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Abstract

This is a short review on basics of the use of the Wilson line to break gauge symmetry in theories with compact extra dimensions.
We show how the computation of the one-loop effective field theory leads to a finite result. We then explain the realization of this
breaking and the effective potential computation in an open string theory framework with D-branes. To cite this article: K. Benakli,
C. R. Physique 8 (2007).
© 2007 Published by Elsevier Masson SAS on behalf of Académie des sciences.

Résumé

Higgs et ligne de Wilson en théories des champs et de cordes. Ceci est une revue courte sur des aspects basiques de l’utilisation
des lignes de Wilson pour briser la symétrie de jauge dans les théories avec des dimensions supplémentaires compactes. Nous
montrons comment le calcul de la théorie effective de champs à une boucle mène à un résultat fini. Puis, nous illustrons alors
la réalisation de cette brisure de symétrie de jauge et le calcul potentiel effectif dans un cadre de théorie de cordes ouvertes se
propageant sur des D-branes. Pour citer cet article : K. Benakli, C. R. Physique 8 (2007).
© 2007 Published by Elsevier Masson SAS on behalf of Académie des sciences.
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1. Introduction

Our universe is full of massive states. Some of them are composite (as protons and neutrons), and most of their
mass is explained as a manifestation of binding (confining) interactions between their fundamental constituents. Other
massive states are described as elementary particles (electrons, muons or W ’s and Z bosons). Understanding the origin
of their mass is still challenging. Today, there is a strong belief that it is the result of a Higgs phenomenon whose
experimental discovery may be achieved soon.

The Higgs mechanism arises in theories with a gauge symmetry. The theory has an infinite number of connected
degenerate vacua, parametrized by the vacuum expectation value of scalar fields. This spontaneous breaking of sym-
metry leads to a Higgs mechanism: some ‘would be massless’ fields, the so-called Nambu–Goldstone particles, that
connect the different degenerate vacua, are eaten-up by ‘what would have stayed massless’ vector bosons. All together,
one scalar and one massless vector are traded with one massive vector field.
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This short review presents some very basic facts about the use of Wilson lines as Higgs fields in higher dimensional
theories. This study is justified, for instance, as this is a very common ingredient of four dimensional model building
in string theory. However, our main motivation here is the possibility of a calculable and predictive model for Higgs
physics. This is because the higher dimensional gauge symmetry protects the Higgs potential from sensitivity to
details of the UV cut-off. Although the ideas we present, mainly based on [1,2], are simple, all attempts at their
implementation in realistic models turned out rapidly to be cumbersome and thus will not be discussed here.

2. Wilson lines and ‘gauge-Higgs unification’

The space–time taken to be D = 4 + d dimensional is assumed to factorize as M4 ⊗ K . For our notation, we will
use hatted indices [μ̂, ν̂, . . . = 0, . . . ,3,5,6, . . . ,4 + d], while the Minkowski part M4 is spanned by the coordinates
Xμ, μ = 0, . . . ,3, and the ‘internal space’ K is described either by XM [M,N, . . . = 5,6, . . . ,4 + d] or by yi ,
i = 1, . . . , d . The propagation of Yang–Mills gauge fields Aμ̂ is described, up to two derivatives, by the Lagrangian:

L= −1

2
TrFμ̂ν̂F

μ̂ν̂ (1)

with Fμ̂ν̂ = ∑
a F

(a)

μ̂ν̂
ta and Aμ̂ = ∑

a A
(a)

μ̂
ta and the generators ta are normalized such that Tr(tatb) = δab/2. With

this convention:

Fμ̂ν̂ = ∂μ̂Aν̂ − ∂ν̂Aμ̂ − ig[Aμ̂,Aν̂]
Dμ̂ = ∂μ̂ + igAμ̂ (2)

where g is the tree-level gauge coupling. Taking the internal space K to be a d-dimensional torus with radii Ri and
assuming periodicity of the wave functions along each compact direction leads to the Fourier expansion:

Aμ̂(xμ, yi) =
∑
n

A
(n)

μ̂
(xμ)e

(
ni y

i

R2
i

)

(3)

where A
(n)

μ̂
(xμ) are solutions of the four-dimensional equations of motion, for instance plane waves A

(n)

μ̂
(xμ) =

A
(n)

μ̂
eik.x . They correspond to the propagation of towers of states with masses:

M2
KK ≡ M2

�n =
[

n1

R1

−→e1 + n2

R2

−→e2 + · · · + nd

Rd

−→ed

]2

(4)

where ni are non-negative integers and −→ei represent the unitary vectors of the dual lattice. These states with
∑

i ni �= 0
are denoted as Kaluza–Klein (KK) excitations of the massless mode. In this dimensional reduction process, the higher
dimensional gauge fields Aμ̂ give birth in four-dimensions to vector fields Aμ and scalar fields AM transforming in
the adjoint representation. The latter have a tree-level scalar potential generated from the reduction to four dimensions
of the quartic interactions among gauge bosons:

Vtree = g2

2

d+4∑
M,N=5

Tr[AM,AN ]2 (5)

Note that this interaction is absent in the case of five-dimensional theory (d = 1).
We will discuss below some example with d = 2 extra dimensions. The two non-contractible cycles of K ≡ T 2

have radii R1 and R2 and are taken to be along the directions x5 and x6 which form an angle θ (see Fig. 1).1 These
parameters appear in the ‘internal metric’ GMN , M,N = 5,6, the torus area

√
G and the complex structure modulus U

given by:

GMN =
(

R2
1 R1R2c

R1R2c R2
2

)
; √

G = R1R2s; U = R2

R1
(c + is) (6)

with the case of orthogonal circles corresponding to θ = π/2, thus c = 0.

1 We will use the compact notation cos θ = c, sin θ = s > 0.
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Fig. 1. The two-dimensional torus.

With this metric the squared mass of the KK excitations (4) takes the form:

M2
�m,I =

∣∣∣∣m2 − (m1)U√
ImUG1/4

∣∣∣∣
2

= 1

s2

[
(m1)

2

R2
1

+ (m2)
2

R2
2

− 2
m1m2c

R1R2

]
(7)

Although our discussion carries over for a generic group G, it is more illuminating to illustrate our discussion with
a very simple but explicit example, chosen to be G = U(2) ≡ U(1) ⊗ SU(2). The associated gauge fields are

Aμ̂ =
∑
a

Aa
μ̂
T a (8)

with

T 0 = 1

2

(
1 0
0 1

)
, and T + = 1√

2

(
0 1
0 0

)
, T − = 1√

2

(
0 0
1 0

)
, T 3 = 1

2

(
1 0
0 −1

)
(9)

where T 0 is the generator of the overall U(1) and the SU(2) generators satisfy the commutation relations:[
T 3, T ±] = ±T ±,

[
T +, T −] = T 3 (10)

Of interest is the use of vacuum expectation values for the scalar field AM to break the U(2) gauge symmetry. For
instance, a simple solution of the equations of motion is given by

Aμ = 0, A5 = 1

g

a1

R1
T 3 A6 = 1

g

a2

R2
T 3 (11)

In the presence of states Φq with non-vanishing charge q:[
T 3,Φq

] = qΦq (12)

we define Wilson lines associated with non-contractible cycles Ci by:

WI
Ci

= exp

(
iqI g

∮
Ci

AM dyM

)
= ei2πaI

i , aI
i ≡ qI g

2π

∮
Ci

AM dyM = qI ai (13)

Because of the existence of non-contractible cycles Ci along which the associated Wilson lines are non vanishing, AM

can not be cancelled globally, although AM are locally pure gauge. Equivalent gauge configurations are those related
by qai → qai + ni where ni are integers.

The effect of these non-trivial Wilson lines is the spontaneous breaking of U(2) to U(1) ⊗ U(1). In particular, the
W± ≡ A±

μ gauge bosons of the SU(2) associated with the generators T ±, acquire a mass:

M2
W± = M2± = 1

s2

[
a2

1

R2
1

+ a2
2

R2
2

− 2
a1a2c

R1R2

]
(14)

In the same way, all the KK excitations of the states A±
μ have their masses shifted to:

M2
�m,± =

∣∣∣∣m2 ± a2 − (m1 ± a1)U√
1/4

∣∣∣∣
2

= 1

s2

[
(m1 ± a1)

2

R2
+ (m2 ± a2)

2

R2
− 2

(m1 ± a1)(m2 ± a2)c

R R

]
(15)
ImUG 1 2 1 2
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As a final remark, note that the mass generation mechanism presented here takes different forms and names as
Hosotani [3], Scherk–Schwarz [4], . . . but its essence is the Aharonov–Bohm observation [5] that in the presence of
a non-contractible loop, a gauge field can not always be gauged away and leads to shifts of momenta with observable
effects.

3. The effective potential in field theory

In the example above, A5 and A6 have been given vacuum expectations values in commuting directions of the
associated gauge groups. This means that at tree level the Wilson lines a1 and a2 are flat directions. No symmetry
protects them, however, from acquiring a potential through radiative corrections. In fact, we will show now that it can
be generated at a one-loop level and it is in some cases finite and calculable.

For this purpose, we start with a generic theory where the bosonic and fermionic fields have field dependent
masses MI . The one-loop contributions are given by:

Veff = 1

2

∑
I

(−)FI

∫
d4p

(2π)4
log

[
p2 + M2

I

]
(16)

where the sum is over all bosonic (FI = 0) and fermionic (FI = 1) degrees of freedom with the field dependence
appearing in the masses MI(φ,aI

i ). In the Schwinger representation, it takes the form:

Veff = −1

2

∑
I

(−)FI

∞∫
0

dt

t

∫
d4p

(2π)4
e−t[p2+M2

I ] = − 1

32π2

∑
I

(−)FI

∞∫
0

dt

t3
e−tM2

I

= − 1

32π2

∑
I

(−)FI

∞∫
0

dl le−M2
I / l (17)

where we have made the change of variables t = 1/l. The integration regions t → 0 (l → ∞) and t → ∞ (l → 0)
correspond to the ultraviolet (UV) and infrared (IR) limits, respectively. To proceed further, we need to specify the
fields dependence of MI :

M2
�m,I = M2

0I +
d∑

i=1

[
mi + aI

i

Ri

]2

(18)

where �m = {m1, . . . ,md} with mi integers. These are towers of KK states as defined in (4), with a lightest mode of
mass M0I More precisely, this is the (4 + d)-dimensional mass which remains in the limit Ri → ∞. The shifts aI

i for

internal momenta are associated to the Wilson lines, aI
i = qI

∮ dyi

2π
gAi , where Ai is the internal component of a gauge

field with gauge coupling g and qI is the charge of the I field with respect to the appropriate generator.
Cases with constant M0I , i.e. all field dependence is through the Wilson lines are those of interest. We will restrict

for simplicity to M2
0I = 0, as a non-vanishing finite value would otherwise play the role of an infrared cut-off but does

not introduce new UV divergences. The effective potential obtained from (17) is then given by:

Veff
(
aI
i

) = −
∑
I

∑
�m

(−)FI
1

32π2

∞∫
0

dl le
−∑

i

(mi+aI
i
)2

R2
i
l (19)

Commuting the integral with the sum over the KK states, and performing a Poisson re-summation, allows one to write
the effective potential as:

Veff
(
aI
i

) = −
∑
I

(−)FI

∏d
i=1 Ri

32π
4−d

2

∑
�n

e2π i
∑

i nia
I
i

∞∫
0

dl l
2+d

2 e−π2l
∑

i n2
i R

2
i (20)

The term with �n = �0 gives rise to a (divergent) field-independent contribution that needs to be dealt with in the
framework of a full quantum gravity theory. This is irrelevant for our discussion and can be forgotten. For all other
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Fig. 2. The minima of the effective potential (22), for R1 = R2, as a function of cos θ .

(non-vanishing) vectors �n �= �0 in (20), we make the change of variables: l′ = π2l
∑

i n
2
i R

2
i and perform the integration

over l′ explicitly. This leads to a finite result for the field-dependent part of the effective potential:

Veff
(
aI
i

) = −
∑
I

(−)FI
	( 4+d

2 )

32π
12+d

2

d∏
i=1

Ri

∑
�n�=�0

e2π i
∑

i nia
I
i

[∑i n
2
i R

2
i ]

4+d
2

(21)

Take, for instance, the case d = 2, then plugging the form (15) in the effective potential and performing a Poisson
re-summation, one can extract the part of the effective potential dependent on a1 and/or on a2 that takes the form:

Veff
(
aI
i

) = −
∑
I

(−)FI
R1R2s

16π7

∑
�n�=�0

cos [2π(n1a
I
1 + n2a

I
2 )]

[n2
1R

2
1 + n2

2R
2
2 + 2cn1R1n2R2]3

(22)

In realistic models, a full treatment requires to consider minimization of the potential with respect to the radii Ri

as they are given by vacuum expectation of scalar fields (radions), but for our concern here, we will suppose that they
are fixed parameters and discuss the extrema of the potential (22) as function of aI

i = ai supposed to independent of
present species. In the case of one extra dimension, the vacuum expectation value d = 1, the minimum of the potential
is at a = 1/2. We will discuss in more details the case of d = 2, restricting ourselves to the case of equal radii, i.e.
R1 = R2 ≡ R and leaving the torus angle as a free parameter. Using torus periodicity, we can restrict the potential
to the region −1/2 � a1, a2 � 1/2. The potential (22) being symmetric with respect to |a2| ↔ |a1|, implies that at
the minimum |a2| = |a1| ≡ a. Fig. 2 shows the minimum as a function of cos θ . We can see that for cos θ < 0.4 the
minimum is at a = 1/2, while, for cos θ > 0.4 it goes from a = 1/2 to a = 1/4.

A generic (4+d)-dimensional gauge theory is not expected to be consistent and its UV completion (the embedding
in a consistent higher dimensional theory, such as string theory) is needed. However, we found here that some one-
loop effective potentials can be finite, computable in the field theory limit and insensitive to most of the details of the
UV completion. Before commenting on this, we wish to show how this picture is embedded in such a UV complete
framework.

4. Gauge symmetry breaking using D-branes

In the previous sections we described the use of Wilson lines to spontaneously break gauge symmetry in field
theories with compact extra dimensions. We will give, in the following, a corresponding picture in the case of string
theory [6]. More precisely, we consider the case of open strings propagating on D-branes, themselves living in a ten-
dimensional target space–time.
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Fig. 3. The effect of Wilson lines is moving the branes away from each other.

A (supersymmetric) U(2) brane version of the scenario described above can now be realized as a low energy
effective field theory of the world volume of two D5-branes warping the same compact torus. On each brane lives
a U(1) gauge field whose generators, Y1 and Y2 respectively, are embedded inside the U(2) as:

Y1 = T 0 + T 3 =
(

1 0
0 0

)
, Y2 = T 0 − T 3 =

(
0 0
0 1

)
, T 3 = 1

2
(Y1 − Y2) (23)

We can classify the open strings into two sets:

– The first have both ends on the same brane, the second set is made of strings with one end on the first brane and
the other end on the second brane. The first set of strings are insensitive to the presence of a Wilson line along T 3.
This is because the two ends of the string carry opposite U(1) charges, thus they have vanishing total charge under
one of the Yi ’s, and none under the other. Their mass formula is given by:

M2 =
∑

i

n2
i

R2
i

+ (N − 1) (24)

in string units. N is integer and N = 1 reproduces the field theory spectrum of KK states.
– The second set contains strings with charges ±1 under Y1 and ∓1 under Y2, which correspond respectively to the

states T + and T − of SU(2). These have charges +1 and −1 respectively under T 3 generator and feel the Wilson
line ai . Their mass formula is given by:

M2+ = M2− =
∑

i

(ni + ai)
2

R2
i

+ (N − 1) (25)

This reproduces the field theory discussion above with the W± getting a mass through a Higgs mechanism.
A nice geometrical picture of the Wilson line breaking mechanism is obtained by performing a T -duality. This

transformation transforms the Neumann to Dirichlet boundary conditions and as a result the two D5-branes are trans-
formed into two D3-branes localized in the T -dual torus. The value of the Wilson lines along Yi parametrize, as
an angular variable, the location of the D3-brane along the corresponding direction yi . The Wilson line along T 3

parametrize then the separation between the two D-branes in the compact space (see Fig. 3). The strings stretching
between these two branes have masses proportional to their length:

M2 = M2+ = M2− =
∑

i

(ni + ai)
2R2

i + (N − 1) (26)

An important remark is that the breaking presented here does not reduce the rank. For that purpose, we can resort
to the case where the Higgs is identified with the lightest mode of strings localized at brane intersections. The conden-
sation of the tachyonic modes of such strings lead to the recombination of two branes into a single one as illustrated
in Fig. 4.
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Fig. 4. Recombination of two branes into a single one.

5. The effective potential in string models

We wish to address here the fate of the computation of the effective potential presented above when embedded
in a string theory. In order to obtain a non-vanishing result, the configuration needs to be non-supersymmetric. The
important ingredient is to put on top of each other type of (anti-)orientifolds and (anti-)branes that preserve different
parts of the original supersymmetry. In this case, the brane world-volume theory massless fields no longer form
supersymmetric multiplets. Such models have been constructed, for example, in [7–9].

For instance, starting with N D-branes, the world volume theory contains N2 bosons and N2 fermions. The
orientifold projection is then chosen to act in opposite ways for bosons and fermions. This is achieved if the
Ramond–Ramond (RR) charge cancels locally while the Neuveu–Schwarz–Neuveu–Schwarz (NS–NS) charge does
not (case (1)). In this case, the massless states contain n1

B = N(N + 1)/2 bosons and n1
F = N(N − 1)/2 fermions

and the gauge group is USp(N). Or instead (case (2)) the NS–NS charge is locally cancelled while RR charge is not
which leads to n2

B = N(N − 1)/2 bosons and n2
F = N(N + 1)/2 fermions with a gauge group SO(N).

One-loop contributions from world-sheet diagrams with topologies of torus, Klein-bottle can be forgotten here.
They do give contributions to the part we are interested in, which is the Wilson line dependent part, because closed
strings are not charged under the gauge symmetry. We are left with two contributions: amplitudes with topologies of
an annulus and of a Mœbius strip.

The annulus contribution represents interactions between branes and is relevant in our case only if both brane
charges (i.e. branes and anti-branes) are present. We will restrict our analysis to the Mœbius strip amplitude which is
on the other side always present in the models of interest to us. Moreover, without loss of generality, we will restrict
to a Wilson line a acting on all the N branes along one compact dimension of radius R. The others are all treated on
the same footing, forming, for example, a torus T 5 with a common radius r . The amplitude in the transverse, due to
the exchange of closed strings can be written, in each case, as:

Veff(a) = 8N

32π4

∞∫
0

dl
θ4

2

16η12

(
il + 1

2

)
R

r5

∑
�m

e
−2π �m2

r2 l
∑
n

e−4iπnae−2πn2R2l

= ni
F − ni

B

32π4

∞∫
0

dl
θ4

2

16η12

(
il + 1

2

)
R

r5

∑
�m

e
−2π �m2

r2 l
(

1 + 2
∑
n>0

cos(4πna)e−2πn2R2l

)
(27)

where dimensionful quantities are defined in units of α′.
The canonically normalized scalar field h associated to the Wilson line a is h = a/gR, where g is the gauge

coupling (11). Expanding the effective potential in powers of h allows one to extract its quadratic (squared mass) term
μ2h2/2. The result is:

μ2 = −g2 ni
F − ni

B

2π2α′

∞∫
0

dl
θ4

2

16η12

(
il + 1

2

)
R3

r5

∑
�m

e
−2π �m2

r2 l
∑
n

n2e−2πn2R2l (28)

In order to see that the integral converges, note that, in the limit l → ∞ the integrand falls off exponentially, while for
l → 0 one can use the Poisson re-summations
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∑
m

e
−2π m2

r2 l = r√
2l

∑
p

e−π r2
2l

p2
(29)

∑
n

n2e−2πn2R2l = 1

R
√

2l

∑
n

(
1

4πR2l
− n2

4R4l2

)
e
− π

2R2 l
n2

(30)

and the identity

θ4
2

η12

(
il + 1

2

)
= (2l)4 θ4

2

η12

(
i

4l
+ 1

2

)
(31)

to show that the integrand goes to a constant.
At the origin, μ2 is negative or positive depending on the sign of ni

F − ni
B . As is expected the sign is such that the

μ2 is negative in the case (2) where the brane and orientifold have the same RR charge and so repulse each other, while
it is attractive if the RR charges are of opposite sign (attraction). Even if a is a periodic variable of period 1, Veff is
periodic under the shift a → a + 1/2 (since it originates from the Möbius amplitude) and it has a global minimum at
a = 1/4 where its second derivative gives

V ′′
eff |a=1/4= ni

F − ni
B

2π2

∞∫
0

dl
θ4

2

16η12

(
il + 1

2

)
R

r5

∑
�m

e
−2π �m2

r2 l
∑
n

(−)n+1n2e−2πn2R2l (32)

The sign is given again by the sign of ni
F − ni

B . Positivity of the last sum can be seen if it is rewritten as ∂τ θ4(τ )/2iπ
with τ = 2iR2l.

In the T -dual picture, the VEV a = 1/4 corresponds to separating a brane at a distance from the origin equal to half
the compact interval πR. However, the string framework, presented up to this point, is not complete. As the internal
space is compact the RR charge needs to be globally cancelled, so that the case ni

F − ni
B > 0 implies existence of some

similar objects with RR charge opposite to those of the branes.2 These anti-branes or anti-orientifolds are localized
somewhere else in the internal space, that can be put far away enough to avoid the presence of tachyonic states at tree-
level. These new objects will attract the branes and destabilize the potential presented here, and whose only purpose
was to compare with the field theory result.

To compare our result with the field theory one we start by taking the limit r → ∞, using Eq. (29) for each of the
five dimensions, we see that only p = 0 contributes to the sum. The expression (27) becomes then:

V i
eff(a) = ni

F − ni
B

32π4

∞∫
0

dl l3/2fs(l)R
∑

�m
e−2π �m2

r2 l
∑
n

e−4iπnae−2πn2R2l (33)

In the infrared limit l → 0, the effects of the string oscillators drop as:

fs(l) =
[

1

2l

θ2

η3

(
il + 1

2

)]4

→ 1 for l → 0 (34)

and one recovers the result (20) with d = 1 and after two change of variables l → 2l/π and a → 2a have been
performed.

Finally, let us comment on the form of the mass term at the origin. In the limit r → ∞ and for arbitrary R, it can
be written as:

μ2(R) = −ε2(R)g2M2
s (35)

with

ε2(R) = ni
F − ni

B

27/2π2

∞∫
0

dl l3/2fs(l)R
3
∑
n

n2e−2πn2R2l (36)

2 Such complete models have been constructed, for example, in [8,9].
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For R of order one, the whole string spectrum contributes, but in the limit R → ∞ only the region l → 0 dominates
and the effective field theory result ε(R) ∼ 1/(RMs) is recovered. The mass is finite and calculable in the effective
field theory.

6. Discussions and conclusions

We have discussed simple models where the Higgs field is identified with the internal component of a gauge field.
We have derived one-loop effective potentials which remain finite, computable in the effective field theory limit,
insensitive to details of the UV completion. A string computation showed that the results hold as long as the scale of
compactification is well separated from the UV cut-off (the string scale). These results call for a few remarks:

– The fact that the effective potential for the fields ai are finite is due to their protection from quadratic divergences
by the higher dimensional gauge symmetry. This symmetry is spontaneously broken by the compactification,
remains non-linearly realized among the KK excitations as could be very easily seen by writing the corresponding
Lagrangian. It is recovered by taking the compactification radius to infinity. This is a smooth limit that constrains
the presence of any cut-off dependences.

– The property of the UV theory we made use of, is to allow us to sum over the whole infinite tower of KK modes
and to commute sum and integration. This was necessary in order to perform the Poisson re-summation in (20).
Our string theory example legitimates such a procedure.

– In the presence of a (4 + d)-dimensional field dependent mass M2
I (φ), not related to a gauge symmetry, the

effective potential contains a divergent contribution:

V (∞) = 1

2

∑
I

(−)FI

∫
d4+dp

(2π)4+d
log

[
p2 + M2

I (φ)
]

(37)

which signals sensitivity to the UV physics introduced to regularize it. This part identically cancels in the presence
of supersymmetry.

– Another issue is related with compactification on a space with boundaries. These compactifications are useful in
order to provide chiral fermions. They can be obtained from the above toroidal compactification by dividing by
a discrete symmetry group. The orbifolding procedure introduces singular points, fixed under the action of the
discrete symmetry, where new localized (twisted) matter can appear. These new states have no KK excitations
along the directions where they are localized. The higher dimensional symmetry does not allow their direct cou-
pling to the internal component of gauge field. Engineering such couplings should be done with parsimony as
they could introduce sensitivity to cut-off physics in radiative corrections.

After these remarks, the next step is obviously to implement this mechanism in realistic model buildings. We refer
the reader interested in the subject to more recent literature [10].
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