking correction the quartic coupling. This is what required fine
tuning in the original models. In these models, fine tuning is possible because there are two independent sources of
breaking of the global symmetry that contribute differently to the Higgs mass and the quartic coupling so that the
VEV can be tuned to be small compared to the ultracolor scale. This was the unsatisfactory situation that little higgs
models addressed.

The reason that fine tuning was required in the first generation of PGH models is that there was an beautiful and
subtle idea missing—the idea of collective symmetry breaking.2 In interesting little higgs models, as we will see, there
are also two sources of symmetry breaking. But each of them preserves a symmetry that leaves the Higgs as an exact
Goldstone boson. But the symmetries of the two sources are different, so the combination of the two breaks all the
symmetries that protect the Higgs. Then generically, without tuning, these terms suppress the Higgs mass more than
they suppress the quartic Higgs coupling. I will discuss this in detail in Section 5 below when I talk about the ‘littlest
higgs’, a beautiful model closely related to the model of [98].

However, there is another difference between the current efforts and those of [4,95–98] from the 1980s. The moti-
vations for PGH theories today are somewhat different than they were before the flood of LEP data. In the 1980s, the
primary motivation was the desire to do without scalar fields entirely. This motivation has been largely replaced by the
so-called ‘little hierarchy puzzle’—the surprising agreement of precision electroweak data with the Standard Model
with a single light Higgs. The metaphor has changed dramatically in the intervening twenty years. Now one talks
about controlling ‘large’ quadratically divergent contributions to the Higgs mass. This still seems odd to old people
like myself. We grew up thinking of all quadratically divergent contributions as ‘large’. But the modern view makes
perfect sense in the context of Wilsonian effective field theory. Most modern PGH theories are much less ambitious
than their ancestors because they are motivated primarily by LEP-energy data and stay at least partly in the effective
theory below the scale of beyond-the-standard-model physics.

I will look in varying detail at just three different PGH theories, not attempting to give a complete description, but
rather picking out the most interesting features or new theoretical ideas of each. I will not talk about precision tests
of any of these theories. While this is an important hurdle for model building, and the creators of these models have
learned many interesting things by trying to squeeze their theories into the straight-jacket of precision tests, in some
deep sense this is premature. These theories are not crazy enough to be right anyway. I think it is more important to
understand the range of theoretical possibilities than to ramify any particular theory. For each I will be particularly
interested in the following questions:

(i) What is the accidental symmetry?
(ii) Is it really accidental or has some part been imposed by hand?

(iii) Do we get out more than we put in?

Before discussing PGH theories, I will quickly review QCD in Section 3. The chiral symmetries of QCD are
interpreted as accidental symmetries and the light pseudoscalar mesons are pseudo-Goldstone boson. Much of our
intuition about the properties of pseudo-Goldstone bosons comes from this picture.

2 Though I was one of the authors of [5], I really did not understand the beauty and generality of what we had done until I heard from Ann Nelson
how it arose from collective symmetry breaking.
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We will begin our tour of PGH theories in Section 4 by discussing very briefly the first little higgs model and the
‘minimal moose’ of Arkani-Hamed, Cohen, Katz, Nelson, Gregoire and Wacker [7] as examples of little higgs models
with ‘theory spaces’ connected by multiple copies of similar pseudo-Goldstone bosons.

In Section 5, I look in much more detail at the ‘littlest higgs’ theory of [8] as an example of a PGH that arises
naturally with a PGB sector different from that of QCD. Again, however, the accidental symmetry arises very naturally
in a strongly coupled theory. This model is perhaps the prettiest example of collective symmetry breaking. I will
describe it in much more detail than I devote to other little higgs models in order to show how collective symmetry
breaking works in detail.

In Section 6 I briefly describe some more general developments in PGB model building that blur the distinctions I
have made in the previous two sections.

In Section 7 I discuss what was for me the most surprising set of PGB models, based on the idea of a ‘twin higgs’.
In this case, the accidental symmetry arises not from strong interactions, but from the imposition of a Z2 symmetry on
a weakly coupled theory, resulting in a doubling of the gauge group and the Higgs structure. That this can accomplish
anything at all, I found quite remarkable. But in fact, the simplest models (for example [82]) have some interesting
features, and the supersymmetric versions are among the most appealing PGB models I have seen.

I close in Section 8.

3. Pions as pseudo-Goldstone bosons

Before we look at the condensates and Goldstone bosons in PGH theories, let us review how it works in QCD. This
is a familiar story. The accidental symmetry of QCD is the chiral SU(3) × SU(3) symmetry of the light quarks. This
symmetry is exact for massless quarks, arising as SU(n) symmetries do so often in quantum mechanics simply because
there are several complex fields (the left and right handed fermions in this case) with identical interactions. The quark
masses break the chiral symmetry, but to the extent that the quark mass terms can be regarded as a perturbation, some
vestige of the chiral symmetry remains. The symmetry is only relevant to the light quarks for which the quark mass
can be regarded as small compared to the dimensional scale of ΛQCD. Thus the symmetry requires parameters in
the theory (the quark masses) to be in a particular range (small compared to ΛQCD). However, this chiral symmetry
requires no fine tuning, because no specific values of the quark masses are required, and the masses can be chosen
completely arbitrarily, so long as they are small compared to ΛQCD. In the confined phase of QCD, a quark–antiquark
condensate breaks the chiral SU(3) × SU(3) symmetry of the light quarks spontaneously, preserving Gell-Mann’s
SU(3), the lightest pseudoscalar mesons are Goldstone bosons, and the light quarks develop dynamical masses related
to their couplings to the Goldstone bosons, and nearly independent of their small chiral symmetry breaking masses.

[
ψLγ 0ψR

]
low

energy
∝ Σ = exp(iΠ/f ) = unitary

matrix
(1)

There is what is called a vacuum alignment issue here—the vacuum ‘direction’ of the condensate Σ is determined
by the quark mass matrix M . The quark mass matrix produces a contribution to the potential energy that aligns the
vacuum direction of Σ to the identity in the basis in which the symmetry breaking mass matrix is diagonal, giving
rise to Gell-Mann’s approximate SU(3) flavor symmetry [99].

−Tr(MΣ) ⇒ 〈Σ〉 = I for M =
(

mu 0 0
0 md 0
0 0 ms

)
(2)

⇔ Gell-Mann’s SU(3) approximately

preserved for light quarks
(3)

Mathematically, we say that

SU(3) × SU(3) → SU(3) (4)

Another way of describing this alignment issue is that each flavor does its own thing and condenses, but one does not
know exactly what the flavors are until the symmetry is explicitly broken.
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The other ‘directions’ for the condensate are excitations of the Goldstone boson fields

Π =
⎛
⎜⎝

1√
2
π0 − 1√

6
η π+ K+

π− − 1√
2
π0 − 1√

6
η K0

K− K0
√

2
3η

⎞
⎟⎠ (5)

In the QCD case, the Goldstone bosons are described by a hermitian matrix because the condensate is unitary.
The Π Goldstone bosons are quark–antiquark bound states, but they are massless in the absence of explicit sym-

metry breaking because they are bound by the QCD interactions just as much as the vacuum state itself.
In QCD this is very familiar

Π ∝
(

uu ud us

du dd ds

su sd ss

)
(6)

and simple, except for some funny business for the π0 and η due to the axial anomaly, which breaks the axial U(1)

symmetry and constrains the Goldstone boson fields to the traceless combinations of (5).
The f in

Σ = exp(iΠ/f ) (7)

is fπ —the amplitude for a chiral current to create a Goldstone boson out the vacuum. In QCD it is smaller than the
typical mass of a non-Goldstone meson state (like the ρ or the a1 or whatever) ≈ 1 GeV.

The 1 GeV scale is called (confusingly) Λ—the chiral symmetry breaking scale—not to be confused with ΛQCD.
The ratio Λ/f plays a large role in the thinking of little higgsers. We believe that this factor is real, important and
simple—except for factors having to do with the numbers of colors and flavors, it is a phase space factor of order
4π ≈ 10. In the application of these ideas to PGB theories, this factor of 10 is the difference between 1 TeV and
10 TeV. The number of colors and number of flavors affect these scales in ways that we understand in some limits but
which in general are rather complicated. Usually, this does not help much.

We have also learned from QCD how to describe the effect of gauge interactions on Goldstone bosons. Because
the electromagnetic gauge interactions break the chiral SU(3) × SU(3) symmetry of the light quark Lagrangian, we
would expect electromagnetism to produce a contribution to the Goldstone boson mass. Because of photon exchange,
the K+ is heavier than the K0 even though the u quark is lighter than the d quark. Electromagnetism gives no mass
at all to the K0 because it does not break the chiral d–s symmetry. Because the d and s quarks have the same charge,
chiral U -spin (along with the commuting chiral U(1)) is not broken, and so the neutral mesons π0, K0, K0 and η

remain massless.
We can also think of this in terms of the effect of electromagnetism on the attractive force that binds the mesons

and produces the condensate. Photon exchange adds to the QCD attraction that forms the condensate, but it adds in
the same way in the K0 bound state, which, therefore, remains an exact Goldstone boson. But the K+ and π+ mass
squared get a positive contribution from photon exchange because their quark and antiquarks repel one another and
they are less bound. Formally, the photon exchange potential is

xe2f 4
π |QΣ − ΣQ|2 (8)

where x > 0 and Q is the quark charge matrix

Q =
⎛
⎝

2
3 0 0
0 − 1

3 0
0 0 − 1

3

⎞
⎠ (9)

An interaction of this kinds simply tries to make the condensates neutral to maximize the binding. It produces a
contribution to the Goldstone boson mass squared proportional to the square of the charge. Obviously in QCD this
gives equal mass squared to the K+ and π+ and nothing to any of the neutral states.

In this case, because the nonzero elements of condensate are all neutral, the condensate we already have from the
quark masses minimizes this contribution to the potential as well, and the electromagnetic gauge symmetry is not
broken by the vacuum.
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The description (8) of the effect on the pseudoscalar masses from photon exchange in terms of the condensate Σ is
the paradigm for the description of the effects on pseudo-Goldstone bosons of any interactions other than the strong
interactions. This is worked out in exquisite detail for QCD [100] and (using [101,102]) in more general theories with
spontaneously broken symmetry (see for example [103] and [104]).

4. Theory space models

The first little higgs model was inspired by the idea of deconstructed extra dimensions [5] in which many identical
4-dimensional gauge theories (sites) are linked together to form a ‘theory space’ that becomes an extra dimension
at long distances. The links between different theory space sites are QCD-like Σ fields that spontaneously break the
symmetries on the individual sites. Deconstruction allows one to easily translate many extra-dimensional schemes
into ordinary 4-dimensional theories. The important thing for PGH theories is that theory space is rife with accidental
symmetry. Each link is a potential multiplet of pseudo-Goldstone bosons. Each link could be built like the Σ field of
QCD out of fermions transforming under a separate color group and the accidental symmetry could arise as it does
in QCD. Indeed, one of the messages of deconstruction is that there is a close link between gauge symmetry and
pseudo-Goldstones. The extra-dimensional components of the gauge fields in a deconstructed theory are built out of
the pseudo-Goldstone bosons of the links.

It was recognized almost immediately that it was not necessary to have the full structure of a deconstructed extra
dimension to produce a PGH. The important thing is to have enough links so that there are PGBs left after the Higgs
mechanism has eaten the true Goldstone boson, enough sites so that the gauge interactions do not generate large
masses for the PGBs, and enough structure to produce interactions that implement collective symmetry breaking.
One of the earliest little higgs models built along these lines is the so-called ‘minimal moose’ of [7]. In the minimal
moose shown in Fig. 2 each link represents an independent SU(3) × SU(3)/SU(3) Σ field. If these are generated by
independent strong interactions, there is SU(3)8 global symmetry spontaneously broken down to SU(3)4 and explicitly
broken by the gauge symmetries at the nodes down to SU(3) × SU(2) × U(1), as shown in the figure.

In Fig. 2, we have shown only the PGBs on the links. Thus this picture is valid only below the scale at which the
PGBs are formed. To see the underlying QCD-like structure diagrammatically, we would replace the solid PGB links
by a moose diagram showing fermions and antifermions transforming under a strong ultracolor group. This is shown
in Fig. 3, with the independent ultracolor groups indicated by the solid circles. In this form, the dynamical explanation
of the global chiral SU(3) × SU(3) symmetries of the links is obvious.

Obviously, the theory space in Fig. 2 is very simple—consisting of only two sites. But why does it deserve the
adjective ‘minimal’. The authors of [7] argue that two sites is minimal because one site can never be enough. The
point is that any one-site model, such as that shown in Fig. 4, will have contributions to the PGB masses like the
electromagnetic contribution to the π+ mass, (8). In a strongly interacting ultracolor theory, this is of order

g2f 2 ≈ g2

16π2
Λ2 (10)

where g is the gauge coupling on the site. This is too big, and we want to suppress contributions of this size. In the
two site model, contributions of this order are forbidden by the gauge symmetry.

I will not say any more about these models, and their ilk, but I included them to contrast them with the Littlest
Higgs of Section 5. Both make use of accidental symmetries that arise in a very natural way in composite models. But

Fig. 2. The minimal moose of [7]. Fig. 3. A UV completion of the PGB sector of the minimal moose of [7].
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Fig. 4. A 1-site model that inevitably produces quadratically divergent PGB masses.

while in the Littlest Higgs, the pseudo-Goldstone bosons arise from a large unitary symmetry associated with many
copies of the matter fields in a single strong gauge interaction, the Minimal Moose is at the other end of the spectrum.
The extra symmetry arises precisely because there several independent strong sectors. The theory space models thus
have the modular quality of good Rube Goldberg machines.

I will wait and describe collective symmetry breaking in the littlest higgs model in Section 5, because I find this
much more beautiful and convincing.

5. The Littlest Higgs

In a way the littlest higgs model is a kind of opposite of the theory space models described in Section 4. In theory
space models like the minimal moose, the accidental symmetry has many factors of a small group. The littlest higgs
and its ramifications are based on one large accidental symmetry group.

Here I will describe the original littlest higgs model the SU(5)/SO(5) model of Arkani-Hamed, Cohen, Katz and
Nelson [8]. In my view this is one of the simplest and most beautiful little higgs models. I shall describe it in some
detail because I am so impressed by at least part of it.

One of the things I like about this model is that the higgs structure might emerge from simple specific high energy
dynamics different from QCD, so I will start with that. Imagine a high energy theory with an asymptotically free
SO(n) gauge group that becomes strongly interacting at a scale of order 10 TeV and that includes, among other things,
5 LH fermions transforming like ns under the SO(n).

In addition there is a much weaker SU(2)1 × U(1)1 × SU(2)2 × U(1)2 gauge group from which will emerge the
electroweak SU(2) × U(1) low energy gauge symmetry.

The 5 ns transform like (2,1)+ (1,2)+ (1,1) under the two SU(2)s, and it is convenient to talk about this structure
in a notation with vectors blocked as follows

ψ =
(2

1
2

)
=

(
(2,1)

(1,1)

(1,2)

)
(11)

In this notation, matrices look like(2 × 2 2 × 1 2 × 2
1 × 2 1 × 1 1 × 2
2 × 2 2 × 1 2 × 2

)
(12)

and the weak gauge generators look like this:

Qa
1 =

( σa

2 0 0
0 0 0
0 0 0

)
, Q′

1 =
(

q1 − 1
2 0 0

0 q1 0
0 0 q1

)
(13)

Qa
2 =

(0 0 0
0 0 0

σ ∗
a

)
, Q′

2 =
(

q2 0 0
0 q2 0

1

)
(14)
0 0 − 2 0 0 q2 + 2



1036 H. Georgi / C. R. Physique 8 (2007) 1029–1047
The U(1)s have SO(n) anomalies but who knows what else is happening in the high energy theory—so this may
be OK—I will set q1 = q2 = 03—this keeps the algebra simple and does not change the important parts

Qa
1 =

( σa

2 0 0
0 0 0
0 0 0

)
, Q′

1 =
(− 1

2 0 0
0 0 0
0 0 0

)
(15)

Qa
2 =

(0 0 0
0 0 0
0 0 −σ ∗

a

2

)
, Q′

2 =
(0 0 0

0 0 0
0 0 1

2

)
(16)

In the SO(n) theory, the condensate looks like

[
ψγ 0ψT

]
low

energy
= Σ = symmetric

matrix
(17)

Unlike the chiral symmetry breaking condensate in QCD, here there is no difference between LH and RH fields.
Therefore the condensate is a fermion-fermion condensate—not fermion-anti-fermion → Σ = ΣT .

The fundamental assumption—based on the QCD analog and justified for a large number of colors [105]—is that
Σ is also unitary. This is the analog of the statement that each flavor does its own thing. As in QCD, the vacuum
‘direction’ is determined by symmetry breaking. But if we do not worry about making the small symmetry breaking
interactions look complicated, we can always choose a basis for the fermion fields such that

Σ = I (18)

which clearly breaks the SU(5) global symmetry down to SO(5) because under an SU(5) transformation U

Σ = I → UΣUT = UUT (19)

and only if U is real is UT = U† = U−1.
But while there is always some basis in which the condensate looks like (18), this may not be the basis in which

the weak gauge interactions have the simple form (15), (16). Again there is a vacuum alignment issue. To see what
the vacuum looks like in the particular basis defined by (15), (16) we must look at the symmetry breaking effect of
the low energy gauge interactions. The result is something I find quite counter-intuitive, but ultimately very beautiful,
so I am going to show you how it works in a bit of detail. We will find that in the preferred vacuum, the individual
SU(2) × U(1) break, but the combination of the two is left unbroken—and this becomes the SU(2) × U(1) of the
standard model.

One of the things I find particularly beautiful about the SU(5)/SO(5) model is that the vacuum is picked out
largely by the weak gauge interactions. We saw in Section 3 how this works in the generation of the electromagnetic
contribution to the π± and κ± mass in QCD. There are good reasons to believe that this works in a similar way in the
SU(5)/SO(5) model—but there are important differences:

(i) Now there are lots of charges—we have to sum over each type of charge, multiplying by the coupling constant.
The charges of the Goldstone bosons or the entries in the condensate matrix Σ are just the sums of the charges
of the fermion constituents.

(ii) Because the condensate is symmetric, the potential from a charge Q looks like

xe2f 4
∣∣QΣ + ΣQT

∣∣2 (20)

(iii) This time, we do not already know the form of the vacuum from something like the quark masses that we had in
QCD. These terms determine the vacuum structure.

(iv) Finally, we will not be able to find elements of the condensate matrix that preserves all the gauge symmetries—
some will get spontaneously broken.

So, for example, the U(1) charge in (15) gives a charge squared of the form

3 The charges of the bosons do not depend on the qs.
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Q′
1 =

⎛
⎝− 1

2 0 0

0 0 0
0 0 0

⎞
⎠ →

⎛
⎝ 1 1

4
1
4

1
4 0 0
1
4 0 0

⎞
⎠ (21)

=
⎛
⎜⎝

( 1
2 + 1

2

)2 ( 1
2 + 0

)2 ( 1
2 + 0

)2(
0 + 1

2

)2 0 0(
0 + 1

2

)2 0 0

⎞
⎟⎠ (22)

Similarly the U(1) charge in (16) gives a charge squared of the form

Q′
2 =

(0 0 0
0 0 0
0 0 1

2

)
→

⎛
⎜⎝

0 0 1
4

0 0 1
4

1
4

1
4 1

⎞
⎟⎠ (23)

For the SU(2) gauge groups, we want the sum of the squares of the components, which gives i(i + 1) for the
representation. Under SU(2)1 × SU(2)2, the various parts of the condensate matrix have isospin(

(1,0) (1/2,0) (1/2,1/2)

(1/2,0) (0,0) (0,1/2)

(1/2,1/2) (0,1/2) (0,1)

)
(24)

Notice that in these entries⎛
⎜⎜⎜⎝

(1,0) (1/2,0) (1/2,1/2)

(1/2,0) (0,0) (0,1/2)

(1/2,1/2) (0,1/2) (0,1)

⎞
⎟⎟⎟⎠ (25)

there is no (0,0) component because of the symmetry of the matrix.
Thus the SU(2) contributions look like

Qa
1 =

⎛
⎝

σa

2 0 0

0 0 0
0 0 0

⎞
⎠ →

⎛
⎝ 2 3

4
3
4

3
4 0 0
3
4 0 0

⎞
⎠ (26)

Qa
2 =

⎛
⎝0 0 0

0 0 0

0 0 −σT
a

2

⎞
⎠ →

⎛
⎜⎝

0 0 3
4

0 0 3
4

3
4

3
4 2

⎞
⎟⎠ (27)

Putting this together gives the contribution to (20) proportional to

Tr

⎧⎨
⎩

⎡
⎣g2

1

⎛
⎝ 2 3

4
3
4

3
4 0 0
3
4 0 0

⎞
⎠ + g2

2

⎛
⎝ 0 0 3

4

0 0 3
4

3
4

3
4 2

⎞
⎠ + g′

1
2

⎛
⎝ 1 1

4
1
4

1
4 0 0
1
4 0 0

⎞
⎠ + g′

2
2

⎛
⎝ 0 0 1

4

0 0 1
4

1
4

1
4 1

⎞
⎠

⎤
⎦

×
⎛
⎝ |Σ(1or2)(1or2)|2 |Σ(1or2)3|2 |Σ(1or2)(4or5)|2

|Σ3(1or2)|2 |Σ33|2 |Σ3(4or5)|2
|Σ(4or5)(1or2)|2 |Σ(4or5)3|2 |Σ(4or5)(4or5)|2

⎞
⎠

⎫⎬
⎭ (28)

Because of the zeros in the 33 spot in (28), the potential (20) is minimized by a condensate of the form⎛
⎝ |Σ(1or2)(1or2)|2 |Σ(1or2)3|2 |Σ(1or2)(4or5)|2

|Σ3(1or2)|2 |Σ33|2 |Σ3(4or5)|2
|Σ(4or5)(1or2)|2 |Σ(4or5)3|2 |Σ(4or5)(4or5)|2

⎞
⎠ =

( ? 0 ?
0 1 0
? 0 ?

)
(29)

And you can see explicitly that a condensate of the form(
I 0 0
0 1 0

)
(30)
0 0 I
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has higher energy than one of the form

Σ0 =
( 0 0 I

0 1 0
I 0 0

)
(31)

Both the SU(2) and the U(1) contributions tend to stabilize the vacuum (31). Looking at (24) you can see that the
off-diagonal components are like SU(2) × SU(2) sigma models:⎛

⎜⎜⎜⎝
(1,0) (1/2,0) (1/2,1/2)

(1/2,0) (0,0) (0,1/2)

(1/2,1/2) (0,1/2) (0,1)

⎞
⎟⎟⎟⎠ (32)

so (31) spontaneously breaks the gauge SU(2) × SU(2) down to a single SU(2) which is identified as the electroweak
SU(2) gauge symmetry.

Notice that this completely determines the vacuum up to gauge transformations, so we expect that there are no
exact Goldstone bosons left over. But something interesting happens when you look at the pseudo-Goldstone bosons.
We will first do this explicitly, and then go back and understand qualitatively what is going on.

The pseudo-Goldstone fields are small deformations around the vacuum (31) that we can parametrize in terms of a
field-dependent symmetric condensate Σ as follows:

Σ = e2iΠ/f Σ0 (33)

where Π is a Hermitian matrix field satisfying

Π = Π† = Σ0Π
T Σ0 and Tr(ΠΣ0) = 0 (34)

which guarantees the symmetry of Σ . This may look a little funny because it is Π that is Hermitian to ensure the
unitarity of Σ , but it is ΠΣ0 that is symmetric and traceless.

Π =
(

ξ + η/(2
√

5 ) h/
√

2 φ

h†/
√

2 −2η/
√

5 hT /
√

2
φ∗ h∗/

√
2 ξ∗ + η/(2

√
5 )

)
(35)

where ξ is a traceless, Hermitian 2 × 2 matrix field, η is a real singlet field, φ is a complex symmetric matrix, and h

is the doublet putative Higgs field. The electric charges are⎛
⎜⎜⎜⎝

0 1 0 0 −1
−1 0 −1 −1 −2
0 1 0 0 −1
0 1 0 0 −1
1 2 1 1 0

⎞
⎟⎟⎟⎠ (36)

With a gauge transformation, we can choose

h =
(

h0/
√

2
0

)
(37)

where h0 is a real field. In this gauge, the other critical field is the imaginary part of Π14, which I will call φ2/
√

2. As
a function of h0 and φ2 with the other fields zero, the contributions to (20) from Qa

1 and Q′
1 are proportional to

3f 4 + φ2
2f 2 + h2

0φ2f√
2

+ h4
0

8
− 2φ4

2

3
− 2h2

0φ
2
2

3
+ O(1/f ) (38)

For φ2/f,h2
0/f

2 � 1, this is approximately

3f 4 + (
φ2f + h2/

√
8
)2 (39)
0
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Fig. 5. The potential from Q1. The potential is minimized and
constant along the thick black curve.

Fig. 6. Contour plot of the potential from Q1. The
potential is minimized and constant along the thick
black curve.

which is constant on the curve h2
0 = √

8φ2h. While the specific form of (39) is valid only near the origin, the fact that
it is constant on a curve in field space is an exact consequence of the Goldstone theorem.(0 0 0

0 x x

0 x x

)
commutes

with
Qa

1 =
( σa

2 0 0
0 0 0
0 0 0

)
and Q′

1 =
(− 1

2 0 0
0 0 0
0 0 0

)
(40)

and therefore the weak gauge couplings associated with these charges preserve an SU(3) global symmetry acting on
indices 3–5 in addition to the SU(2) gauge symmetry acting on the 1–2 indices. This symmetry is spontaneously
broken giving rise to an uneaten Goldstone boson. The constancy of (39) on a curve is a consequence of this sponta-
neously broken symmetry.

The potential (39) as a function of h0 and φ2 is plotted in Fig. 5. Superimposed on the graph is the curve in field
space along which the potential is constant. A contour plot of (39) is shown in Fig. 6.

Similarly, as a function of h0 and φ2 with the other fields zero, the contributions to (20) from Qa
2 and Q′

2 are
proportional to

3f 4 + φ2
2f 2 − h2

0φ2f√
2

+ h4
0

8
− 2φ4

2

3
− 2h2

0φ
2
2

3
+ O(1/f ) (41)

and for φ2/f,h2
0/f

2 � 1, this is approximately

3f 4 + (
φ2f − h2

0/
√

8
)2 (42)

which is constant on the curve h2
0 = −√

8φ2h. Again the constancy arises from the Goldstone theorem, while(
x x 0
x x 0
0 0 0

)
commutes

with
Qa

2 =
(0 0 0

0 0 0
0 0 −σ ∗

a

2

)
and Q′

2 =
(0 0 0

0 0 0
0 0 1

2

)
(43)

and therefore these weak gauge couplings associated with these charges preserve an SU(3) global symmetry acting
on indices 1–3 in addition to the SU(2) gauge symmetry acting on the 4–5 indices. This global symmetry is sponta-
neously broken resulting in an uneaten Goldstone boson. The constancy of (42) on a curve is a consequence of this
spontaneously broken symmetry.

The potential (42) as a function of h0 and φ2 is plotted in Fig. 7. Superimposed on the graph is the curve in field
space along which the potential is constant. A contour plot of (42) is shown in Fig. 8.

Now when we add these two contributions, we get something wonderful. The result is shown in Figs. 9 and 10 in the
special case in which the two contributions have the same coefficients. Now, as expected, the potential is minimized
at the origin. However, the two directions in field space are very different. In the φ2 direction (vertical in Fig. 10)
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Fig. 7. The potential from Q2. The potential is minimized and
constant along the thick black curve.

Fig. 8. Contour plot of the potential from Q2. The
potential is minimized and constant along the thick
black curve.

Fig. 9. The sum of the potentials from Q1 and Q2Qs with equal
coefficients.

Fig. 10. Contour plot of the sum of the potentials
from Q1 and Q2 with equal coefficients.

the potential is quadratic so the φ2 field has a mass. But in the h direction, the potential is much flatter because
both contributions are moving along the Goldstone boson direction. But it is not perfectly flat because the Goldstone
boson directions from the two contributions diverge as we move away from the origin. This is the source of the λh4

interaction that is crucial to stabilize spontaneous symmetry breaking.
The general case gives similar results as shown in Figs. 11 and 12. These look different far away from the origin,

but are qualitatively similar near the origin.
Thus collective symmetry breaking seems to very naturally produce a λh4 coupling without an h mass. There is

one question that could still be asked. For this mechanism to work the Goldstone boson directions must coincide at
the origin. If the Goldstone boson directions were different both fields would get mass. Of course, the directions did
line up in this case by explicit calculation. But did we secretly sneak in a tuning to enforce this? Or it is an automatic
consequence of some principle. In this case, there are various ways to see that no tuning has been done. One simple
one is to note that there are symmetries between the 1 and 2 gauge structures in the limit that the gauge couplings are
equal. This symmetry, along with the fact that h0 is part of a SU(2) doublet, requires the Goldstone boson direction to
line up with the h0 direction when φ2 → 0. In discussions of collective breaking in the literature, this issue is seldom
discussed, but it is implicit in the assumption that it is the same Goldstone field that is protected by the different
components of the collective symmetry breaking.
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Fig. 11. The sum of the potentials from Q1 and Q2Qs with dif-
ferent coefficients.

Fig. 12. Contour plot of the sum of the potentials
from Q1 and Q2 with different coefficients.

The collective symmetry breaking in the littlest higgs model is clever and beautiful. To my mind, this is the most
gorgeous example of the phenomenon because the quartic interactions of the little higgs boson are generated just by
the gauge interactions with no additional structure required. The rest of the model is merely clever. As in all composite
little higgs models, one of the interesting issues is how to generate a large t quark mass without spoiling the structure
of collective symmetry breaking.

I will discuss the mechanism for generating the t mass because it demonstrates dramatically both the cleverness
and the lack of beauty. The authors of [8] include the left-handed third family quarks t3 and b3 with an electroweak
singlet left-handed quark t̃ in a triplet under the global SU(3) that acts on the indices 1,2,3 in (43):

χ =
(

t3
b3
−it̃

)
(44)

Then the following terms in the Lagrangian generate a Yukawa coupling for the t :

iλ1f εijkεxyχiΣjxΣkyu
′
3
c + λ2f t̃ t̃ c (45)

where the sums over repeated indices in (45) run over i, j, k = 1 to 3 and x, y = 4,5. The first term preserves the
global SU(3) acting on indices 1,2,3 of Σ and the second term breaks that symmetry because t̃ is included not as
part of the triplet (44), but because it does not involve Σ at all, it does not break the global SU(3) acting on 3,4,5
under which the quarks are singlets. Thus we expect that contributions to the higgs mass will require both couplings
to be nonzero.

Expanding the first term to zeroth order in 1/f using (33), (35) and (37), (45) becomes

2λ1f t̃u′
3
c + 2λ1ht3u

′
3
c + λ2f t̃ t̃ c + · · · (46)

Now when the heavy quark t̃ is integrated out, the linear combination

tc3 = λ2u
′
3
c − λ1 t̃

c√
λ2

1 + λ2
2

(47)

remains in the low energy theory and (46) generates a Yukawa coupling of the higgs to the t3 fermion field

λ1λ2√
λ2

1 + λ2
2

(48)

This is in accord with what we expect from collective symmetry breaking. t-quark loops contribute to the higgs mass
(more precisely to the negative mass-squared term that drives electroweak symmetry breaking) but the mass of the t
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Fig. 13. A QCD-like UV completion of the PGB sector of the littlest higgs model of [8]. The black dot in the center represents an SU(n) gauge
group.

is proportional to the product of λ1 and λ2 so the contribution is under control. The t̃ mass is larger and does not go
to zero as λ1 → 0 or as λ2 → 0, but t̃ loops do not contribute to the h mass.

So why do I feel that (45) and all that goes with it is less compelling than (40) and (43) and the rest of the analysis
of the higgs potential. The difference gets to the heart of what it means for the Higgs to be a pseudo-Goldstone
boson. The difference is that it is easy for me to imagine a high energy theory that generates a Σ field with an SU(5)

accidental symmetry. In fact, we do not have to imagine. I discussed an example—5 fermions transforming like ns
of a strong SO(n) gauge group. And I will discuss more possibilities later. This SU(5) accidental symmetry is all we
need to make collective symmetry breaking that gives rise to the higgs potential completely natural. But the options
for a high energy theory from which the fermion couplings (45) emerges in any natural way are much more limited,
and this is a potential problem.

In particular, if the SU(3) symmetry of the λ1 term is imposed by hand, rather than arising naturally as an accidental
symmetry, then one is actually doing a tuning to suppress the quadratically divergent contributions to the higgs mass
term. If this is the situation, it is not clear how much we have gained with all superstructure of a little higgs model.

This difficultly is part of a more general problem. We have less flexible tools for generating fermions with accidental
symmetries. This may ultimately be just a failure of imagination, but it is not a new problem. From the very beginning
of composite models of electroweak symmetry breaking, it has been difficult to get the fermions right. Little higgs
models may be easier than technicolor models in this regard because we are not trying to do without scalars entirely.

In fact, one could regard this issue as an argument for some supersymmetry in the UV completion of little higgs
models—at least those in which the accidental symmetry arises in the strongly coupled sector of the theory. A nice
explicit example of how SUSY can generate an appropriate UV completion of the littlest higgs is the composite little
Higgs model of [27]. We will discuss the advantages of SUSY in PGH models further in Section 7.

6. Hidden local symmetry

One of the surprises (at least to me) that came out of the spate of activity surrounding little higgs models was the
realization that models like the littlest higgs models which apparently have a very different structure from the QCD-
like theory space models are in fact not so different after all. As shown in [106], you can do anything with QCD-like
theories. Before discussing the general situation, let us look at the littlest higgs. As discussed in Section 5, we can
obtain the PGB sector of the theory by having five identical ultrafermions transforming like ns of an SO(n) gauge
group with a large gauge coupling. The theory has an SU(5) global symmetry acting on the identical multiplets. When
the SO(n) gauge theory confines, the chiral SU(5) symmetry breaks down to SO(n), producing the 14 PGBs of the
littlest higgs model. Thaler in [106] noticed that the same set of PBGs can be produced in the model shown in Fig. 13.

The details of how this works depends on the relative strength of the SU(n) gauge coupling and the SO(5) gauge
coupling (I will assume that both are stronger than the SU(2) × SU(2) × U(1) couplings). If the SO(5) coupling
is much stronger, then when the SO(5) theory confines, the SU(n) gauge symmetry is spontaneously broken down
to an SO(n) gauge symmetry. All the Goldstone bosons are eaten in the Higgs mechanism by the SU(n) gauge
bosons that not associated with the unbroken SO(n) subgroup. The fermions on the left of Fig. 13 are unaffected by
the confinement of the SO(5) fields. Thus in this limit, at energies below the SO(5) confinement scale, the theory
actually looks like the original version with five fermions transforming under an SO(n) gauge group, which in turn on
confinement, produces the 14 PGBs of SU(5)/SO(5).

However, if the SU(n) is much more strongly coupled, then the SU(n) gauge theory confines. The chiral SU(5) ×
SU(5) global symmetry spontaneously breaks down to SU(5), producing 24 Goldstone bosons. However 10 of these
are eaten by the SO(5) gauge bosons leaving 14 PGBs with the same SU(5)/SO(5) structure. There seems to be no
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dramatic transition required to go from one of these limits to the other. Thus it appears that there is a kind of duality
between the strong SO(n) models and the QCD-like models for these PGB sectors.

In [106], Thaler also makes connections between little higgs theories and other apparently different schemes with
PBHs, such as holographic theories.

7. Twin Higgs

To me, one of the most surprising developments in PGH theories is the ‘Twin Higgs’. I find it surprising because
when I first encountered the idea, I did not think it could possibly go anywhere. Briefly the idea is this. Suppose that
there are two copies of the standard model with independent SU(2)s, one the ordinary electroweak SU(2) and all that
goes with it—fermions and a scalar doublet H and another SU(2)′ with a corresponding set of fermion fields and a
scalar doublet H ′. Now suppose there is a Z2 symmetry that interchanges these two sectors. This Z2 restricts the form
of the scalar potential, and in particular, the H mass terms must be proportional to

H †H + H ′†H ′ (49)

But this term has an SU(4) symmetry4 under which the two H s form a 4 of SU(4),

H =
(

H

H ′
)

(50)

and the symmetry is

H → UH (51)

where U is a unitary 4 × 4 matrix. This SU(4) symmetry is, of course, broken by the gauge interactions. But if the
full potential had this enlarged symmetry, then when any linear combination of the H and H ′ developed a VEV,
all the other components would be either true Goldstone bosons or PGBs (depending on the vacuum alignment). In
particular, if H ′ develops a large VEV, then the particles in the 2-world are heavy, and the H doublet would be a PGB.

This all sounds very interesting. The trouble is that (51) generically is not a symmetry of the full potential, and
tuning is required to make it so. The authors of [82] argue that by extending the Higgs structure and the symmetry
still further, they can naturally obtain something like the collective symmetry breaking that one finds in little higgs
models. They refer to the resulting Higgs boson as a ‘Partially Goldstone Twin Higgs’.

In my view, a much more promising class of twin higgs models arises when one combines the twin higgs idea with
SUSY, as in [64,71,107,86,108,109]. SUSY does at least three good things for you in this context.

(i) The constraints imposed Z2 symmetry on the superpotential are much more effective in producing accidental
symmetries than the corresponding constraints on the potential in a theory without SUSY. This is simply because
the renormalizable superpotential is at most cubic in the fields, and the troubles in the twin higgs potential come
from quartic terms. In particular, consider a term in the superpotential like

λNHuHd (52)

where N is a singlet field and the other fields are multiples of the u and d Higgs field for SU(2) and SU(2)′:

Hu = (Hu H ′
u ) and Hd =

(
Hd

H ′
d

)
(53)

Here we have imposed the Z2 symmetry and this automatically implies that (52) has an SU(4) symmetry under
which H

†
u and Hd transform like 4s.

(ii) The second important feature of SUSY theories in this context is the incredibly special role of the SUSY super-
potential. The important point is that not all terms in the superpotential are relevant to the structure and symmetry
of the surface of minimum potential. The surface of minimum potential in the SUSY limit is determined by the
vanishing of the derivatives of the superpotential. Thus the only terms in the superpotential that matter for the

4 Actually the full symmetry is SO(8), but SU(4) is easier to talk about and is enough to guarantee the PGB character of the light Higgs.
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surface of minimum potential in the SUSY limit in some region of parameter space are those that contain at most
one field with zero expectation value. If (52) and perhaps a term linear in N are the only such terms, then the
superpotential contribution to the potential will have an SU(4) symmetric surface of minimum potential in the
relevant region even if the other term in the superpotential break SU(4) (which they almost certainly do). So, for
example, it does not matter that Z2 invariant terms like

f (ucHuψ + u′cH ′
uψ

′) (54)

which might be responsible for a charged 2/3 quark mass have no vestige of the SU(4) symmetry. The Higgs is
still a PGB by the criterion of [3]. No tuning is required!

(iii) Finally, one of the most exciting things about SUSY twin higgs models is that it appears quite natural to construct
successful models of this kind that preserve the unification of couplings in a SUSY GUT theory [110]. This
exciting prospect is discussed in [109].

8. Chindōgu

Not all reviews have any sort of conclusion, but I confess that I came away from my study of recent progress in
PGH theories with a very different viewpoint than what I expected when I began. From several points of view, for
both strongly coupled models like the littlest higgs and weakly coupled models like the twin higgs, the most natural
home for these ideas seems to be in SUSY theories. Indeed, the ideas of SUSY and the PGH seem to complement one
another very well. SUSY enables the accidental symmetry that drives the pseudo-Goldstone phenomenon. The PGH
can ameliorate the little hierarchy in SUSY models and enable models with little or no tuning.

The models, however, are still models. While thinking about all the models I looked at in preparing this note,
I came across the concept of chindōgu, a kind of Japanese version of the Rube Goldberg machine, examples of which
are shown in Fig. 14. PGH models have something of this feeling. To go beyond model building and really construct a
plausible theory, it is necessary but not sufficient to find clever solutions to all of the puzzles that nature throws at us.
We begin to be convinced that our model is more than a model only when our clever solutions start to fit together, to
do more than the one job they were invented for and to produce a model that feels like more than the sum of its parts.
This has not really happened for PGH models. That does not mean that Nature does not make use of the PGH. But it
probably means that if it is Nature’s way, we have not found quite the right way of thinking about it. Of course, none
of the alternatives to PGH really satisfy this criterion either. We are just going to have to wait and see what happens
at the LHC! Let me close with a telling quote from [64]:

Fig. 14. Examples of chindōgu from http://www.chindogu.com/.

http://www.chindogu.com/
http://www.chindogu.com/
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“When using the lack of positive experimental results as a guideline for exploring new directions one should pay
attention in not inventing a medicine that is worse than the illness: a complicated model might look less plausible
than the MSSM fine-tuned at a few % level.”

This caveat is repeated in some form in a number of the papers on the subject of the Higgs as a pseudo-Goldstone
boson. And in the papers in which it does not appear—it ought to!
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