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Abstract

New definitions of entropy and temperature for uniform systems that fast exchange heat with the environment are considered.
Instead of the known local equilibrium hypothesis, a local uniformity hypothesis is proposed. Within the proposed formal-
ism of extended thermodynamics of irreversible processes, dual-phase-lag transfer equations are obtained. To cite this article:
S.I. Serdyukov, C. R. Physique 8 (2007).
© 2006 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Sur les définitions de l’entropie et de la température dans une généralisation de la thermodynamique aux processus
irréversibles. On considère de nouvelles définitions de l’entropie et de la température pour des systèmes uniformes dont l’échange
de chaleur avec l’environnement est rapide. Pour remplacer l’habituelle hypothèse d’équilibre local, on propose une hypothèse
d’uniformité locale. Dans le cadre de la généralisation de la thermodynamique aux processus irréversibles proposée ici, on obtient
des équations de transfert retardées. Pour citer cet article : S.I. Serdyukov, C. R. Physique 8 (2007).
© 2006 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
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1. Introduction

The concepts of entropy and temperature are among the most important both in classical and non-equilibrium
thermodynamics. The theoretical definition of temperature is still a matter of discussion [1–5], and this problem is
most complex for unsteady states of non-equilibrium systems.

The definitions of entropy and temperature are closely related to the development of the formalism of irreversible
thermodynamics and are a significant challenge of extended thermodynamics. Classical irreversible thermodynam-
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ics [6] is based on the local equilibrium hypothesis, according to which a nonuniform (and, hence, non-equilibrium)
system can be considered as a locally equilibrium system. Therefore, the state of a nonuniform system can be specified
by the same set of variables as that for an equilibrium system. For example, if the entropy S of the equilibrium system
is a function of the internal energy U and volume V , i.e., S = S(U,V ), then the state of the nonuniform system can
be specified by the internal energy density u and the specific volume v, which depend on spatial coordinates, and

s = s(u, v) (1)

where s is the entropy density.
The conventional version of extended irreversible thermodynamics (EIT) [7–9] is based on the assumption that the

entropy density is a function of both conventional thermodynamic variables and the corresponding dissipative fluxes:

s = s
(
u,v;J,

◦
Pv,pv

)
(2)

where J is the heat flux,
◦
Pv is the viscous pressure tensor, and pv is the bulk pressure. Within the framework of the

conventional version of EIT, the generalized entropy density s and the generalized temperature θ , to a first approx-
imation, are quadratic functions of the dissipative fluxes J,

◦
Pv , and pv . For example, if we consider only the heat

conduction in a solid, which is described by the Maxwell–Cattaneo equation, then

s = se − τ1v

2λT 2
J · J, θ−1 = T −1 + α∗J · J (3)

where se = se(u, v) is the local-equilibrium entropy density, T is the local-equilibrium temperature, τ1 is the relaxation
time, λ is the thermal conductivity of the medium, and α∗ is a coefficient.

Meanwhile, it is easy to show that extended thermodynamics based on postulate (2) is an incomplete theory. It
is sufficient to consider a uniform (gradientless) system that undergoes fast heating or cooling, remaining uniform.
Since the state of this system changes in finite time, it cannot be considered an equilibrium system. Because of the
fast change in the state, relaxation phenomena may occur (e.g., fast heating of electrons in metal in comparison with
heating of lattice). However, because of the absence of fluxes in the uniform system, postulate (2) reduces to classical
postulate (1) and the extended theory turns out to be inapplicable.

In this Note, we will consider another version of extended thermodynamics, which proceeds from the postulate
that additional variables are generally the material time derivatives of the conventional variables [10,11]:

s = s(u, v; u̇, v̇) (4)

This approach allows one to obtain dual-phase-lag heat-conduction and diffusion equations [11,12] and formulate an
extended evolution criterion [13], which is a generalization of the known Glansdorff–Prigogine criterion.

In this Note, we will give new definitions of generalized temperature and entropy, which would be applicable to
unsteady states, and will extend the local equilibrium hypothesis. On the basis of postulate (4), we will consider the
formalism of extended thermodynamics, which leads to the dual-phase-lag transfer equations:

J + τ1
∂J
∂t

= −λ∇T − ε
∂∇T

∂t
(5)

◦
Pv + τ2

∂
◦
Pv

∂t
= −2η

(
◦
V + λ2

∂
◦
V

∂t

)
(6)

pv + τ0
∂pv

∂t
= −ζ

(
∇ · v + λ0

∂∇ · v
∂t

)
(7)

where τ2, τ0, ε/λ, λ2, and λ0 are the relaxation (retardation) times, η is the steady-state shear viscosity, ζ is the bulk
viscosity,

◦
V is traceless deformation rate tensor (V = 1

2 [∇v + (∇v)+] is the symmetric part of the velocity gradient
∇v), t is the time. Eqs. (5)–(7) are more realistic than hyperbolic telegraph type equations. For example, Eq. (5)
more accurately describes the heat propagation on the metal surface exposed to short-pulse laser irradiation [14,15].
Dual-phase-lag equations can not be obtained within thermodynamic theory on the basis of the postulate (2).1

1 To obtain the dual-phase-lag transfer equations from EIT, it should be assumed that fluxes of the dissipative fluxes are further additional variables
[16,17].
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2. Generalised entropy and temperature and hypothesis of local uniformity

Initially, let us consider again a uniform closed one-component system that does work and fast exchanges heat with
the environment, remaining uniform. According to the first law of thermodynamics, there is a state function called the
internal energy U , which is related to the heat dQ2 supplied to the system and the work p dV done by the system by
the expression

dQ = dU + p dV (8)

where V is the volume of the system and p is pressure. Considering the variation of the quantities U and V with time,
we can rewrite the latter expression as

Q̇ = U̇ + pV̇ (9)

For an adiabatically isolated system, we have dQ = 0, and, hence, the pressure can be expressed through the thermo-
dynamic quantities U and V :

p = p(U,V ) = −∂U

∂V
(10)

In classical thermodynamics, the entropy S introduced by Clausius is related to the heat change and the absolute
temperature T by the integral relation SB − SA = ∫ B

A
T −1 dQ, where SA is the entropy of the system in initial state A

and SB is the entropy of the system in final state B . The integral relation allows one to proceed to the differential form
T dS = dQ.

In this Note, we will generalize these equalities by postulating that a central role in the extended theory is played
by the heat-exchange rate Q̇. Let us suppose that the generalized temperature θ and the generalized entropy S depend
on the quantity Q̇, i.e., θ = θ(U,V ; Q̇) and S = S(U,V ; Q̇). Further, let us assume that the change in the generalized
entropy in the transition from state A into state B is related not only to the heat change dQ but also to the change dQ̇

in the heat supply rate:

SB − SA =
B∫

A

θ−1(dQ + ΛdQ̇
)

(11)

where Λ = Λ(U,V ; Q̇) is a new intensive quantity. Considering the transition from one state into the other, we can
proceed from the integral relation (11) to the differential relation

θ dS = dQ + ΛdQ̇ (12)

Using equalities (8) and (9), from (12), we obtain

θ dS = dU + p dV + Λ
(
U̇ + pV̇

)
(13)

According to expression (13), we can write

S = S
(
U,V ; U̇ + pV̇

)
(14)

Thus, the entropy can be regarded as a function of U , V , and a single additional variable U̇ + pV̇ . The temperature θ

and the intensive quantity Λ are also extended thermodynamic quantities:

θ = θ
(
U,V ; U̇ + pV̇

) =
(

∂S

∂U

)−1

V,U̇+pV̇

, Λ = Λ
(
U,V ; U̇ + pV̇

) = θ

[
∂S

∂(U̇ + pV̇ )

]
U,V

However, the pressure p = p(U,V ) is introduced within the framework of the first law of thermodynamics (10) and
is not an extended quantity.

Thus, we considered the uniform system that is generally a non-equilibrium system because of the fast heat ex-
change with the environment. To construct a formalism of extended thermodynamics of irreversible processes, instead

2 Here, we will not use other notations for a small amount of heat (e.g., δQ), implying that dQ is not the exact differential of the state variables
U and V .
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of the local equilibrium hypothesis, we propose a local uniformity hypothesis: the system that is nonuniform as a
whole will be regarded as uniform at each point. This means that the non-equilibrium system should be described
in terms of the same variables u, v, and u̇ + pv̇. Then, instead of the fundamental relation (13), we obtain a similar
relation in the form

θ ds = du + p dv + Λd(u̇ + pv̇) (15)

Relation (15) shows that the entropy density is a function of the same variables:

s = s(u, v; u̇ + pv̇) (16)

Obviously, the local uniformity hypothesis is less rigorous than the local equilibrium hypothesis.
The heat supply rate u̇ + pv̇, as u and v, is an extensive variable. Therefore, as in classical thermodynamics, we

can proceed from differential form (15) to the equality

θs = u + pv + Λ(u̇ + pv̇) (17)

Further, we consider an approximate dependence of the entropy on the variable u̇ + pv̇. Let us assume that all the
intensive quantities in equality (17) are independent of u̇ + pv̇ and are functions of only u and v, i.e., θ(u, v; u̇ + pv̇)

and Λ(u,v; u̇ + pv̇) reduce to T (u, v) and Λ(u,v), respectively (pressure is independent of the additional variable
by definition). Then, from equality (17), we obtain

s = se + T −1Λ(u,v)(u̇ + pv̇) (18)

where se = T −1u+ T −1pv is the local equilibrium entropy density. The latter equality enables one to find an approx-
imate expression for the generalized temperature:

θ−1 =
(

∂s

∂u

)
v,u̇+pv̇

= T −1 + αρ(u̇ + pv̇) (19)

where

α = v

[
∂(T −1Λ)

∂u

]
v,u̇+pv̇

(20)

is a coefficient. Thus, we revealed a linear approximate dependence of the generalized s and θ−1 on the additional
variable, which differs fundamentally from result (3) of the conventional version of extended irreversible thermody-
namics.

3. Balance equations

Further, the continuity equation and the internal energy balance equation are considered in the form

ρ
dv

dt
= −∇ · v, ρ

du

dt
= −∇ · J − P : ∇v (21)

where P is the pressure tensor (P = pU + Pv , where U is unit matrix). Eqs. (21) can be transformed into one equation

ρ

(
du

dt
+ p

dv

dt

)
= −∇ · J − Pv : ∇v (22)

Along with Eq. (22), let us also consider the balance equation for the quantity u̇ + pv̇. For this purpose, Eq. (22)
should be rewritten in the form

u̇ + pv̇ = −v∇ · J − vPv : ∇v (23)

and its left and right-hand sides should be considered. Further, in the well-known equality [6]

ρ
da

dt
= ∂(ρa)

∂t
+ ∇ · (ρav)
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where a is a field quantity, let us make the change of variables a = u̇ + pv̇ in the left-hand side and the change of
variables a = −v∇ · J − vPv : ∇v in the right-hand side. This yields the balance equation for the variable u̇ + pv̇ in
the form

ρ
d(u̇ + pv̇)

dt
= −∇ · (∂tJ + v∇ · J + vPv : ∇v) − ∂t (Pv : ∇v) (24)

where ∂t ≡ ∂/∂t is the partial time derivative. Apparently, in the balance equation (24), ∂tJ + v∇ · J + vPv : ∇v is the
flux of u̇ + pv̇ and −∂t (Pv : ∇v) is the source of u̇ + pv̇.

Let us now consider the entropy balance equation. Using the generalized equation (15) and balance equations (22)
and (24), the time derivative of the entropy density can be transformed to the form

ρ
ds

dt
= −∇ · [θ−1J + θ−1Λ(∂tJ + v∇ · J + vPv : ∇v)

] + J · ∇θ−1 − θ−1Pv : ∇v

+ (∂tJ + v∇ · J + vPv : ∇v) · ∇(
θ−1Λ

) − θ−1Λ∂t(Pv : ∇v) (25)

Comparing this equality with the entropy balance equation ρ ds/dt = −∇ · Js + σ , one can obtain the following
expressions for the entropy flux Js and the entropy production σ :

Js = θ−1J + θ−1Λ(∂tJ + v∇ · J + vPv : ∇v) (26)

σ = J · ∇θ−1 − θ−1Pv : ∇v + (∂tJ + v∇ · J + vPv : ∇v) · ∇(
θ−1Λ

) − θ−1Λ∂t (Pv : ∇v) � 0 (27)

From expression (26), it is seen that the entropy flux depends on the heat flux and the flux of the quantity u̇ + pv̇. The
sign of inequality (27) is determined by the second law of thermodynamics.

Using the decompositions Pv = pvU+ ◦
Pv and Pv : ∇v = ◦

Pv : ◦
V+pv∇ ·v, the expression for the entropy production

can be transformed to the form

σ = J · ∇θ−1 + (∂tJ + v∇ · J + vPv : ∇v) · ∇(
θ−1Λ

) − θ−1 ◦
Pv : ( ◦

V + Λ∂t

◦
V

) − θ−1Λ
(
∂t

◦
Pv

) : ◦
V

− θ−1pv(∇ · v + Λ∂t∇ · v) − θ−1Λ
(
∂tp

v
)∇ · v � 0 (28)

Here, ∇(θ−1Λ) in expression (28) is interpreted as a thermodynamic force and ∂tJ + v∇ · J + vPv : ∇v is interpreted
as the corresponding flux. The quantities

◦
Pv and ∂t

◦
Pv are a flux and its time derivative; they correspond to the ther-

modynamic forces −θ−1(
◦
V + Λ∂t

◦
V) and −θ−1Λ

◦
V, respectively. Similarly, the flux pv and its rate ∂tp

v correspond
to the thermodynamic forces −θ−1(∇ · v + Λ∂t∇ · v) and −θ−1Λ∇ · v. Entropy production is also a bilinear form.
In the particular case where Λ = 0, the expressions for the entropy flux and the entropy source reduce to the classical
expressions.

To a first approximation, the thermodynamic forces are linearly related to the corresponding fluxes and flux rates.
Therefore, taking into account different tensor dimensions of J,

◦
Pv and pv , we have

∇θ−1 = R′
11J + R′

12(∂tJ + v∇ · J + vPv : ∇v) (29)

∇(θ−1Λ) = R′
21J + R′

22(∂tJ + v∇ · J + vPv : ∇v) (30)

−θ−1( ◦
V + Λ∂t

◦
V

) = R11
◦
Pv + R12∂t

◦
Pv (31)

−θ−1Λ
◦
V = R21

◦
Pv + R22∂t

◦
Pv (32)

−θ−1(∇ · v + Λ∂t∇ · v) = R̃11p
v + R̃12∂tp

v (33)

−θ−1Λ∇ · v = R̃21p
v + R̃22∂tp

v (34)

where R′
ij , Rij , and R̃ij (i, j = 1,2) are phenomenological coefficients. According to the Onsager–Casimir principle,

the matrices formed by the coefficients R′
ij , Rij , and R̃ij in expressions (29)–(34) are antisymmetric, i.e. R′

12 = −R′
21,

R12 = −R21, and R̃12 = −R̃21.
Eqs. (29), (31), and (33) will be considered in the next section, where it is shown that these equations lead to new

constitutive equations. Phenomenological equations (30), (32), and (34) allow one to reveal the relationship of the
quantities ∇(θ−1Λ) and θ−1Λ and dissipative fluxes. The significance of these equations is not considered in this
work, since this requires special investigation.
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4. Constitutive equations

Neglecting the quantity v(∇ · J + Pv : ∇v) on the right-hand side of Eq. (29), we write Eqs. (29), (31), and (33) in
the form

R′
11J + R′

12∂tJ = ∇θ−1 (35)

R11
◦
Pv + R12∂t

◦
Pv = −θ−1( ◦

V + Λ∂t

◦
V

)
(36)

R̃11p
v + R̃12∂tp

v = −θ−1(∇ · v + Λ∂t∇ · v) (37)

Using the balance equation (22), let us represent the generalized temperature (18) as a linear function of ∇ ·J+Pv : ∇v:

θ−1 = T −1 − α(∇ · J + Pv : ∇v) (38)

Let us take the gradient of the left- and right-hand sides of the last equality. Neglecting the term (∇α)(∇ ·J+Pv : ∇v),
we have

∇θ−1 = ∇T −1 − α∇(∇ · J + Pv : ∇v) (39)

Using equalities (38) and (39), we replace the temperature and the temperature gradient on the right-hand sides of
Eqs. (35)–(37). Neglecting higher-order terms (Pv : ∇v)(

◦
V + Λ∂t

◦
V) and (Pv : ∇v)(∇ · v + Λ∂t∇ · v), we obtain the

phenomenological equations

R′
11J + R′

12∂tJ = ∇T −1 − α∇(∇ · J + Pv : ∇v) (40)

R11
◦
Pv + R12∂t

◦
Pv = −(

T −1 − α∇ · J
)( ◦

V + Λ∂t

◦
V

)
(41)

R̃11p
v + R̃12∂tp

v = −(
T −1 − α∇ · J

)
(∇ · v + Λ∂t∇ · v) (42)

It is seen that, in the equations obtained, fluxes of different dimensions interact.
Let us further consider three limiting cases and find a relationship between the coefficients of the obtained phe-

nomenological equations with the coefficients of constitutive equations (5)–(7).
Limiting case 1: Let us initially consider the case where there is no convective transfer (v = 0). Then, (40)–(42)

reduce to a single equation

R′
11J + R′

12∂tJ = ∇T −1 − α∇(∇ · J) (43)

Let us replace the term ∇(∇ · J) in this equation using the equality

ρCv∂t∇T = −∇(∇ · J) (44)

which is obtained from the balance equation ρCv∂tT = −∇ · J at constant ρCv . As a result, from Eq. (43), we obtain
the dual-phase-lag heat-conduction equation

J + R′
12

R′
11

∂J
∂t

= − 1

R′
11T

2
∇T + αρCv

R′
11

∂∇T

∂t
(45)

Comparing (45) with (5), we find a relationship between the coefficients:

R′
11 = 1

λT 2
, R′

12 = τ1

λT 2
, α = − ε

ρCvλT 2
(46)

It is seen from (46) that the coefficient α is negative or zero. The expression for α allows one to find a relationship of
Λ with the coefficients ε and λ. From the definition of the coefficient α (20) and equality (46), we obtain the equation

T
dΛ

dT
− Λ + ε

λ
= 0, v = const, u̇ + pv̇ = const, Cv = const (47)

whose solution gives a relationship of Λ with T and ε/λ. In the general case, the relaxation time ε/λ is a function
of temperature. In a particular case where ε/λ = const, it is easy to see after substitution that the quantity Λ is also
temperature-independent and

Λ = ε

λ
= const (48)
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Thus, the quantity Λ reduces to the relaxation time ε/λ when the relaxation time is constant.
Limiting case 2: Let us consider the case where α = 0 and T = const (θ reduces to T and the convective transfer

occurs at constant temperature). Let us also assume that the liquid is incompressible (∇ · v = 0) and there are only
shear strains. Then, Eqs. (40) and (42) degenerate and, from Eq. (41), we obtain

◦
Pv + R12

R11
∂t

◦
Pv = − 1

R11T

( ◦
V + Λ∂t

◦
V

)
(49)

Comparing Eq. (49) with (6), we find expressions for the phenomenological coefficients and Λ:

R11 = 1

2ηT
, R12 = τ2

2ηT
, Λ = λ2 (50)

Limiting case 3: Let us consider again the case where α = 0 and T = const. Let us now assume that there are only
volumetric strains and there are no shear strains (

◦
V = 0). Then, Eqs. (40) and (41) degenerate and, from Eq. (42), we

obtain

pv + R̃12

R̃11
∂tp

v = − 1

R̃11T
(∇ · v + Λ∂t∇ · v) (51)

Comparing Eq. (51) with Eq. (7), we find again expressions for the phenomenological coefficients and Λ:

R̃11 = 1

ζT
, R̃12 = τ0

ζT
, Λ = λ0 (52)

It is seen that, in the three limiting cases, the intensive quantity Λ reduces to the relaxation coefficients ε/λ (48),
λ2 (50), and λ0 (52). Previously [18], the λ2 values were experimentally determined for a number of well-known
liquids and polymer solutions.

In this section, we have identified all the coefficients of Eqs. (40)–(42). Using the expressions for the coefficients
(46), (50), and (52), we represent Eqs. (40)–(42) in the form

J + τ1
∂J
∂t

= −λ∇T + ε

ρCv

[∇(∇ · J) + ∇( ◦
Pv : ◦

V
) + ∇(pv∇ · v)

]
(53)

◦
Pv + τ2

∂
◦
Pv

∂t
= −2η

(
1 + ε

ρCvλT
∇ · J

)(
◦
V + λ2

∂
◦
V

∂t

)
(54)

pv + τ0
∂pv

∂t
= −ζ

(
1 + ε

ρCvλT
∇ · J

)(
∇ · v + λ0

∂∇ · v
∂t

)
(55)

Thus, we obtained the constitutive equations, which, in particular cases, reduce to dual-phase-lag equations (5), (6),
and (7), respectively. In Eqs. (53)–(55), dissipative fluxes of different dimensions interact, but these equations differ
significantly from the corresponding equations of the conventional version of EIT.

5. Conclusions

In this Note, we gave new definitions of generalized entropy and temperature for uniform systems that fast ex-
change heat with the environment. We introduced a local uniformity hypothesis and proceeded to description of
nonuniform systems. The approach proposed enabled us to develop a formalism of extended thermodynamics of irre-
versible processes within which only one additional variable, u̇ + pv̇, and only one corresponding intensive quantity,
Λ, are introduced. Within the framework of this version, constitutive equations (53)–(55) were obtained, which, in
particular cases, reduce to dual-phase-lag heat-conduction and convective-transfer equations. Further development of
the formalism of extended thermodynamics that uses phenomenological equations (30), (32), and (34) will reveal new
advantages of the proposed approach in comparison with the conventional version of extended irreversible thermody-
namics.
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