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Abstract

We report on the Achromatic Interfero Coronagraph, a focal imaging device which aims at rejecting the energy contribution
of a point-like source set on-axis, so as to make detectable its angularly-close environment (applicable to stellar environment:
circumstellar matter, faint companions, planetary systems, but also conceivably to Active Galactic Nucleii and multiple asteroïds).

With AIC, starlight rejection is based on destructive interference, which allows exploration of the star’s neighbourhood at an
angular resolution better than the diffraction limit of the hosting telescope. Thanks to the focus crossing property of light, rejection
is achromatic thus yielding a large spectral bandwidth of work. Descriptions and comments are given regarding the principle,
the device itself, the constraints and limitations, and the theoretical performance. Results are presented which demonstrate the
close-sensing capability and which show images of a companion obtained in laboratory and ‘on the sky’ as well. A short pictorial
description of the alternative AIC concepts, CIAXE and Open-Air CIAXE, currently under study, is given. To cite this article:
Y. Rabbia et al., C. R. Physique 8 (2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Le Coronographe Interférentiel Achromatique. On présente le Coronographe Interférentiel Achromatique (AIC dans le texte),
un système imageur en mode coronographique pour rejeter de l’image, la contribution d’une source ponctuelle sur l’axe de visée
afin de laisser apparaître son environnement angulairement proche (cela concerne les étoiles : matière circumstellaire, compagnons
faibles, systèmes exoplanétaires, mais potentiellement aussi les Galaxies à noyau actif et les astéroïdes multiples).

Avec le AIC, la réjection sur l’axe procède par interférences destructives, ce qui permet une exploration du voisinage stellaire
dans une proximité angulaire meilleure que celle fixée par la limite de diffraction du télescope. Le principe de la réjection utilise
le passage d’une onde par un foyer ce qui la rend achromatique et permet ainsi d’observer à large bande spectrale. On décrit le
principe et l’architecture du coronographe, les contraintes instrumentales, les limitations associées, et les performances théoriques
en réjection. Des résultats de tests, en laboratoire et en observation sur le ciel, sont donnés, en terme d’images montrant les capacités
de sondage proche et de détection d’un compagnon faible. Une brève présentation graphique de deux concepts CIAXE et Open-Air
CIAXE (actuellement en phase d’étude) dérivés du principe générique est donnée. Pour citer cet article : Y. Rabbia et al., C. R.
Physique 8 (2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
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1. Introduction

The Achromatic Interfero Coronagraph (AIC in the following) is a focal imaging device working in coronagraphic
mode and meant as a tool for the study of stellar environment (Gay and Rabbia [1], Gay et al. [2], Baudoz et al. [3,4]).
The purpose of stellar coronagraphy is to make detectable images of the faint emitting features located angularly very
close to an unresolved source whose brightness is tremendously larger (typically 104 to 106 times larger) than any
of the surrounding features. This is the case for stars, but also for other celestial sources, such as for example Active
Galactic Nucleii and asteroids with multiple components. In the following we use ‘star’ and ‘companion’ to denote
respectively the central source and any neighbouring feature. Any coronagraph aims at lowering as far as possible
the energy contribution of the parent star in the recorded image, which would otherwise prevent the detection of the
companion. The goal is thus to perform the ‘extinction’ of the star while keeping the off-axis components transmitted
as completely as possible to the detector in the image plane. This extinction capability, is usually expressed by the
‘Rejection rate’ defined by Rej = Fcollected/Fresidual, where Fresidual and Fcollected are the fluxes recorded with and
without coronagraphic effect, respectively.

Not only the rejection capability is required but also the ‘close-sensing’ capability: rejection must apply only within
a very small angular extension, called the Inner Working Angle (IWA in the following) around the pointing direction,
otherwise companions are also rejected.

In addition, the rejection ought to apply over as large as possible a spectral bandwidth, benefiting to the detection
capabilities in several respects: increase of Signal to Noise Ratio (SNR), adaptability to the science target by flexible
choice of dedicated spectral intervals, enhancement of detectivity by a differential data processing, the ‘adapted scale
image subtraction’ (Gay et al. [5], Rabbia et al. [6]) inspired by a method introduced by (Racine et al. [7]).

Early stellar coronagraphs have been a transposition to stars of the scheme initially introduced by B. Lyot (Lyot [8])
to study the solar corona. The technique relies on a tiny opaque mask set at the focus of an intermediate image plane, so
as to block photons from the on-axis source, while photons from the companion are transmitted to the ultimate image
plane. Because of diffraction effects the mask must cover several Airy radii (λ/D): working wavelength/(diameter of
the telescope) what makes the ‘close-sensing capability’ comparatively poor (Mouillet et al. [9], Beuzit et al. [10]).

Another approach, called interfero-coronagraphy, yields the extinction from a destructive interference process. The
collected incident wave is split into two components, which are recombined after insertion of a π phase shift between
them. Thus the recombination (coherent addition of fields at the detector) results in destructive interference and ideally
no photon from the on-axis source can reach the detector. Here, thanks to the coherence properties of light, an angular
sensing capability at a level better than the diffraction limit (λ/D), is achievable. The subsequent counterpart is a
limitation of extinction (finite star size and random tilt of incident wavefront).

As early as 1996, the concept of the AIC has been suggested (Gay and Rabbia [1], Gay et al. [2]) from which
various prototypes have been developed and used for tests in the laboratory (Baudoz [3], Rivet et al. [11]) and ‘on
the sky’ (Baudoz et al. [4,12]) on ground-based telescopes (although AIC has been initially devised for space-based
operation (Rabbia et al. [13])). Besides, even although coronagraphs are generally meant as working with a single
compact aperture, AIC can be used for nulling interferometry (Gay and Rabbia [1], Rabbia et al. [14]), for example,
in a two-aperture Bracewell configuration (Bracewell [15]). The immediate and essential requirement to obtain the
coronagraphic effect with AIC is that the (complex) transmission of the aperture must be centro-symmetric (insensitive
to a 180 degrees rotation).

Other concepts for interfero-coronagraphy, each using a specific type of beam separation/recombination have been
devised since. Let us cite among other early concepts: the Phase Mask Coronagraph – PMC – (Roddier and Roddier
[16]), the Sectorized Phase Mask Coronagraph – SPMC – (Rouan et al. [17]), and the Phase Knife Coronagraph –
PKC – (Abe et al. [18]).

The main specific feature and advantage of AIC is the achromaticity of the phase shift process, which was not
the case for the others cited, early interfero-coronagraph designs, and for the Lyot configuration as well. Another one
concerns the IWA, with the best close-sensing capability (Guyon et al. [19]). Another specific feature is that AIC
yields two twin-images of the companion (displayed symmetrically with respect to the pointing axis), each conveying
1/4 of the collected energy. This can be seen as a drawback because of a reduced transmission and because of the
symmetrisation of companions (point-like or extended). Actually this is an advantage for point-like companions whose
separations and orbits can be better determined from the twin-images.
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In this article we give but a kind of status report on the AIC (a comparison between AIC and other coronagraphs is
given in (Guyon et al. [19])) focusing, for the reader’s convenience, on the underlying algebraic formalism, although
recalling only basic lines because of space limitation. In Section 2 we describe the principle of the device and the
device itself and we give a short pictorial description of alternative AIC devices, currently under study (Gay et al. [20,
21]). In Section 3 we describe the constraints for both implementation and operation, and we outline the theoretically
expected capabilities of AIC. In Section 4 we give results from testing AIC both in the laboratory and ‘on the sky’.

2. Basic principle

2.1. Functional description and pictorial summary

Basically, the AIC is a Michelson–Fourier interferometer modified by inserting on one arm an achromatic π phase
shift and a pupil rotation by 180 degrees. This double operation is performed by a cat’s eye optical system, where the
π phase shift originates in the focus crossing property (Gouy [22], Born and Wolf [23], Boyd [24]). The collimated
beam from the telescope is split in two sub-beams, forming the two interferometric arms, one (the ‘fc’ arm), where
the focus-crossing occurs, the other (the ‘ff’ arm) which includes a train of flat mirrors to balance the optical paths
in the interferometer. In the design these optical paths are equal, but some spurious residual Optical Path Difference
(OPD) might still occur at the implementation and must be controlled. The beamsplitter at entry is used also for the
recombination of beams. As a pictorial summary, Fig. 1 illustrates these comments.

Mono-axial configurations, easier to insert in a telescope’s optical train (Gay et al. [20,21]) have been devised, and
are currently under study: the CIAXE and the open-air CIAXE. Fig. 2 systematically illustrates the paths of beams for
these two concepts, and shows how the generic functions (beamsplitting, focus-crossing, recombination, zero-OPD)
are performed.

2.2. Physical description

The typical AIC device (Fig. 3) consists of a kit of optical components assembled on a basement comprising two
galleries for beams to travel in air. All elements are in silica and assembling is made using molecular bonding under
interferometric control. Optical paths are equalized by construction; however, a fine-tuning of OPD (few nanometers)
remains possible. The K photometric window (λ = 2.2 µm, �λ = 0.4 µm being a convenient spectral interval (regard-
ing both science and constraints), the beamsplitter cube is optimized for λ = 2.2 µm but it can work with a bandwidth
larger than the K-band. The remaining components, being mirrors, are achromatic by nature.

Fig. 1. Schematic illustration of AIC functions (left) the configuration of beams in single aperture mode (center) the routing of beams with a
two-aperture interferometer (right).

Fig. 2. Schematic description with separated beam routes for CIAXE (left) and for Open-Air CIAXE (right), where generic functions of AIC appear.
In CIAXE beam entry and exit are small uncoated area, while they are holes in Open-Air CIAXE. Typical overall volume roughly is the one of a
cylinder 4 cm×3 cm length×diameter.
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Fig. 3. From left to right: the kit of elements, the life of an on-axis beam and the two exit ports, AIC itself in an optical interface for accommodation
on a telescope, the making of the output beams from both on-axis and off-axis sources.

Fig. 4. Schematic description of the notation used.

An incident collimated on-axis beam yields two perpendicular output beams. One, the constructive port, conveys all
collected energy while no photon goes into the other, the destructive port. An off-axis source yields two symmetrically
oriented sub-beams at each exit port. Each exiting sub-beam conveys 1/4 of the energy collected from the companion.

2.3. Formalism and algebraic description of the principle

The formalism is the one of Fourier optics (Goodman [25]), involving a pupil plane and an image plane. The cat’s
eye being designed for this purpose, the two arms share the same pupil plane, placed at the exit collimator, which
focuses the recombined beams to the detector set in the image plane.

Coordinates are vectorial even although we frequently denote them by a single letter. We use their reduced form
(dimensionless). Thus, a coordinate in the pupil plane is denoted ξ and means (vector in pupil plane)/(wavelength),
whereas α is an angular measurement (radians) and means (vector in image plane)/(focal length of exit collimator).
The magnification factor between entry and output pupil planes is set as unity; thus α is associated to an angle over the
sky, frequently denoted ρ (a vector). All vector coordinates are sometimes expressed using polar coordinates (ξ,φ)
and (α, θ ) or (ρ, θ ) where ξ , ρ and α are then the moduli, whilst φ and θ are the polar angles. Fig. 4 illustrates
the notations used. Complex amplitudes of fields are noted ψcollected and ψrecomb at the entry and at the exit pupil
planes, respectively. The transmission P(ξ) at the aperture is complex. Reflection and transmission coefficients for
complex amplitude at the beamsplitter are respectively noted r and t , with, as usual, R = |r|2 and T = |t |2. Ideally
R = T = 0.5.

2.3.1. Destructive interference process and off-axis images
The complex amplitude of the field entering the AIC is ψcollected(ξ) = A.P (ξ).ei.ϕ(ξ) since some phase distortions

ϕ(ξ) might exist in the collected wavefront. The field amplitude A is such that |A|2 = Ω , the brightness of the on-axis
source. At recombination, each sub-field have been both transmitted and reflected at the beamsplitter. On its way
each field might experience phase distortions (optical defects) and conveys the phase variation caused by propagation
along the arm. In addition an extra optical path (yielding ϕopd) can be inserted and eventually fine-tuned in the ‘ff’
arm. Moreover, in the ‘fc’ arm the π phase shift occurs and ψcollected(ξ) is symmetrized by the 180 degrees rotation of
pupil, thus yielding ψcollected(−ξ). At recombination we have ψrecomb(ξ) = ψff(ξ)+ψfc(ξ) whose explicit expression
depends on the exit port. At the destructive port we have:

ψff(ξ) = r.t.A.P (ξ).
[
ei.ϕ(ξ).ei.ϕff(ξ).ei.ϕff_path .ei.ϕopd

]
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and

ψfc(ξ) = r.t.A.P (−ξ).
[
ei.π .ei.ϕ(−ξ).ei.ϕfc(ξ).ei.ϕfc_path

]
At the constructive port, ψff(ξ) keeps the same expression, while the π phase shift factor ei.π is replaced by unity in
ψfc(ξ). In these description ϕff and ϕfc are gathering internal phase defects in the respective arms. All phase terms are
chromatic, but for easier reading, λ is omitted in the formulae.

In an ideal situation, all mentioned phases are zero and optical paths are equal, hence we have:

ψrecomb(ξ) = r.t.A.
[
P(ξ) − P(−ξ)

]
Thus, as soon as the complex transmission is centro-symmetric (P(ξ) = P(−ξ)) we find that ψrecomb(ξ) is uniformly
zero. Hence photons from the on-axis source do not reach the detector’s plane (they are sent back to the sky via the
constructive port). This complete cleaning of the image plane for stellar photons in the ideal case is specific to AIC.
Therefore, there is no geometrical link between the rejection lobe (IWA) and the energy distribution in the image
plane.

For a companion, off-axis by ρ, we have

ψcollected(ξ) = A.P (ξ).e−i.2.π.ξ.ρ

and at recombination we find

ψrecomb(ξ) = r.t.A.P (ξ)
[
e−i.2.π.ξ.ρ − e+i.2.π.ξ.ρ

]
which is not zero, so that some light escapes the destructive process (let us note that, without the pupil rotation,
we would find zero just like the case of the on-axis source). Moreover, the system yields two twin-images of the
companion, as described below, using Fourier optics. The intensity in image plane is

I (α,ρ) = ∣∣ψ̂recomb(α)
∣∣2

Since we have

ψ̂recomb(α) = r.t.P̂ (α) ∗ [
δ(α − ρ) − δ(α + ρ)

]
we end up (usual complex notations) with

I (α,ρ) = R.T .Ω.
[∣∣P̂ (α − ρ)

∣∣2 + ∣∣P̂ (α + ρ)
∣∣2 − 2.Re

(
P̂ (α − ρ).P̂ ∗(α + ρ)

)]
that shows the presence of twin images (centro-symmetrically located Airy patterns) and of a cross-term. This latter
term vanishes as ρ increases (enlarged separation, product of amplitudes null). Conversely, it makes the intensity
progressively cancel as ρ goes to zero (companion no longer off-axis, hence undergoing rejection). We report in Fig. 5
a pictorial summary of the destructive interference process both for star and companion, in terms of both wavefronts
and complex amplitudes.

When departing from the ideal situation, all phases just mentioned are no longer zero, but we still assume P(ξ) =
P(−ξ), the essential requirement for the coronagraph to work properly. The amplitude at recombination now is (with
self-explanatory notations):

ψrecomb(ξ) = r.t.A.P (ξ)
[
ei.ϕ1(ξ) − ei.ϕ2(ξ)

]
which is clearly not zero, so that a residual energy is found in the image plane and rejection has a finite value, whose
expression we now derive.

Fig. 5. Left: the radial profile of the spatial response of AIC (circular symmetry); center and right: pictorial description of the destructive interference
process, wavefront behaviour, and amplitude behaviour.
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2.3.2. Expression of the rejection from integrated energy in image plane
In the introduction, rejection has been defined by the ratio Rej = w0/w with w and w0 the intensities recorded

respectively with and without the coronagraphic effect (in other words at destructive and constructive ports). With this
definition we have in real situation

Rej = w0

w
=

∫ |P(ξ).ei.ϕ1(ξ) + P(−ξ).ei.ϕ2(ξ)|2 dξ∫ |P(ξ).ei.ϕ1(ξ) − P(−ξ).ei.ϕ2(ξ)|2 dξ

The phase factor that might occur in P(ξ) is reported in the incident wavefront phase distortions, so that P(ξ) is real
and, in addition, we assume

P(ξ) = Π

(
ξ

D

)
= ∣∣P(ξ)

∣∣2

the usual ‘Camembert-like’ transmission (1 inside, 0 outside the disk of diameter D). Moreover, it is reasonable to
assume that the various phase terms are small, so that using the approximation ei.x = 1 + i.x + · · · we can write:

Rej =
∫

pupil(1 + cos�ϕ(ξ)).dξ∫
pupil(1 − cos�ϕ(ξ)).dξ

≈ 4∫
pupil |�ϕ(ξ)|2 dξ

= 4

σ 2
�ϕ

where we have introduced the differential phase �ϕ(ξ) such that:

�ϕ(ξ) = [
ϕ(ξ) − ϕ(−ξ)

] + [
ϕff(ξ) − ϕfc(ξ)

] + [
ϕff_path − ϕfc_path + ϕopd

]
and where ϕopd allows one to adjust the mean-value to zero, hence the use of the variance σ 2

�ϕ . The respective

expressions of integrated energy at constructive and destructive ports are w0 = 4.R.T .Ω.S and w = [w0/4].σ 2
�ϕ ,

where S is the area of the collecting aperture.
From the generic expression Rej = 4/σ 2

�ϕ , the rejection can be evaluated in connection with the various phase
defects and conversely, technical specifications (tolerancing) can be defined according to a targeted rejection; this is
considered later in the text.

Let us note that, although this definition is a general and widespread convention, it rather traces the quality of the
set-up than the ability to detect a companion, since it does not consider the shape of the energy distribution in the
image plane. Therefore, for a companion imaged at a location free from residual energy, this integrated quantity is not
appropriate and likely to be pessimistic. This point is also discussed later in the text.

2.3.3. Spatial response of AIC: close-sensing
To evaluate the close-sensing capability (in other words, beyond which angular separation can the companion

be seen?) we consider a point-like source off-axis by ρ, and we integrate the energy in the image plane to obtain
the recordable energy with respect to ρ, what describes the spatial response w(ρ) of the AIC (w(ρ) has a circular
symmetry).

With our notations the brightness distribution (using the Dirac δ symbol) is Ω(α,ρ) = Ω.δ(α − ρ). Here we
momentarily drop all spurious phase effects, including OPD misbalance; hence �ϕ(ξ) = 0. We have then

ψcollected = A.P (ξ).e−i.2π.ξ.ρ

and using the Parseval–Plancherel theorem we can write:

w(ρ) =
∫

I (α,ρ).dα =
∫ ∣∣ψ̂recomb(α,ρ)

∣∣2
.dα =

∫ ∣∣ψrecomb(ξ, ρ)
∣∣2

.dξ

More explicitly, using polar coordinates (ξ ,φ) in pupil plane and (ρ, θ ) for the off-axis direction, we write:

w(ρ) = 2.R.T .Ω.

2.π∫
0

D/2∫
0

(
1 − e−i.2.π.(2.ξ.ρ). cos(φ−θ)

)
.ξ.dξ.dφ

Thus, from Hankel’s transform properties (Bracewell [26]) we end up with the spatial transmission or rejection lobe
(circular symmetry, sky coordinate ρ):

w(ρ) = 2.R.T .Ω.

(
π.D2 )

.

[
1 − 2.J1(2.π.D.ρ)

]

4 2.π.D.ρ
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where the Airy distribution (for amplitudes) appears, associated to a telescope of diameter 2D. Fig. 5 illustrates the
radial profile of the function w(ρ), showing the close-sensing capability of AIC and how it beats the diffraction-limit.
Namely, the maximal transmission occurs at less than the telescope’s first Airy (λ/D) ring. For an off-axis source at
ρ = 0.3 Airy, the transmission remains 0.5 of that far from axis (Baudoz [3]).

3. Operational and technical constraints, associated limitations and theoretical capabilities

For the coronagraphic effect to work, two immediate constraints apply: (i) the complex transmission at exit pupil
plane must be insensitive to a 180 degrees rotation, and (ii) the optical path difference (opd) must accurately be zero.
Other constraints concern the technical specifications and the conditions of observation.

Regarding the symmetry of the pupil, problems might arise from the amplitude of the transmission P(ξ), because
of the central obscuration and the spider bearing it (central-symmetry would possibly be broken). Then, by inserting
a suitably designed mask in an auxiliary pupil plane, centro-symmetry is recovered; thus this constraint is not a heavy
one. We report in Fig. 6 an illustration of both the trouble and the remedies. Problems regarding the phase of the
complex transmission are by far more serious and are considered later in the text.

Residual Optical Path Difference (OPD) and optical defects. OPD between interfering waves works as a weight
applied to the contribution of the on-axis source. As the OPD goes away from zero, the on-axis source gradually
appears in the image, and this rapidly degrades the rejection. This is schematically illustrated in Fig. 6. Either for a
residual OPD or for optical defects we use the formula Rej = 4/σ 2

�ϕ but in place of σ 2
�ϕ , which makes sense only for

optical defects, we directly take [4.π2/λ2].δ2 where δ stands for either the residual OPD or for the standard-deviation
of surface defects over the pupil. Then, with a target rejection G we define the tolerance on δ via Rej � G which yields
the condition δ � λ/(π.

√
G). For example, with G = 104 the constraint on δ is roughly λ/300 and for G = 105 it is

λ/1000, which are rather stringent constraints so that interferometric control is mandatory when assembling the AIC.
The same range of specifications applies, for example, to the beamsplitting cube, where internal reflected waves must
be kept destructively interfering; this is a matter of well-controlled optical paths within the cube. Moreover, phase
defects occurring inside the AIC cannot be corrected for, and degrade the rejection.

3.1. Limitations from conditions of observation

Basically, stellar leakage and wavefront phase distortions are the immediate causes limiting the rejection. Stellar
leakage occurs with any nulling technique, when the star has a finite angular diameter and is incompletely eliminated
by the spatial response because its profile around origin is not flat. Wavefront distortions originate in deterministic
optical defects (arising in the optical train) and random distortions induced by atmospheric turbulence, this latter
causing the major limitation in ground-based observations (with tip/tilt fluctuations being the heaviest contributor).
Another constraint occurs because of atmospheric refraction (beyond the scope of this article). With space-based
observations, beside fine guidance residual fluctuations (jitter) only faint internal phase defects are occurring and are
not that big a concern (Baudoz [3], Rabbia et al. [13]).

Fig. 6. Left and center: pictorial illustration of the role of OPD; right: recovering amplitude centro-symmetry in the collecting aperture, by using
appropriate masks in intermediate pupil plane.
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Stellar leakage, denoted w(Θ) for a star whose brightness distribution is Ω(ρ) = Ω.Π(
ρ
Θ

) with angular diameter
Θ , is evaluated by the integral of the spatial response w(ρ) taken over the brightness distribution. Again from Hankel’s
transform properties we have:

w(Θ) =
2.π∫
0

Θ/2∫
0

w(ρ).ρ.dρ.dθ = 2.R.T .Ω.

[
1 − J0(π.D.Θ)

(π.D.Θ)2/4

]

As an example for Θ = 0.05 Airy radius, stellar leakage (residual/collected) is 0.001 (Baudoz et al. [4]).
Random phase distortions from atmospheric turbulence. The spurious phase distribution is denoted:

�ϕ(ρ, θ) = ϕ(ρ, θ) − ϕ(ρ, θ + π)

usually expressed as an infinite weighted sum of Zernike orthogonal polynomials

ϕ(ρ, θ) =
∞∑

j=1

wj .Zj (ρ, θ)

where the wj are random and trace the effect of turbulence. The resulting variance σ 2
�ϕ must be reduced by using

an Adaptive Optics (AO) system. Its role is to induce appropriate phase distortions so as to absorb some of the
incident ones. Note that centro-symmetric phase distortions automatically cancel, whilst other are amplified; however,
a significant gain remains by using AO (Baudoz et al. [4]). For convenience, we refer to the Zernike formalism (Noll
[27]) to theoretically describe the action of AO, which leads to a corrected phase distribution

ϕcorr(ρ, θ) = ϕ(ρ, θ) −
J∑

j=1

aj .Zj (ρ, θ)

where J is the highest Zernike order included in the correction. The resulting variance is significantly less than the
previous one, and hence there is a better rejection. The result in the image is a centro-symmetric speckle pattern, whose
time-averaged distribution looks like a halo (volcano+caldera-shaped). Algebraic derivation (Baudoz et al. [4]) shows
that the higher the J , the larger the caldera (central dark hole) and the lower the edges of the volcano. Actually, this
theoretical approach pertains to ultimate performance. Practically, since AO may work in various regimes (zonal,
modal, Fourier basis set) the pure Zernike formalism might depart from real situations and expected corrections are
not completely efficient (what we call ‘incomplete correction’) and estimations must be reviewed, using an example
of actual AO performance (Conan [28]). Both estimates from numerical simulation are shown in Fig. 9.

Effect of residual tip/tilt phase defects. Incomplete tip/tilt correction (pointing jitter) causes the heaviest degradation
and deserves a specific derivation. Taking into account that tip/tilt residuals are small, and using the approximation
2.J1(z)/z ∼= 1 − z2/8 the resulting average rejection is obtained from the averaged spatial response yielding:

〈Rej〉 = w0

〈w(ρ)〉
∼= 16

(2.π.D/λ)2.〈ρ2〉
whence is extracted the constraint:

σρ � airy√〈Rej〉
where 〈Rej〉 is the target rejection and airy = 1.22 λ

D
. For example, a 104 target leads to σρ � airy

100 . With HST (D =
2.4 m) at 2.2 µm we find σρ � 10−8 rad or 0.002 arcsec, which is in the range of the HST fine guidance capability.

3.2. Theoretically expectable performance

Enhancement of detection capability by the ‘scaled-subtraction’ process. Thanks to the large spectral bandwidth
allowed by AIC, two adjacent channels splitting the K window might be accommodated on the same detector. The
respective residual speckles have homothetic patterns (scaling factor: λ). Therefore, in principle (thanks to the central
‘dark-hole’) it is possible to give them the same spatial distribution by properly scaling both the spatial extension and
the intensity distribution. Then, images of a companion become shifted in one channel with respect to the other and
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have unequal heights. Subtracting the re-scaled patterns tends to eliminate the speckles while a trace of the companion
remains. This process (schematically summarized in Fig. 7), is described with numerical simulations in Gay et al. [5]
and Verinaud and Carbillet [29]. In the case of an on-axis residual spurious contribution, the efficiency is reduced, but
a significant gain in detection capability remains.

Signal to noise ratio for the detection of a companion. As already mentioned, using the integrated rejection Rej =
4/σ 2

�ϕ is not appropriate to evaluate the detection capability for a companion, the point being not to count unwanted
photons in the whole image plane, but rather to distinguish the companion against the noisy and non-uniform residual
energy distribution. Thus the convenient approach for theoretical assessments is to express a pixel-dependent Signal to
Noise Ratio (SNR), taking into account the spatial response of the AIC, the intensity fluctuations (speckled halo) and
the area covered by the companion’s image (distance to axis and image extension). From a detailed analysis (Baudoz
et al. [4]) the expression of this SNR (M recorded exposures, companion off-axis by angular vector ρ) is:

SNR(ρ) = (Nc/4).
√

2.
√

M.
∫

companion w(α).C(α − ρ).dα√∫
companion[varresidual(α) + varbg + vardetect].dα

where the factor (1/4) traces the transmission for a single image,
√

2 accounts for the two twin-images, w(ρ) is
the spatial response of AIC, and C(α − ρ) is the normalized distribution weighting of the companion’s contribution
(Airy-like shaped). Integration is taken over the pixels covered by the companion’s image.

The number of collected photons from a m-magnitude star is

N0 = [
Fref(λ)/h.ν

]
.10−0.4 m.[η.4.R.T .S.topt.�λ.τ ]

with usual notations, while for the companion (magnitude difference �m) we have

Nc = N0.10−0.4 �m

In the noise factor, variances are related to a given pixel: vardet is the readout noise variance (ron2) of the detector,
varbg is for the background radiation (using Planck’s formulae) and varresidual comes from the fluctuations of the
residual energy distribution. This latter includes gJ .N0, the residual energy when AO-corrections are carried up to the
Zernike radial order J (each comprising several azimuthal orders), and is evaluated by the doubly stochastic process
involving the Poisson photon noise at a given illumination level and the fluctuations of this level. Performance of the
AIC (expressed as detectable �m), directly depends on AO capabilities (Fig. 8).

Fig. 7. Pictorial summary of the scaled-subtraction process.

Fig. 8. Left: residual energy profiles with AO corrections up to 9 Zernike radial orders (meaning J = 36); center: notations for the SNR expression
(only one-sided cuts featured); right: phenomenology of noise in the residual energy.
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Illustrations for ‘complete’ and ‘incomplete’ corrections are given in Fig. 9, as well as the expected detection
capabilities in space-based observation.

4. Results

The results obtained so far both in the laboratory and ‘on the sky’ are but illustrations of potential capabilities. To
spare space we rely on a pictorial presentation, see Fig. 10 and Baudoz et al. [4,12] for details.

Close-sensing capability is clearly validated. The effective capability for the detection shows good agreement
between expected and observed capabilities, taking into account the turbulence conditions and the AO performance.

Fig. 9. Left: theoretically detectable magnitude difference of a companion versus its off-axis angle, showing both complete (ideal) and incomplete
(real) AO corrections, for radial orders 3 and 9, calculated for conditions expected at CFHT, Hawaii: r0 = 30 cm, τ = 0.1, SNR = 5 for target
K = 5 (see Baudoz et al. [4,12]). Center: numerical simulation (based on a phase error map of HST) of residual energy profile for observation
in K window (2.2 µm; �λ = 0.4 µm), and expressed in magnitude differences. Right: behaviour of SNR versus �K the magnitude difference
between star and companion; curves pertain to star K magnitudes 8 and 14. Dashed lines: optical quality is assumed the same as on HST, pointing
instabilities eliminated. Solid lines: pointing residuals of 5 marcsec rms causes less than 3 magnitudes degradation. K window, quantum efficiency
η = 0.5, R = T = 0.5, S = 50 m2, optical transmission topt = 0.1, observing time 1000, ron = 20e/pix.

Fig. 10. Left, center left, center right: celestial sources, λ = 2.2 µm, �λ = 0.4 µm. Left: disappearance when going on-axis, of bright component in
binary 72 Peg, K = 1.76, �K = 0.36, separation ρ = 0.53 arcsec, Airy ring = 0.35 arcsec, telescope 1.52 m OHP + Adaptive Optics, automatic
intensity scale in image. Center left: example of close-sensing, companion of spectro binary HIP 97339, separation ρ = 0.13 arcsec, �K unknown
(but modest), telescope 3.6 m CFH Hawaii + PUEO Adaptive Optics, Airy ring = 0.15 arcsec, exposure/frame = 15, 20 frames. K = 3.5 ± 0.5,
Airy ring = 0.35 arcsec, telescope 1.52 m OHP + Adaptive Optics. Poor seeing: average (r0 ≈ 5 cm), τ0 unknown. Center right: binary HD
213310 (5 Lac), separation ρ = 0.11 arcsec (Airy/3), estimated �K = 3.5 ± 0.5, Airy ring = 0.35 arcsec, telescope 1.52 m OHP + Adaptive
Optics. Poor seeing: average (r0 ≈ 5 cm). Right: laboratory artificial binary, separation roughly 2 Airy, conservative �K ∼= 6 (flux ratio larger than
300) with 512 frames, λ = 2.2 µm, bandwidth [1.9 µm; 2.6 µm] from laboratory class commercially available IR camera (Jade SWIR). Twin-images
of companion appearing as little patches against noisy background.
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5. Conclusions

In this article we have presented the main and specific features of our Achromatic Interfero Coronagraph (principle,
theoretical capabilities and some results from test runs in the laboratory and behind a telescope). The main advantages
of the AIC are the large spectral bandwidth over which the coronagraphic rejection is achievable and the very small
Inner Working Angle (providing the capability to explore the very close angular neighbourhood of a source at a level
better than that set by the diffraction-limit). The main drawback is the difficulty to achieve and to maintain equality of
the optical paths at the required accuracy. Recently, an improved version of the device (regarding OPD fine-tuning) has
been built and is presently under test. The next step is to accommodate this new AIC on a large telescope equipped with
Adaptive Optics, so as to undertake scientific programs. New configurations, easier to accommodate in a telescope’s
optical train, are currently under study.
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