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Abstract

Higgsless models are an attempt to achieve a breaking of the electroweak symmetry via boundary conditions at the end-points
of a fifth dimension compactified on an interval, as an alternative to the usual Higgs mechanism. There is no physical Higgs scalar
in the spectrum and the perturbative unitarity violation scale is delayed via the exchange of massive spin-1 KK resonances. The
correct mass spectrum is reproduced in a model in warped space, which inherits a custodial symmetry from a left–right gauge
symmetry in the bulk. Phenomenological challenges as well as collider signatures are presented. From the AdS/CFT perspective,
this model appears as a weakly coupled dual to walking technicolour models. To cite this article: C. Grojean, C. R. Physique 8
(2007).
© 2006 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Brisure de la symétrie électrofaible sans boson de Higgs. Les modèles « Higgsless » se veulent une alternative au mécanisme
de Higgs et se proposent de briser la symétrie électrofaible par l’intermédiaire de conditions aux bords d’une dimension supplé-
mentaire d’espace. Le spectre de masse ne contient aucune excitation scalaire, et l’unitarité perturbative est maintenue jusqu’à des
énergies élevées grâce à l’échange de résonances de spin 1 massives. Le spectre du modèle standard est correctement reproduit dans
un modèle possédant une symétrie de jauge gauche–droite qui va jouer le rôle de la symétrie custodiale. Les principaux obstacles
à la construction d’un modèle complètement réaliste sont présentés, ainsi que les principales signatures expérimentales attendues.
Dans le contexte des dualités AdS/CFT, ces modèles s’interprètent comme des versions faiblement couplées des théories de type
technicouleur. Pour citer cet article : C. Grojean, C. R. Physique 8 (2007).
© 2006 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
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1. Introduction

The quest to unravel the origin of electroweak symmetry breaking has been at the forefront of particle physics for
25 years, and after a tremendous amount of theoretical effort it is clearer than ever that we will need experiments to
answer the question. This has been further emphasized by the explosion, in the last few years, of a plethora of alter-
native electroweak symmetry breaking scenarios [1], which bear little resemblance to the three traditional solutions:
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the standard model (SM), the minimal supersymmetric standard model, and the technicolour scenario. In addition to
large extra dimensions [2], warped extra dimensions [3], gauge component Higgses [4], ‘little’ Higgses [5], and ‘fat’
Higgses [6], one of the most recent proposals, and in some ways most radical, is the Higgsless scenario [7,8] (see [1]
for a complete list of references on various aspects of Higgsless theories).

The idea behind Higgsless theories is that a momentum along an extra dimension is equivalent to a mass in 4D, so
that we can generate a mass by giving a momentum to a particle in an extra dimension. And, as in quantum mechanics,
a non-zero momentum along a compact direction can result from non-trivial boundary conditions (BCs). Therefore the
work consists in identifying the appropriate BCs and the geometry of the extra dimension to reproduce the spectrum
and the couplings of the SM.

How to break a gauge symmetry by orbifold compactification, i.e. by some particular BCs, has been known for a
long time. This raises the hope of achieving a breaking of the electroweak (EW) symmetry directly by BCs. However,
there are obvious obstacles to the construction of a realistic model [9]:

– Rank reduction: In usual (Abelian) orbifold compactifications, the rank of the gauge group cannot be reduced
unless the orbifold projection corresponds to an outer automorphism of the gauge symmetry. For a given algebra,
the number of automorphisms is limited and, in particular, it is not possible to break SU(2)×U(1) down to U(1).
So more general BCs than those obtained from simple orbifold projection have to be considered.

– Non-rational mass ratio: In usual Kaluza–Klein (KK) compactifications, the spectrum is dictated by the geometry
of the extra dimensions, and the mass gap between two KK states is given by an integer times the inverse size of
the extra dimension. So it seems non-trivial to obtain a mass ratio of the W to the Z that is related to the gauge
couplings.

– Unitarity restoration: Since the seminal works of [10–14], the Higgs boson has been known to play an essential
role in restoring perturbative unitarity in the scattering of longitudinal massive gauge bosons. Thus the question
that the 5D theories we want to consider raise, is whether such a breaking of the gauge symmetries via BCs yields
a consistent theory or not, or, in other words, whether a momentum along a fifth dimension is UV-safer than a
regular 4D gauge boson mass. In order to verify that such a breaking is indeed soft, we need to investigate the
issue of unitarity of scattering amplitudes in such 5D gauge theories compactified on an interval, with non-trivial
BCs. We will derive the general expression for the amplitude for elastic scattering of longitudinal gauge bosons,
and we will write down the necessary conditions for the cancellation of the terms that grow with energy. We will
find that all the consistent BCs are unitary in the sense that all terms proportional to E4 and E2 vanish. In fact,
any theory with only Dirichlet or Neumann BCs is unitary. Surprisingly, this would also include theories where
the boundary conditions can be thought of as coming from a very large expectation value of a brane-localized
Higgs field. In the limit when the expectation value diverges, there are no scalar degrees of freedom at low energy,
thus the name of Higgsless theories.

2. Gauge symmetry breaking by boundary conditions

2.1. Boundary conditions for a gauge field

From now on, we will consider a single extra dimension that consists of an interval, y ∈ [0,πR]. We need to specify
boundary conditions at the end of this interval for the various fields that propagate in the bulk. The appropriate BCs
can be derived from a variational principle. A gauge field in 5D, AM , contains a 4D gauge field, Aμ, and a 4D scalar,
A5. The 4D vector will contain a whole KK tower of massive gauge bosons; however, the KK tower of the A5 will
be eaten by the massive gauge fields and (except for a possible zero mode) will be non-physical. We can guess that
this is what happens from the fact that the Lagrangian contains a mixing term between the gauge fields and the scalar,
reminiscent of the usual 4D Higgs mechanism. Including appropriate gauge-fixing terms in the bulk and on the brane,
the full Lagrangian can be written:

S =
∫

d5x

(
−1

4
Fa

MNFMNa − 1

2ξ
(∂μAμa − ξ∂5A

a
5)2 − 1

2ξbd

(∂μAμa ± ξbdAa
5)2|0,πRδ(y − ybd)

)
(1)

where the field strength is given by the usual expression, Fa
MN = ∂MAa

N −∂NAa
M +g5f

abcAb
MAc

N , g5 is the 5D gauge
coupling, which has mass dimension −1/2, and ξ and ξbd are some gauge-fixing parameters (the − sign is for y = 0,
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the + for y = πR). The theory is non-renormalizable, so it has to be considered as a low-energy effective theory valid
below a cutoff scale, that we will be calculating later on.

We can see that the Aa
5 field has a term ξ∂2

5Aa
5 in its equation of motion. This will imply that if the wave function is

not flat (e.g. the KK mode is not massless), then the field is not physical (since in the unitary gauge ξ → ∞, this field
will have an infinite effective 4D mass and decouples). This shows that the scalar KK tower of Aa

5 will be completely
unphysical, owing to the 5D Higgs mechanism, except perhaps for a zero mode for Aa

5 . Whether or not there is a zero
mode depends on the BCs for the A5 field. In Higgsless models, there would not be any A5 zero mode. Requiring that
the variation of the action vanish at the boundaries leads to the BCs obeyed by the gauge fields

∂5A
μa ± 1

ξbd

∂μ∂μAμa = 0 and ξ∂5A
a
5 ± ξbdAa

5 = 0 (2)

This simplifies quite a bit if we go to the unitary gauge on the boundary given by ξbd → ∞. In this case we are left
with the simple set of boundary conditions

∂5A
μa = 0 and Aa

5 = 0 (3)

These are the BCs that one usually imposed for gauge fields in the absence of any boundary terms. With these BCs,
the full gauge group would remain unbroken. To reduce the gauge symmetry, one needs to introduce some dynamics
at the boundaries, as for example some scalar fields acquiring vacuum expectation values (vev’s).

2.2. Higgs mechanism localized on a boundary: scalar decoupling limit

Let us now consider the case when scalar fields that develop vev’s are added on the boundary. Instead of repeating
a full and general analysis (that can be found in [15]), we will present a concrete example. We consider (see Fig. 1)
a SU(2) gauge group with Newmann BCs for the Aμ components at both ends of the interval. We then assume that at
y = πR, SU(2) is fully broken by the vev of a Higgs doublet. As for the scalar case, the boundary mass generated by
the Higgs vev induces a mixed BC of the form

∂5A
a
μ(πR) = −1

4
g2

5Dv2Aa
μ(πR) (4)

The canonically normalized KK modes are given by

Aa
μ(x, y) =

∞∑
k=1

fk(y)A(k)
μ (x) (5)

Fig. 1. Example of a Higgs mechanism localized on a boundary. For a finite Higgs vev, we obtain a mixed BC which, in the infinite vev limit, simply
becomes a Dirichlet BC: all the gauge bosons that couple to the Higgs have a wave-function that vanishes at the point where the Higgs is localized.
In that limit, there is no scalar degree of freedom in the low energy effective action and the gauge symmetry is entirely broken by the BCs and the
mass of the lightest KK state is simply inversely proportional to the size of the extra dimension.
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with

fk(y) =
√

2√
πR(1 + 16M2

k /(g4
5Dv4)) + 4/(g2

5Dv2)

cos(Mky)

sin(MkπR)
(6)

The BC at the origin, y = 0, is trivially satisfied while the condition at y = πR determines the mass spectrum through
the equation:

Mk tan(MkπR) = 1

4
g2

5Dv2 (7)

In the large vev limit, we obtain that the wave-functions at the y = πR boundary vanish like 1/v2

fk(πR) ∼ 2

√
2

πR

2k + 1

g2
5DRv2

(8)

while the KK masses remain finite

Mk ∼ 2k + 1

2R

(
1 − 4

g2
5DπRv2

)
(9)

This limit exactly corresponds to a Dirichlet BC: in the large vev limit, the wave-functions of the gauge bosons that
couple to the Higgs vanish. It can also be checked that, in that limit, A5 actually obeys a Neumann BC. Though, in
our example, because of the other Dirichlet BC at y = 0, there is still no physical massless mode for A5, while the
would-be massive ones are eaten to give the longitudinal polarizations of the massive Aμ. What allows us to decouple
the Higgs degree of freedom from the low energy action is that, contrary to 4D, the masses of the gauge bosons are
not proportional to the Higgs vev.

3. Unitarity restoration by KK modes. Sum rules of Higgsless theories

Our aim is to build a Higgsless model of electroweak symmetry breaking using BC breaking in extra dimensions.
However, there is a problem in theories with massive gauge bosons without a Higgs scalar: the scattering amplitude
of longitudinal gauge bosons will grow with the energy and violate unitarity at a low scale [10–14]. What we would
like to first understand is what happens to this unitarity bound in a theory with extra dimensions [7] (for a complete
list of references, see [1]). For simplicity we will be focusing on the elastic scattering of the longitudinal modes of the
nth KK mode (see Fig. 2). The energy dependence can be estimated from ε ∼ E,pμ ∼ E and a propagator ∼ E−2.
This way we find that the amplitude could grow as quickly as E4, and then for E � MW can expand the amplitude in
decreasing powers of E as

A = A(4) E4

M4
n

+A(2) E2

M2
n

+A(0) +O
(

M2
n

E2

)
(10)

In the SM (and any theory where the gauge kinetic terms form the gauge-invariant combination F 2
μν ) the A(4) term

automatically vanishes, while A(2) is only cancelled after taking into account the Higgs exchange diagrams.

Fig. 2. Elastic scattering of longitudinal modes of KK gauge bosons, n + n → n + n, with the gauge index structure a + b → c + d . The
E-dependence can be estimated from ε ∼ E,pμ ∼ E and a propagator ∼ E−2.
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Fig. 3. The four diagrams contributing at tree level to the elastic scattering amplitude of the nth KK mode.

In the case of a theory with an extra dimension with BC breaking of the gauge symmetry, there are no Higgs
exchange diagrams; however, one needs to sum up the exchanges of all KK modes, as in Fig. 3. As a result we will
find the following expression for the terms in the amplitudes that grow with energy:

A(4) = i

(
g2

nnnn −
∑

k

g2
nnk

)
a(4)(θ) (11)

with

a(4)(θ) = (
f abef cde

(
3 + 6 cos θ − cos2 θ

) + 2
(
3 − cos2 θ

)
f acef bde

)
(12)

In order for the term A(4) to vanish it is sufficient to ensure that the following sum rule between the couplings of the
various KK modes is satisfied [7]:

E4 sum rule: g2
nnnn =

∑
k

g2
nnk (13)

Assuming A(4) = 0 we get

A(2) = i

M2
n

(
4gnnnnM

2
n − 3

∑
k

g2
nnkM

2
k

)
a(2)(θ) (14)

with

a(2)(θ) =
(

f acef bde − sin2 θ

2
f abef cde

)
(15)

Assuming that relation (13) holds, we can find a sum rule that ensures the vanishing of the A(2) term [7]:

E2 sum rule: gnnnnM
2
n = 3

4

∑
k

g2
nnkM

2
k (16)

Here g2
nnnn is the quartic self-coupling of the nth massive gauge field, while gnnk is the cubic coupling between the

KK modes. In theories with extra dimensions these are of course related to the extra dimensional wave-functions,
fn(y), of the various modes as1

gmnk = g5

∫
dy fm(y)fn(y)fk(y) and g2

mnkl = g2
5

∫
dy fm(y)fn(y)fk(y)fl(y) (17)

1 These expressions of the effective cubic and quartic couplings are valid in flat space. When the fifth dimension is curved, appropriate powers
of the warp factor appear. The scalar product used in the completeness relation has to be modified accordingly. At the end of the day, the same sum
rules still hold.
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Fig. 4. The scattering amplitude of the longitudinal components of the lightest massive KK gauge boson would naively become non-perturbative
at an energy scale 4πMW /g4. However, before reaching that scale, the exchange of the KK excitations starts cancelling the scattering amplitude.
The story repeats itself until reaching the heaviest KK mode below the 5D cutoff, for which no heavier excitations can intervene to smoothen its
scattering amplitude. Thus the perturbative unitarity breakdown has been delayed and pushed to a scale that is not directly related to the mass of the
lightest massive gauge bosons. A detailed analysis [16] of inelastic channels confirms the loss of perturbative unitarity at an energy scale related to
the 5D cutoff.

Amazingly, higher-dimensional gauge invariance will ensure that both of the sum rules are satisfied as long as the
breaking of the gauge symmetry is spontaneous. For example, it is easy to show the first sum rule via the completeness
of the wave functions fn(y):

πR∫
0

dy f 4
n (y) =

∑
k

πR∫
0

dy

πR∫
0

dzf 2
n (y)f 2

n (z)fk(y)fk(z) (18)

and using the completeness relation
∑

k fk(y)fk(z) = δ(y − z), we can see that the two sides of Eq. (13) will indeed
agree. One can similarly show [7] that the second sum rule will also be satisfied if the boundary conditions are natural
and all terms in the Lagrangian (including boundary terms) are gauge-invariant. Let us insist on the particular case
of a Higgs mechanism localized at the boundary: for finite Higgs vev, the cancellation of the E2 term requires the
exchange of the brane Higgs scalar degree of freedom; however, in the infinite vev limit, the contribution of the Higgs
exchange to the scattering amplitude actually cancels out and we are left with simple Dirichlet BCs for which the
scattering amplitude is unitarized by the sole exchange of spin-1 KK excitations.

At this point, it should be noted that the two sum rules cannot be satisfied with a finite number of KK modes.
This is in full agreement with the old theorem by Cornwall et al. [12], who established that the only way to restore
perturbative unitarity in the scattering of massive spin-1 particles is through the exchange of a scalar Higgs boson.
Our 5D theory is non-renormalizable anyway, so it is valid up to a finite cutoff. What our result really shows is that,
through the exchange of the KK gauge bosons, the perturbative unitarity breakdown is postponed from an energy scale
of the order of the mass of the lightest KK state to the true 5D cutoff of the order of the mass of the heaviest KK state;
see Fig. 4.

What we see from the above analysis is that in any gauge-invariant extra-dimensional theory the terms in the
amplitude that grow with the energy will cancel. However, this will not automatically mean that the theory itself is
unitary. The reason is that there are two additional worries: even if A(4) and A(2) vanish, A(0) could be too large and
spoil unitarity. This is what happens in the SM if the Higgs mass is too large. In the extra-dimensional case what this
would mean is that the extra KK modes would make the scattering amplitude flatten out to a constant value. However,
if the KK modes themselves are too heavy then this flattening out will happen too late, when the amplitude already
violates unitarity. The other issue is that, in a theory with extra dimensions, there are infinitely many KK modes and
thus as the scattering energy grows one should not only worry about the elastic channel, but the ever growing number
of possible inelastic final states. The full analysis taking into account both effects has been performed in [16], where
it was shown that, after taking into account the opening up of the inelastic channels, the scattering amplitude will
grow linearly with energy and will always violate unitarity at some energy scale. This is a consequence of the intrinsic
non-renormalizability of the higher-dimensional gauge theory. It was found in [16] that the unitarity violation scale
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due to the linear growth of the scattering amplitude is equal (up to a small numerical factor of order 2–4) to the cutoff
scale of the 5D theory obtained from naive dimensional analysis (NDA). This cutoff scale can be estimated in the
following way. The one-loop amplitude in 5D is proportional to the 5D loop factor g2

5/(24π3). The dimensionless
quantity obtained from this loop factor is g2

5E/(24π3), where E is the scattering energy. The cutoff scale can be
obtained by calculating the energy scale at which this loop factor will become of order 1 (that is the scale at which the
loop and tree-level contributions become comparable). From this we get ΛNDA = 24π3/g2

5 . We can express this scale
by using the matching of the higher-dimensional and the lower-dimensional gauge couplings. In the simplest theories
this is usually given by g2

5 = πRg2
4 , where πR is the length of the interval, and g4 is the effective 4D gauge coupling.

So the final expression of the cutoff scale can be given as

ΛNDA = 24π2

g2
4R

(19)

We will see that in the Higgsless models 1/R will be replaced by M2
W/MKK, where MW is the physical W mass, and

MKK is the mass of the first KK mode beyond the W . Thus the cutoff scale will indeed be lower if the mass of the KK
mode used for unitarization is higher. However, this ΛNDA could be significantly higher than the cutoff scale in the
SM without a Higgs, which is around 1.2 TeV.

4. Warped Higgsless model with custodial symmetry

It is clear that in order to find a Higgsless model with the correct W/Z mass ratio one needs to find an extra-
dimensional model that has the custodial SU(2) symmetry incorporated [17]. Therefore we need to somehow involve
SU(2)R in the construction. The simplest possibility is to put an entire SU(2)L × SU(2)R × U(1)B−L gauge group
in the bulk of an extra dimension [7]. In order to mimic the symmetry-breaking pattern in the SM most closely, we
assume that on one of the branes the symmetry breaking is SU(2)L × SU(2)R → SU(2)D , with U(1)B−L unbroken.
On the other boundary, the bulk gauge symmetry must be reduced to that of the SM, and thus have a symmetry-
breaking pattern SU(2)R × U(1)B−L → U(1)Y , which is illustrated in Fig. 5. The custodial symmetry is broken on
one boundary. To reduce the effect of this breaking on the KK modes, we need to engineer a setup such that all the
KK wave-functions are localized away from the point where the custodial symmetry is broken. This is automatically
achieved if the space is curved by a negative vacuum energy to an anti-de Sitter (AdS) background.

The appropriate BCs are

at z = R: ∂z

(
g5RBμ + g̃5A

R3
μ

) = 0, ∂zA
La
μ = 0, AR1,2

μ = 0, g̃5Bμ − g5RAR3
μ = 0 (20)

at z = R′: ∂z

(
g5RALa

μ + g5LARa
μ

) = 0, ∂zBμ = 0, g5LALa
μ − g5RARa

μ = 0 (21)

Fig. 5. The symmetry-breaking structure of the warped Higgsless model [8]. We will be considering a 5D gauge theory in the fixed
gravitational anti-de Sitter (AdS) background. The UV brane (sometimes called the Planck brane) is located at z = R and the IR brane
(also called the TeV brane) is located at z = R′ . R is the AdS curvature scale. In conformal coordinates, the AdS metric is given by

ds2 = (R/z)2(ημν dxμ dxν − dz2).
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We denoted by ARa
μ , ALa

μ and Bμ the gauge bosons of SU(2)R , SU(2)L and U(1)B−L respectively; g5L and g5R

are the gauge couplings of the two SU(2)’s, and g̃5 the gauge coupling of the U(1)B−L. The corresponding KK
decomposition is given by⎧⎪⎨

⎪⎩
Bμ = g5a0γμ(x) + ∑∞

k=1 ψ
(B)
k (z)Z

(k)
μ (x)

AL3
μ = g̃5a0γμ(x) + ∑∞

k=1 ψ
(L3)
k (z)Z

(k)
μ (x)

AR3
μ = g̃5a0γμ(x) + ∑∞

k=1 ψ
(R3)
k (z)Z

(k)
μ (x)

{
AL±

μ = ∑∞
k=1 ψ

(L±)
k (z)W

(k)±
μ (x)

AR±
μ = ∑∞

k=1 ψ
(R±)
k (z)W

(k)±
μ (x)

(22)

The wavefunctions, solutions of the bulk equation of motion in AdS space, involve some Bessel functions of order 1

ψ
(A)
k (z) = z

(
a

(A)
k J1(qkz) + b

(A)
k Y1(qkz)

)
(23)

On top of a flat massless mode, corresponding to the photon of the unbroken U(1)em, the spectrum involves two light
gauge bosons, naturally identified as the SM W and Z gauge bosons, with masses suppressed by logR′/R compared
with the rest of the KK towers (MKK ∼ O(1)/R′):

M2
W ∼ 2g2

5L

g2
5L + g2

5R

1

R′2 logR′/R
+ · · · , M2

Z ∼ 2g2
5L

g2
5L + g2

5R

g2
5R + g̃2

5(1 + g2
5R/g2

5L)

g2
5R + g̃2

5

1

R′2 logR′/R
+ · · · (24)

where · · · denote corrections in 1/ log2(R′/R). The coupling of the photon allows us to identify the 4D SM gauge
couplings as functions of the 5D parameters:

1

g2
= R logR′/R

g2
5L

and
1

g′2 = R logR′/R
(

1

g2
5R

+ 1

g̃2
5

)
(25)

The ρ parameter is thus equal to 1, as announced earlier. This equality would not occur if the extra dimension were
flat, it is a consequence of the localization property of the KK wave-functions, which ensure that the bulk gauge
SU(2)R symmetry acts as a custodial symmetry. The presence of this approximate global symmetry can also be easily
understood from the AdS/CFT duality. From that perspective, our 5D warped Higgsless model appears as a weakly
coupled dual of walking technicolour models [8].

Finally, after redshift due to the warping of the space, the NDA cutoff scale is estimated to be

ΛNDA ∼ 24π3

g2
5

R

R′ ∼ 24π3

g2

1

R′ logR′/R
∼ 50π3

g2

M2
W

MKK

(26)

As dictated by intuition, the smaller MKK, the higher the scale where perturbative control is lost. Phenomenologically,
the preferred range of MKK will be around 500 GeV to 1 TeV.

5. Fermion masses

In the Standard Model, quarks and leptons acquire a mass after electroweak symmetry breaking through their
Yukawa couplings to the Higgs. In the absence of a Higgs, one cannot write any Yukawa coupling and one should
expect the fermions to remain massless. However, as for the gauge fields, appropriate BCs will force the fermions to
acquire a momentum along the extra dimension and this is how they will become massive from the 4D point of view.

The SM fermions cannot be completely localized on the UV boundary: since the unbroken gauge group on that
boundary coincides with the SM SU(2)L × U(1)Y symmetry, the theory on that brane would be chiral and there is no
way for the chiral zero-mode fermions to acquire a mass. The SM fermions cannot live on the IR brane either since
the unbroken SU(2)D gauge symmetry will impose an isospin-invariant spectrum and the up-type and down-type
quarks will be degenerate, as well as the electron and the electron neutrino. The only possibility is thus to embed the
SM fermions into 5D fields living in the bulk and feeling the gauge symmetry breakings on both boundaries. Bulk
fermions are generically Dirac fermions; however, on an interval in warped space only one of the chiralities will have
a zero mode. The location of the zero mode in warped space depends on the bulk mass term [18], and can be localized
close to the UV brane for all the fermions of the first two generations and the leptons of the third generation. For the
right-handed top quark, one can localize the wave function of the zero mode closer to the IR brane. Since the theory on
the IR brane is vector-like (only SU(2)D is unbroken there), a mass for the zero modes can be added on the IR brane
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(which corresponds to a dynamical isospin symmetric fermion mass in the CFT language). The size of the physical
mass will then depend on the location of the zero mode and the value of the mass term on the IR brane. However,
because of the unbroken SU(2)D symmetry on the IR brane, these masses must be isospin-symmetric, that is the mass
for the up and down type quarks are equal at this point. Isospin splitting can be introduced by adding operators on the
UV brane. For instance one can introduce different brane-localized kinetic terms for the up and down right-handed
quarks. The full spectrum of quarks and leptons can be easily reproduced this way [19].

6. Electroweak precision constraints, collider signatures and conclusions

Waiting for the LHC to reveal any signs of new physics, the major stumbling block for any theory beyond the SM is
the level of corrections to electroweak precision measurements. And sharing so many resemblance with technicolour
models, it is not a surprise that generically a large contribution to the S parameter of order unity is found [20]. This
contribution can be lowered by introducing a brane kinetic term on the IR brane for the B–L gauge group, albeit
at the price of lowering the mass of one of the Z′ to phenomenologically unacceptable levels. In Ref. [21], it was
pointed out that one can in fact easily eliminate the large contributions to the S parameter by changing the position of
the light fermions. The reason behind this is simple: the oblique correction parameters on their own are meaningless
until the normalization of the couplings between the fermions and the gauge bosons is fixed. An overall shift in the
fermion–gauge-boson couplings can be reabsorbed in the oblique correction parameters and thus effectively change
the predicted values of S,T [22]. This is exactly what happens when one changes the localization parameters of the
light fermions. When the fermions are strictly localized on the UV brane, one obtains a positive S parameter. However,
it has been known that if fermions are localized on the TeV brane then the S parameter in the Randall–Sundrum model
is in fact negative. Therefore it should be expected that there should be an intermediate position where S exactly
vanishes [23]. This actually happens when the fermion wave-functions are ‘flat’. This is just a simple consequence
of the orthogonality of the KK mode wave functions of the gauge bosons: when the fermion wave-functions are flat,
the coupling of the KK gauge bosons to the fermions vanishes, eliminating any possible additional LEP or Tevatron
constraints on this setup. This way, with an appropriate tuning of the localization of the fermions in the bulk, the
model can pass the electroweak precision constraints.

A reason for localizing the light generations near the UV brane was that corrections to Flavour Changing Neutral
Currents, coming from higher-order operators, should be suppressed by a large scale, of order 1/R rather than the
strong coupling scale estimated earlier [24]. If we delocalize the light fermions, such scale is red-shifted to a dan-
gerously low energy. In order to escape experimental bounds, we need to implement a flavour symmetry in the bulk
and on the IR brane. Moreover, the mechanism that generates masses for the fermions themselves will induce some
distortions in the wave functions, thus modifying in a non-universal way the couplings with the SM gauge bosons.

A more serious problem arises when one tries to introduce the third family [25]: there is a tension between the
heaviness of the top and the coupling of the left-handed bL to the Z gauge boson. It has recently been argued that this
problem can be alleviated by a suitable embedding [26] of the SM third generation into non-standard representations
of SU(2)L × SU(2)R .

Many different realizations of Higgsless models have been proposed, differing in the way the SM fermions are
introduced or even in the number of extra dimensions. All these models will have different particular signatures.
However, the fundamental mechanism by which Λ is raised is a common feature to all these models: new massive
spin-1 particles, with the same quantum numbers as the SM gauge bosons, appear at the TeV scale and their couplings
to the W,Z and γ obey unitarity sum rules like (13) and (16), which enforce the cancellation of the energy-growing
contributions to the scattering amplitudes of the longitudinal W,Z. Vector boson fusion processes will thus provide a
model-independent test of the Higgsless scenario.

The non-observation of a physical scalar Higgs would be the first indication for a Higgsless scenario. Yet, the
absence of proof is not the proof of the absence and some other models exist in which the Higgs is unobservable at
the LHC and we need to look for other distinctive features of Higgsless models, such as the presence of spin-1 KK
resonances with the W,Z quantum numbers, some slight deviations in the universality of the light fermion couplings
to the SM gauge bosons, or some deviations in the gauge boson self-interactions compared with the SM. More than
ever, experimental data are eagerly awaited to disentangle what may be the most pressing question faced by particle
physics today: How is electroweak symmetry broken?
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