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Abstract

The present Note establishes the self-averaging, radiative transfer limit for the two-frequency Wigner distribution for classical
waves in random media. Depending on the ratio of the wavelength to the correlation length the limiting equation is either a
Boltzmann-like integral equation or a Fokker–Planck-like differential equation in the phase space. The limiting equation is used to
estimate three physical parameters: the spatial spread, the coherence length and the coherence bandwidth. In the longitudinal case,
the Fokker–Planck-like equation can be solved exactly. To cite this article: A.C. Fannjiang, C. R. Physique 8 (2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Limite du transfert radiatif de la distribution de Wigner à deux fréquences pour des ondes paraboliques aléatoires : une
solution exacte. Dans cette Note nous établissons la limite auto-moyennante dans le regime du transfert radiatif pour la distribution
de Wigner á deux fréquences dans le cas classique d’ondes en milieu aléatoires. Suivant le rapport de la longueur d’onde à la
longueur de corrélation l’équation limite est soit une équation intégrale de type Boltzmann soit une équation différentielle de type
Fokker–Planck dans l’espace des phases. L’équation limite est utilisée pour estimer trois paramètres physiques : l’étalement spatial,
la longueur de cohérence et la largeur de bande cohérente. Dans le cas longitudinal l’équation de type Fokker–Planck admet une
solution exacte. Pour citer cet article : A.C. Fannjiang, C. R. Physique 8 (2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
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1. Introduction

High-data-rate communication systems at millimeter and optical frequencies, remote sensing and detection and the
astronomical imaging all require understanding of stochastic pulse propagation. As pulses consist of a typically broad
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frequency band the complete information about transient propagation requires a solution for the statistical moments
of the wave field at different frequencies and locations [1].

Let k1, k2 be two (relative) wavenumbers nondimensionalized by the central wavenumber k0. Let the wave fields
Ψj , j = 1,2, of kj , j = 1,2, satisfy the parabolic (paraxial) wave equation in the dimensionless form [1]

i
∂

∂z
Ψj (z,x) + γ

2kj

∇2Ψj (z,x) + μkj

γ
V

(
z

δ
,

x
ε

)
Ψj (z,x) = 0, j = 1,2 (1)

where γ is the Fresnel number, V represents the refractive index fluctuation with the correlation lengths δ and ε in the
longitudinal and transverse direction, respectively, and μ is the magnitude. Both δ and ε are small parameters related
by the anisotropy parameter α as δα = ε. When α � 1 (resp. α � 1), the refractive index fluctuates much faster (resp.
slower) in the transverse direction(s) than in the longitudinal direction.

An important regime for classical wave propagation takes place when the correlation length is much smaller than
the propagation distance but is comparable or much larger than the central wavelength which is proportional to the
Fresnel number. This is the radiative transfer regime for monochromatic waves described by the following scaling
limit

γ = θε, μ = √
ε, θ > 0, such that lim

ε→0
θ < ∞ (2)

(see [2–5] and references therein). With two different frequencies, the most interesting scaling limit requires another
simultaneous limit

lim
ε→0

k1 = lim
ε→0

k2 = k, lim
ε→0

γ −1k−1(k2 − k1) = β > 0 (3)

We shall refer to the conditions (2) and (3) as the two-frequency radiative transfer scaling limit.
The two-frequency mutual coherence function [1]

Γ12(z,x,y) = E

[
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(
z,x + γ y

2

)
Ψ2

(
z,x − γ y

2

)]
where E stands for the ensemble averaging, plays an important role in analyzing propagation of random pulses [1].
But in the radiative transfer regime the two-frequency mutual coherence function is not as convenient as the two-
frequency Wigner distribution, introduced in [6], which is a natural extension of the standard Wigner distribution and
is self-averaging in the radiative transfer regime.

1.1. Two-frequency Wigner distribution

The two-frequency Wigner distribution is defined as

Wz(x,p) = 1

(2π)d
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The choice of the scaling factors in the definition is crucial and characteristic of parabolic waves.
The Wigner distribution has the following properties:∫
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(5)
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(6)

and hence contains all the information in the two-point two-frequency function. Furthermore, the two-frequency
Wigner distribution satisfies the two-frequency Wigner–Moyal equation exactly [6]

∂Wz

∂z
+ p · ∇xWz + 1√

αδ
VzWz = 0 (7)

with the initial condition W0 where the operator Vz is given as
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2. Assumptions on the refractive index fluctuation

We assume that Vz(x) = V (z,x) is a centered, z-stationary, x-homogeneous random field admitting the spectral
representation

Vz(x) =
∫

exp(ip · x)V̂z(dp)

with the z-stationary spectral measure V̂z(·) satisfying

E
[
V̂z(dp)V̂z(dq)

] = δ(p + q)Φ0(p)dp dq

The transverse power spectrum density is related to the full power spectrum density Φ(w,p) as Φ0(p) =∫
Φ(w,p)dw. The power spectral density Φ(k) satisfies Φ(k) = Φ(−k),∀k = (w,p) ∈ R

d+1, because the elec-
tric susceptibility field is assumed to be real-valued. Hence Φ(w,p) = Φ(−w,p) = Φ(w,−p) = Φ(−w,−p) which
is related to the detailed balance of the limiting scattering operators described below.

More specifically we make the following two assumptions:

Assumption 1. V (z,x) is a Gaussian process with a full spectral density Φ(k),k ∈ R
d+1, which is uniformly bounded

and decays at |k| = ∞ with sufficiently high power of |k|−1.

We note that the assumption of Gaussianity is not essential and is made here to simplify the presentation.
Let Fz and F+

z be the sigma-algebras generated by {Vs : ∀s � z} and {Vs : ∀s � z}, respectively and let L2(Fz)

and L2(F+
z ) denote the square-integrable functions measurable w.r.t. to them respectively. The maximal correlation

coefficient r(t) is given by

ρ(t) = sup
h∈L2(Fz)

E[h]=0, E[h2]=1

sup
g∈L2(F+

z+t )

E[g]=0, E[g2]=1

E[hg] (8)

Assumption 2. The maximal correlation coefficient ρ(t) is integrable:
∫ ∞

0 ρ(s)ds < ∞.

3. Main theorems

Theorem 1. [7] Let θ > 0 be fixed. Then under the two-frequency radiative transfer scaling (2)–(3) the weak so-
lutions of the Wigner–Moyal equation (7) converge in law in the space C([0,∞),L2

w(Rd)) to that of the following
deterministic equation

∂

∂z
W + p · ∇W = 2πk2

θ2

∫
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[
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)
− W(x,p)

]
dq (9)

with the same initial condition W0 where the kernel K is given by

K(p,q) = 1

α
Φ

(
α−1

(
p + θq

2
√

k

)
· q,q

)
(10)

Here and below L2
w(R2d) is the space of complex-valued square integrable functions on the phase space R

2d

endowed with the weak topology.

Remark 1. If we now let α → 0, then the kernel becomes

K(p,q) = δ

((
p + θq

2
√

k

)
· q

)∫
Φ(w,q)dw

We refer to this as the transverse case because the transverse correlation length ε is much shorter than the longitudinal
correlation length δ.

On the other hand, in the longitudinal case α → ∞ the limiting kernel would vanish. In order to maintain an
interesting limit, we increase μ by a factor of

√
α. Then the kernel for the longitudinal case becomes
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K(p,q) = Φ(0,q) (11)

In both the longitudinal and transverse cases the fluctuations in the refractive index are extremely anisotropic.

Theorem 2. [7] Assume limε→0 θ = 0. Then under the two-frequency radiative transfer scaling (2)–(3) the weak
solutions of the Wigner–Moyal equation (7) converge in law in the space C([0,∞),L2

w(Rd)) to that of the following
deterministic equation

∂

∂z
W + p · ∇W = k

(
∇p + iβ

2
x
)

· D ·
(

∇p + iβ

2
x
)

W(x,p) (12)

with the same initial condition W0 where the (momentum) diffusion coefficient D is given by

D(p) = π

α

∫
Φ

(
p · q
α

,q
)

q ⊗ q dq (13)

Remark 2. In the transverse case α → 0, the limiting coefficient is

D(p) = π |p|−1
∫

p·p⊥=0

∫
Φ(w,p⊥)dw p⊥ ⊗ p⊥ dp⊥ (14)

For the longitudinal case α → ∞, we increase μ by a factor of
√

α as before such that the limiting coefficient is
nontrivial

D = π

∫
Φ(0,q)q ⊗ q dq (15)

When k1 = k2 or β = 0, Eqs. (9) and (12) reduce to the standard radiative transfer equations derived in [2,3].
The proof of these results follows exactly the strategy developed in [2] and outlined in [3], originally developed for
the standard one-frequency Wigner distribution (see [6] for the same strategy applied to the two-frequency Wigner
distribution for a different scaling limit).

Another notable fact is that Eq. (9) with (11) and Eq. (12) with (15) are similar to the governing equations for the
ensemble-averaged two-frequency Wigner distribution for the z-white-noise potential analyzed in [6]. This can be
understood by the similar behaviors of the potential more rapidly fluctuating in z to the z-white-noise potential and
the (less) rapid fluctuation in x gives rise to self-averaging which is lacking in the z-white-noise potential.

4. The longitudinal and transverse case

To illustrate the utility of these equations, we proceed to discuss the two special cases for the transverse dimension
d = 2. For simplicity, we will assume the isotropy of the medium in the transverse coordinates such that Φ(w,p) =
Φ(w, |p|). As a consequence the momentum diffusion coefficient is a scalar. In the longitudinal case D = DI with a
constant scalar D whereas in the transverse case D(p) = C|p|−1p̂⊥ ⊗ p̂⊥ with the constant C given by

C = π

2

∫∫
Φ(w,p⊥)dw|p⊥|2 dp⊥

Here p̂⊥ ∈ R
2 is an unit vector normal to p ∈ R

2.
First of all, Eq. (12) by itself gives qualitative information about three important parameters of the stochastic

channel: the spatial spread σ∗, the coherence length �c and the coherence bandwidth βc , through the following scaling
argument. One seeks the change of variables

x̃ = x

σ∗
√

k
, p̃ = p�c

√
k, z̃ = z

L
, β̃ = β

βc

(16)

where L is the propagation distance to remove all the physical parameters from (12) and to aim for the form

∂
W + p̃ · ∇x̃W =

(
∇p̃ + iβ̃

x̃
)

·
(

∇p̃ + iβ̃
x̃
)

W (17)

∂z̃ 2 2
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in the longitudinal case and the form

∂

∂z̃
W + p̃ · ∇x̃W =

(
∇p̃ + iβ̃

2
x̃
)

· p̂⊥ ⊗ p̂⊥
|p̃| ·

(
∇p̃ + iβ̃

2
x̃
)

W (18)

in the transverse case. From the left side of (12) it immediately follows the first duality relation �cσ∗ ∼ L/k. The
balance of terms inside each pair of parentheses leads to the second duality relation βc ∼ �c/σ∗. Finally the removal
of D or C determines the spatial spread σ∗ which has a different expression in the longitudinal and transverse case. In
the longitudinal case,

σ∗ ∼ D1/2L3/2, �c ∼ k−1D−1/2L−1/2, βc ∼ D−1L−2

whereas in the transverse case

σ∗ ∼ k−1/6C1/3L4/3, �c ∼ k−5/6C−1L−1, �c ∼ βc ∼ k−2/3C−2/3L−5/3

In the longitudinal case, the inverse Fourier transform in p̃ renders Eq. (17) to the form

∂W̃

∂z̃
− i∇ỹ · ∇x̃W̃ = −

∣∣∣∣ỹ − β̃

2
x̃

∣∣∣∣2

W̃ (19)

which can be solved exactly and whose Green function at z̃ = 1 is [8]

(1 + i)d/2β̃d/4

(2π)d sind/2 [β̃1/2(1 + i)] exp

[
i
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]
exp
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i
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2

]
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i
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8

]

× exp

[
1 − i

2β̃1/2
cot

(
β̃1/2(1 + i)

)∣∣∣∣ỹ − β̃x̃/2 − y′ − β̃x′/2

cos(β̃1/2(1 + i))

∣∣∣∣2]

× exp

[
− 1 − i

2β̃1/2

∣∣y′ − β̃x′/2
∣∣2 tan

(
β̃1/2(1 + i)

)]
This solution gives asymptotically precise information about the cross-frequency correlation, important for analyzing
the information transfer and time reversal with broadband signals in the channel described by the random Schrödinger
equation [8] (see also [9–11]). It is unclear if the transverse case is exactly solvable or not.
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