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Abstract

Theories where the Higgs boson is a composite particle elegantly solve the hierarchy problem. This idea has been recently inves-
tigated in the framework of 5-dimensional warped models that, according to the AdS/CFT correspondence, have a 4-dimensional
holographic interpretation in terms of strongly coupled field theories. We present a minimal model in which the Higgs arises as
a pseudo-Goldstone boson and the electroweak symmetry is dynamically broken. This model can successfully solve the flavor
problem and pass all the electroweak precision tests. To cite this article: R. Contino, A. Pomarol, C. R. Physique 8 (2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Description holographique d’un boson de Higgs composite. Les théories dans lesquelles le boson de Higgs apparaît comme
une particule composite apportent une solution élégante au problème de hiérarchie. Ce scénario a récemment connu un regain
d’intérêt dans le contexte de théories dans des espaces courbés à cinq dimensions qui sont, selon la correspondence AdS/CFT, une
description holographique de théories en couplage fort à quatre dimensions. Nous présentons ici un modèle minimale où le Higgs
est un pseudo boson de Goldstone tandis que la symétrie électrofaible est brisée de façon dynamique. Ce modèle est en accord avec
tous les tests de précisions et peut également prétendre à une solution du problème de saveur. Pour citer cet article : R. Contino,
A. Pomarol, C. R. Physique 8 (2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
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1. Introduction

Introducing a Higgs boson represents a simple and economical way to break spontaneously the electroweak gauge
symmetry of the Standard Model (SM) and cure the bad high-energy behaviour of its scattering amplitudes, thus al-
lowing one to extrapolate the theory up to very high energies. It is hard to believe that Nature is not using such a simple
mechanism to give us a UV-completed theory of electroweak interactions. Nevertheless, naturalness criteria suggest
that the Higgs mechanism is unlikely to be just the last ingredient to be incorporated in the SM at the electroweak
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scale. Why is the Higgs mass, which determines the scale of electroweak symmetry breaking, so small compared to
the Planck scale?

To answer this question one must postulate new dynamics, hence new particles, around mW , making the simplicity
of the Higgs mechanism for UV completing the SM just a curiosity. At this point, one might think that there is no
need for the Higgs particle, and look for other ways to unitarize the SM scattering amplitudes. An example can be
found in QCD, where pion–pion scattering is unitarized by the additional resonances that arise from the SU(3) color
strong dynamics. This Higgsless approach, however, has to face the present electroweak precision tests (EWPT), and
its simple incarnation (Technicolor models [1]) fails to pass them. The reason is that, without a Higgs, we expect the
new particles responsible for unitarizing the SM amplitudes to have a mass at around 1 TeV. These same resonances
give large (tree-level) contributions to the electroweak observables, in contradiction with the experimental evidence.
How can we make the new resonances heavier and safely pass the EWPT?

A possible answer comes again from the Higgs mechanism. This time, however, the Higgs boson will play a less
ambitious role, since it will only partially unitarize the SM scattering amplitudes. Compared to theories without
a Higgs, we will have now that the scale at which new dynamics is needed can be delayed, and therefore the extra
resonances that ultimately unitarize the SM amplitudes can be heavier. In this case precision observables will be
under control. This is the approach of the composite Higgs models, first considered by Georgi and Kaplan [2]. In
these theories a light Higgs arises as a Pseudo-Goldstone boson (PGB) of a strongly interacting theory, in a very
similar way as pions in QCD. At low energies the composite Higgs has similar couplings to those of an elementary
Higgs, but it behaves differently at high energy. In particular, it does not unitarize completely the SM amplitudes and,
consequently, cross sections grow as powers of E/fπ (where fπ is the analog of the pion decay constant). A full
unitarization is due to the additional resonances of the model, that we will denote by ρ. From a Naive Dimensional
Analysis, and similarly to what happens in QCD, they are expected to have a mass mρ ∼ 4πfπ/

√
N , where N is the

number of ‘colors’ of the strongly interacting theory. For large values of fπ , one can have large values of mρ and avoid
sizeable contributions to the EW precision observables. What determines the value of fπ ? The Higgs, being a PGB,
has a potential induced at the one-loop level via the SM interactions that do not respect the global symmetry of the new
strongly interacting sector. The potential is of the form V (h/fπ), since 1/fπ is the strength of the Higgs coupling (in
complete analogy to that of the pions in QCD). We then expect a minimum at v = εfπ , where ε is a model-dependent
constant of order one. To have large values of fπ , and therefore large values of mρ , one needs ε < 1. This means that
composite Higgs models can be potentially realistic if they accommodate small values of ε.

The first proposals for a composite Higgs [2], presented in the eighties, lacked several ingredients. First, they did
not incorporate a heavy top (since its mass was not known at that time), and the largest SM contribution to the Higgs
potential was that of the SM weak bosons. Since the latter always leads to an electroweak-preserving vacuum, the
authors of Ref. [2] had to enlarge the SM gauge group in order to trigger EWSB. Second, the corrections to the EW
precision observables were not calculated,1 and flavor was also not successfully incorporated.

More recently, a new approach to building realistic composite Higgs theories was proposed in Refs. [3–6]. The idea
was that of studying the composite Higgs in the framework of 5-dimensional (5D) field theories defined on a slice
of Anti-de-Sitter (AdS) spacetime [7]. This approach was inspired by the AdS/CFT correspondence [8], which states
that weakly coupled theories in 5D AdS have a 4D holographic description in terms of strongly coupled conformal
field theories (CFT) with a large number of ‘colors’ N . Such correspondence gives a definite prescription on how
to construct 5D theories that have the same physical behaviour and symmetries of the desired strongly coupled 4D
theory.

One can proceed in the following way [4]. First, one can define the properties of the 4-dimensional CFT theory
based on symmetry principles only. This is done in Section 2, following the criterium of minimality. Such a qualitative
description, however, does not allow one to make definite, quantitative predictions for the various physical observables,
mainly due to two reasons: first, we do not know if a CFT exists which fulfills our requirements; second, even if we
knew the CFT in its Lagrangian formulation, we would not be able to make perturbative calculations, due to the
strong regime of the theory. To overcome these problems, we take the following second step. Using the dictionary
of the AdS/CFT correspondence, we construct the 5D AdS theory that leads to the same effective Lagrangian as the
4D CFT model described before. This is done in Section 3. Since the 5D theory is weakly coupled, we are able to

1 LEP and SLD precision data were not yet available at the time, and, on the theory side, the strongly interacting regime of the theory would have
prevented any kind of perturbative calculation.
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perturbatively compute all the physical quantities of central interest. The model obtained in this way can address
successfully the flavor problem, and also pass all the electroweak precision tests.

This particular example shows that theories of this kind can be considered as serious alternatives to supersymmetry.
Most importantly, they give well defined predictions for the LHC: their spectrum contains a light Higgs, a tower of
new states with the quantum numbers of each SM particle, plus other towers of massive states with exotic quantum
numbers. In the specific case of the model of Section 3, the lightest resonances are color-triplet weak doublets of
hypercharge Y = 1/6 and 7/6, with a mass in the range 500–1500 GeV. They are therefore accessible at the LHC. We
will briefly discuss their most promising production processes and decay channels in Section 4.

2. Higgs as a PGB of a strongly interacting sector

Let us consider a 4D theory that contains a strongly interacting sector with the following properties. It has a large
number of ‘colors’ N , a mass gap at the infrared scale μIR ∼ TeV, and it is conformal at energies much higher
than μIR. The mass gap is responsible for the formation of a tower of bound states with lowest mass of order mρ ∼ μIR.
These resonances interact among themselves with a coupling of order 4π/

√
N [9]. We assume that the global symme-

try of the CFT is G = SU(3)c × SO(5) × U(1)X , spontaneously broken down to H = SU(3)c × O(4) × U(1)X (with
O(4) ⊃ SO(4) ∼ SU(2)L × SU(2)R) at a scale fπ (the analog of the pion decay constant). The operator responsible
for this spontaneous breaking is assumed to have a large dimension. The group G is the minimal one that (i) contains
the SM group, (ii) has a custodial symmetry, and (iii) delivers the Higgs doublet as a Goldstone boson of the breaking
G → H . Other groups have been proposed in Ref. [2] based on different motivations. We will assume that the SM
gauge bosons and fermions are elementary fields external to the strongly interacting CFT. The top quark constitutes
an exception and will be mostly composite, as we will see later. The SM gauge bosons couple to the CFT through its
conserved currents, gauging the subgroup SU(3)c × SU(2)L × U(1)Y contained in G (Y = T3R

+X). In the following
we will neglect the SU(3)c color group, since it plays no role in the mechanism of EWSB. The Goldstone theorem tells
us that the CFT must contain a massless scalar transforming as a 4 of SO(4), a real bidoublet of SU(2)L × SU(2)R .
We will identify this field with the Higgs boson.

The SM fermions are assumed to couple linearly to the strong sector through operators O made of CFT fields:
L= λψ̄O + h.c. The running coupling λ(μ) obeys the RG equation

μ
dλ

dμ
= γ λ + a

N

16π2
λ3 + · · · (1)

where the dots stand for terms subleading in the large-N limit, and a is an O(1) positive coefficient. The first term
in Eq. (1) drives the energy scaling of λ as dictated by the anomalous dimension γ = Dim[O] − 5/2, Dim[O] being
the conformal dimension of the operator O. The second term originates instead from the CFT contribution to the
fermion wave-function renormalization. The low-energy value of λ is determined by γ . For γ > 0, the coupling of the
elementary fermion to the CFT is irrelevant, and λ decreases with the energy scale μ. Below μIR, we have

λ ∼
(

μIR

Λ

)γ

(2)

where Λ ∼ MPl is the UV cutoff of the CFT. Therefore, fermions with γ > 0 will have a small mixing with the CFT
bound states, and thus small Yukawa couplings. For γ < 0, the coupling is relevant and λ flows at low energy to
the fixed-point value λ = (4π/

√
N )

√−γ /a. In this case the mixing between the fermion and the CFT is large, and
sizable Yukawa couplings can be generated for moderate values of N .

The model is then described by the Lagrangian:

L = LCFT +LSM + J aLμWaL
μ + J

μ
Y Bμ +

∑
r

λr ψ̄rOr + h.c. (3)

where the index r runs over the SM fermions (a family index is understood), and W
aL
μ (aL = 1,2,3) and Bμ stand

respectively for the SU(2)L and U(1)Y gauge bosons. At the tree level the massless spectrum of the theory is that of
the SM. The Higgs is the Goldstone boson and can be parametrized by the fluctuations along the SO(5)/SO(4) broken
generators T â , â = 1,2,3,4:

Σ = Σ0eΠ/fπ = sh
(

h1, h2, h3, h4,
ch

h

)
, Σ0 = (0,0,0,0,1),Π = −iT âhâ

√
2 (4)
h sh
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where h =
√

(hâ)2, and ch ≡ cos(h/fπ), sh ≡ sin(h/fπ). By integrating out the CFT dynamics, one can write an ef-
fective Lagrangian for the external fields. It is convenient to express this Lagrangian in an SO(5)-symmetric way. To
do so, we promote the elementary SM fields to fill complete representations of SO(5). For the gauge bosons we intro-
duce extra non-dynamical vectors, i.e. spurions, to form complete adjoint representations Aμ, Bμ of SO(5) × U(1)X .
For the fermions we must choose which SO(5) representations they are embedded in. We consider the case in which
the SM fermions are embedded in fundamentals (5) of SO(5) [10,6]. A slightly minimal possibility is to embed the
fermions in spinorial representations (4) of SO(5) [4], though such choice leads to generally large corrections to the
Zbb̄ coupling [5,10]. Another alternative is to use antisymmetric representations (10) of SO(5) [6], which leads to
a model similar to the one described here, see [6]. We will furthermore assume that each SM fermion is embedded in
a different SO(5)-multiplet, and that the three SM families have all the same embedding. For the up-quark sector, we
find that the minimal realistic choice is

Ψq =
[(

q ′
L

qL

)
u′

L

]
, Ψu =

[(
qu
R

q ′u
R

)
uR

]
(5)

The multiplets Ψq and Ψu transform as 52/3 representations of SO(5) × U(1)X , and the components q ′
L, u′

L and qu
R ,

q ′u
R are the non-dynamical spurion fields. For the embedding of the down-quark sector and leptons, see Ref. [6].

We can now write the effective Lagrangian using an SO(5)-invariant notation. We integrate out all the massive CFT
states at tree level, including the fluctuations of the Higgs field around a constant classical background Σ . The most
general effective Lagrangian for the external gauge bosons is, in momentum space and at the quadratic level,

Lg

eff = 1

2
Pμν

[
ΠB

0 (p)BμBν + Π0(p)Tr
[
AμAν

] + Π1(p)ΣAμAνΣT
]

(6)

where Pμν = ημν − pμpν/p
2. For the up-quark sector we have

Lf

eff = Ψ̄ i
q/p

[
δijΠ

q

0 (p) + ΣiΣjΠ
q

1 (p)
]
Ψ

j
q + Ψ̄ i

u/p
[
δijΠu

0 (p) + ΣiΣjΠu
1 (p)

]
Ψ

j
u

+ Ψ̄ i
q

[
δijMu

0 (p) + ΣiΣjMu
1 (p)

]
Ψ

j
u + h.c. (7)

where the indices i, j run over the SO(5) components. The form factors Π(p), M(p) encode the effects of the strong
dynamics, and cannot be determined perturbatively in the 4D theory. Their poles match with the CFT spectrum. We
have not written down possible bare kinetic terms and gauge-fixing terms for the external fields, i.e. terms not induced
by the strong dynamics. They can be included in a straightforward way. We are only interested in the two-point
form factors since, as we will see below, these are the only ones needed for the calculation of the Peskin–Takeuchi
S parameter and of the Higgs potential.

From Eq. (6) one can derive the low-energy effective theory. This is the theory of the light states, the SM fields and
the Higgs, obtained by performing an expansion in derivatives and light fields over mρ (the equivalent of the chiral
Lagrangian in QCD):

L= Lkin +Lyuk − V (Σ) + �L (8)

The term Lkin contains the kinetic terms of the dynamical fields

Lkin = f 2
π

2
(DμΣ)

(
DμΣ

)T +
∑

r

Zrψ̄r/Dψr − 1

4g2
WaL

μνWaLμν − 1

4g′2
BμνB

μν (9)

where

ZuL
= Π

q

0 (0) + s2
hΠ

q

1 (0)/2, ZuR
= Πu

0 (0) + c2
hΠ

u
1 (0)

f 2
π = Π1(0), 1/g2 = −Π ′

0(0), 1/g′2 = −ΠB ′
0 (0)

The Higgs potential V (Σ) is generated by SM gauge and fermion loops. We will show below that the top contribution
can trigger the EWSB and the Higgs field h acquires a VEV, breaking O(4) down to the custodial O(3) group. From
the kinetic term of Σ we obtain M2

W = g2(shfπ )2/4, which implies

v ≡ εfπ = shfπ = 246 GeV (10)
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The value of ε can vary between 0 (no EWSB) and 1 (maximal EWSB). The term Lyuk of Eq. (8) contains the Yukawa
couplings between the Higgs and the elementary fermions, and comes from expanding the last term of Eq. (7). When
the Higgs acquires a VEV, this term will give mass to the fermions

mu = shch√
2

Mu
1 (0)√

ZuL
ZuR

≡ yuv (11)

By choosing γq,u > 0, we have, according to Eq. (2), that λq,u are strongly suppressed at low energies, and the
fermions are weakly coupled to the CFT. This can be used to explain in a natural way the smallness and the hierarchical
structure of the masses of the light fermions [11,12]:

mu ∼
√

N

4π

(
μIR

Λ

)γq+γu

v (12)

It is interesting to notice that this theory has a (sort of) GIM mechanism, since flavour changing neutral current
(FCNC) effects involving light fermions are also suppressed by the couplings λq,u (see for example Refs. [12,13]).
For the third family we need γq,u < 0, in order to have a large top quark mass. Finally, there is a very important
condition to be fulfilled if we want to generate non-zero fermion masses: as it is clear from Eq. (11), we must require
0 < shch < 1, i.e. 0 < ε < 1. Therefore, maximal EWSB ε = 1 is not allowed.

The last term �L in the effective Lagrangian (8) contains all higher-order operators in the chiral expansion. The
only one that is relevant for us here is that responsible for the Peskin–Takeuchi S parameter that originates from the
third term of Eq. (6):

�L ⊃ 1

2
Π ′

1(0)WaL
μνBμνΣT aLYΣT (13)

where T aL , Y are respectively the generators of SU(2)L and hypercharge.

2.1. Higgs potential and vacuum misalignment

The dominant contribution to the Higgs potential comes at the one-loop level from the virtual exchange of the
elementary SU(2)L gauge bosons and top quark. It is given by the Coleman–Weinberg potential

V (h) = −9

2

∫
d4p

(2π)4
logΠW + (2Nc)

∫
d4p

(2π)4

[
logΠbL

+ log
(
p2ΠtLΠtR − Π2

tLtR

)]
(14)

where Πi(p) are the self-energies of the corresponding SM fields in the background of h. These can be written as
functions of the form factors of Eqs. (6) and (7):

ΠW = Π0 + s2
h

4
Π1,

ΠtLtR = shch√
2

Mu
1 ,

ΠbL
= Π

q

0

ΠtL = Π
q

0 + s2
h

2
Π

q

1

ΠtR = Πu
0 + c2

hΠ
u
1

(15)

Apart from a constant piece, the potential of Eq. (14) is finite, since the form factors Π1 and M1 drop with the mo-
mentum as |〈Φ〉|2/p2d , where Φ is the CFT operator of dimension d � 1 responsible for the SO(5) spontaneous
breaking. This fast decrease with the momentum allows us to expand the logarithms in Eq. (14) and write the approx-
imate formula

V (h) � αs2
h − βs2

hc2
h (16)

where α and β are integral functions of the form factors. For α < β and β � 0 we have that the electroweak symmetry
is broken: ε 
= 0. If β > |α|, the minimum of the potential is at

sh = ε =
√

β − α

2β
(17)

while for β < |α| the minimum corresponds to ch = 0, and the EWSB is maximal: ε = 1. As we said before, this
latter case leads to zero fermion masses and must be discarded. The gauge contribution gives α > 0 and tends to align
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the vacuum along the (SU(2)L)-preserving direction. A misalignment of the vacuum, however, can come from the top
loops, which can give α < 0 and β > 0. The physical Higgs mass is given by

m2
Higgs � 8βs2

hc2
h

f 2
π

∼ 8Nc

N
y2
t v2 (18)

and, for moderate values of N , it can be above the experimental bound mHiggs > 114 GeV.
Remarkably, this model can give a realistic account of electroweak symmetry breaking. To make this statement

more quantitative, we need to compute the precise value of α, β and check if the model passes the EWPT. This can
be done by resorting to the 5D theory, which we define in the next section.

3. The 5D model

The 4D theory presented above can be obtained as the holographic description of a 5-dimensional, weakly coupled
model. Such model is defined as follows. The 5D spacetime metric is given by [7]

ds2 = 1

(kz)2

(
ημν dxμ dxν − dz2) ≡ gMN dxM dxN (19)

where the 5D coordinates are labeled by capital Latin letters, M = (μ,5), with μ = 0, . . . ,3, z = x5 represents
the coordinate for the fifth dimension and 1/k is the AdS curvature radius. This spacetime has two boundaries at
z = L0 ≡ 1/k ∼ 1/MPl (UV brane) and at z = L1 ∼ μIR ∼ 1/TeV (IR brane). The theory is thus defined on the
line segment L0 � z � L1. The gauge symmetry in the 5D bulk is taken to be SU(3)c × SO(5) × U(1)X , reduced
to SU(3)c × O(4) × U(1)X on the IR brane and to SU(3)c × SU(2)L × U(1)Y on the UV brane. The Higgs field is
identified with the fifth component of the SO(5)/SO(4) gauge bosons, as it occurs in the Hosotani mechanism for
symmetry breaking [14].

In the fermion sector, each SM generation is identified with the zero modes of a set of 5D bulk multiplets trans-
forming as fundamentals of SO(5). For the up-quark sector, these 5D fields are

ξq =
[

(2,2)
q
L = [q ′

L(−+)

qL(++)

]
(2,2)

q
R = [q ′

R(+−)

qR(−−)

]
(1,1)

q
L(−−) (1,1)

q
R(++)

]
, ξu =

[
(2,2)u

L(+−) (2,2)u
R(−+)

(1,1)u
L(−+) (1,1)u

R(+−)

]
(20)

where ξq,u transform as 52/3 of SO(5) × U(1)X . Chiralities under the 4D Lorentz group have been denoted by L,
R, and (±,±) is a shorthand notation to denote Neumann (+) or Dirichlet (−) boundary conditions on the two
boundaries. In Eq. (20) we have grouped the fields of each multiplet ξq,u in representations of SU(2)L × SU(2)R , and
used the fact that a fundamental of SO(5) decomposes as 5 = (2,2) ⊕ (1,1). The bulk masses in units of k of the 5D
fields ξq,u will be denoted by cq,u. Localized on the IR boundary, we consider the most general set of mass terms
invariant under O(4) × U(1)X :

m̃u(2,2)
q
L(2,2)u

R + M̃u(1,1)
q
R(1,1)u

L + h.c. (21)

The 5D model described above has exactly the same properties as the 4D CFT theory described in Section 2.
In particular, it leads to the same effective Lagrangian of Eqs. (6), (7), and to the same low-energy chiral theory of
Eq. (8). The anomalous dimensions γ of the operators of the 4D CFT theory are related to the 5D fermion masses ci

according to [15]

γq =
∣∣∣∣cq + 1

2

∣∣∣∣ − 1, γu =
∣∣∣∣cu − 1

2

∣∣∣∣ − 1 (22)

Therefore the requirement γq,u > 0 for the light fermions (see Eq. (12) above) implies cq > 1/2 and cu < −1/2, while
for the top γq,u � 0 implies |cq,u| � 1/2.

The Higgs potential and the corrections to the EW precision observables are largely controlled by the relevant
parameters of the top quark and gauge sector:

N,cq, cu, m̃u, M̃u (23)

We have defined N ≡ 16π2/(g2
5k), where g5 is the SO(5) bulk gauge coupling. Here, and from now on, m̃u, M̃u, cq

and cu denote the mass parameters of the top quark, q = (tL, bL) and u = tR . The scale L1 has been traded for v. The
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five parameters of Eq. (23) cannot be completely determined by the present experimental data. Two constraints come
from fixing the top quark mass to its experimental value, mt = 173 GeV, and by requiring 0 < ε < 1. Moreover, a por-
tion of the parameter space will be excluded by the precision tests. How extended is this portion gives us a measure
of the ‘degree of tuning’ required in our model. This is the subject of the next section.

3.1. Electroweak precision tests

There are two types of corrections to the electroweak observables that any composite Higgs model must address,
since they are usually sizable: non-universal corrections to the Zbb̄ coupling, and universal corrections to the gauge
boson self-energies. The results of Ref. [10] show that our choice of bulk fermionic representations guarantees that
non-universal corrections to Zbb̄ are small, due to the O(3) custodial symmetry of the bulk and IR boundary. There-
fore, we need to consider only universal effects, which can be parametrized in terms of four quantities: S, T , W

and Y [16]. The last two parameters are suppressed by a factor ∼(g2N/16π2) compared to S and T , and can be
neglected [4]. The parameter T is zero at tree-level due to the custodial symmetry. Loop effects can be estimated to
be small (T � 0.3), and explicit calculations in similar 5D models confirm this expectation [5,17].

The Peskin–Takeuchi S parameter gives the most robust and model-independent constraint. Neglecting a small
correction from boundary kinetics terms, one has S = 3Nε2/(8π) [4]. The 99% CL experimental bound S � 0.3 [16]
then translates into

ε2 � 1

4

(
10

N

)
(24)

For N = 10 this rules out the values 1/4 � ε2 < 1, which we naively expect to correspond to ∼3/4 of the allowed
region. A detailed numerical analysis confirms this expectation [10], as the contour plots in Fig. 1 show. This means
that a sizable portion of the parameter space is still allowed, and that no large fine tuning is required to pass the
electroweak tests.

3.2. Fermionic resonances and the Higgs mass

A crucial prediction of our model is that the requirement of a large top quark mass always forces some of the
fermionic Kaluza–Klein (KK) resonances to be lighter than their gauge counterpart. The reason is the following. The

Fig. 1. Contour plots in the plane (cq , cu) with m̃u = 0, M̃u = −3.5, N = 8 (left), and in the plane (m̃u, M̃u) with cq = 0.35, cu = 0.45, N = 8
(right). The black (white) area denotes the region with ε = 0 (ε = 1). The gray intermediate area with 0 < ε < 1 is the region with EWSB and
non-zero fermion masses. Its lighter gray portion is excluded by the bound S � 0.3 for N = 8, see Eq. (24). The dashed black line represents the

curve with mMS
t (2 TeV) = 150 GeV, equivalent to m

pole
t = 173 GeV.
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embedding of tL and tR into SO(5) bulk multiplets implies that some of their SO(5) partners have (±,∓) boundary
conditions, an assignment that is necessary to avoid extra massless states (see Eqs. (20)). Consider for example the
case in which the left-handed chirality of the 5D field is (+,−) (hence the right-handed one is (−,+)): for values
of the 5D mass ci > 1/2, the lightest Kaluza–Klein mode – we will denote it by q∗ – has its left-handed chirality
exponentially peaked on the UV brane, while its right-handed is localized on the IR brane. This implies that the mass
of q∗ is exponentially suppressed. In the opposite limit ci < −1/2, both chiralities are localized on the IR brane and
the mass of q∗ is of the same order as that of the other KKs: mq∗ � mρ . In the intermediate region −1/2 < ci < 1/2,
the one we chose for top quark bulk fields, one finds that mq∗ is given by [5]

mq∗ � 2

L1

√
1

2
− ci (25)

which means that it is still parametrically smaller than mρ by a factor
√

1/2 − ci . Analogous results hold in the case
of a (+,−) right-handed chirality, but for ci → −ci .

Let us concentrate on the region −1/2 < cu < 1/2 and cq > 0. From the argument above and by inspecting
Eqs. (20), one finds that the lightest KK modes are those arising from the (2,2)u component of the bulk multiplet ξu.
This field contains two SU(2)L doublets of hypercharge Y = 7/6 and Y = 1/6. Fig. 2 shows the spectrum of the
lowest fermionic KK states. The lightest states are those predicted. Their mass is around 500–1500 GeV for ε = 1/2
and N = 8, much smaller than that of the lightest gauge KK, mρ � 2.6 TeV, and of other fermionic excitations.

Light fermionic resonances are a generic property of natural models of EWSB with a light Higgs. In the class of
composite Higgs models that we are considering, the Higgs mass can be expressed as [6]

m2
Higgs � Nc

π2

m2
t

v2
ε2Λ2, where Λ2 = a1m

2
q∗ + a2mq∗M + a3M

2 (26)

Here ai are numerical coefficients and M ≡ mρ = 3π/(4L1) parametrizes the scale of heavier color resonances.
A numerical fit to the set of points of Fig. 2 gives ai = (−0.1,0.3,0.006). The dispersion of the points around the
fitted curve can be explained as follows. In Fig. 2 we have fixed N = 8, ε = 0.5 and mt = 173 GeV, which leaves two
of the five parameters of Eq. (23) free to vary. If cu is traded for mq∗ , by means of Eq. (25), we are left with one free
parameter, for example, cq . The coefficients ai of Eq. (26) will thus depend on cq , and since we have scanned over
the values 0.2 < cq < 0.38 to generate the points in Fig. 2, this explains their dispersion.

Fig. 2. Masses of the lightest colored KK fermions. Different symbols denote KKs with different quantum numbers under SU(2)L × U(1)Y . We
have fixed ε = 0.5, N = 8, and varied 0.28 < cq < 0.38, 0 < cu < 0.41, 0.32 < m̃u < 0.42, −3.5 < M̃u < −2.2 (filled points), or 0.2 < cq < 0.35,
−0.25 < cu < −0.42, −1.3 < m̃u < 0.2, 0.1 < M̃u < 2.3 (empty points). The black continuous line is the fit to the mass of the lightest resonance
of Eq. (26).
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4. LHC phenomenology

Detecting the light KK resonances that transform as SU(2)L doublets of hypercharge Y = 7/6 and Y = 1/6 would
be a smoking gun of our model. In particular, discovering the ‘exotic’ state with electromagnetic charge Qem = 5/3
from the first doublet would clearly distinguish our model from other scenarios that predict heavy excitations of the
top and bottom quarks. This exotic KK, as well as the other resonances, can be pair produced at the LHC via its
QCD interactions. Single production via tRW fusion might also be important, since the small top quark content of the
proton can be compensated by the large coupling [4] (for tR composite, i.e. cu → 1/2, such coupling is expected to be
much larger than the top Yukawa coupling). Once produced, the Qem = 5/3 resonance will decay to a top quark and
a longitudinally polarized W boson. In the case of pair production, this leads to a final state with two tops and two W ’s,
which should be possible to isolate over the SM background. A dedicated analysis is required to establish the full reach
at the LCH. Similar considerations apply to the production of the other KKs inside the two weak doublets, which have
electromagnetic charge Qem = −1/3,2/3, with the difference that these states can also be produced in association
with a top or bottom quark via the exchange of a gluon KK. They will decay mostly to a top plus a longitudinal W

or Z or a Higgs boson H .
Finally, the gauge KK resonances will be most easily produced in a qq̄ Drell–Yan scattering. Heavy excitations of

the W and Z can also be produced via weak boson fusion, in analogy to the case of technicolor models, though the
cross section for this process is expected to be small for KK mass of order 2–3 TeV or larger. The gauge KKs will
decay mostly to pairs of longitudinally polarized weak bosons (or alternatively a weak boson plus a Higgs), and to
pairs of tops and bottoms. As for the fermions, a detailed study of all these processes will be required to fully explore
the reach at the LHC and at future colliders.
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