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Abstract

A unified viewpoint is presented in the margin to the Conference “Work, dissipation and fluctuations in nonequilibrium physics”
Bruxelles 22–25 March, 2006, where the topics were discussed by various authors and it became clear the need that the very
different viewpoints be consistently presented by their proponents. To cite this article: G. Gallavotti, C. R. Physique 8 (2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Relation de fluctuations, théorème de fluctuations, thermostats et création d’entropie en physique statistique de non-
équilibre. Un point de vue unifié est présenté à la suite de la conférence « Travail, dissipation et fluctuations en physique du
non-équilibre », tenue à Bruxelles du 22 au 25 mars 2006, où les sujets furent discutés par plusieurs auteurs avec la nécessité de
reconcilier les différents points de vue. Pour citer cet article : G. Gallavotti, C. R. Physique 8 (2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
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1. Chaotic dynamics

The fluctuation relation is a general symmetry property of mechanical systems which should hold under the only
assumption that the system motions are chaotic: it reflects the time reversal symmetry.

Time reversal symmetry means a smooth isometry I of phase space which anticommutes with the time evolution
map St : i.e. ISt = S−t I . Therefore the familiar operation of time reversal T or, even better, T CP would be always
valid in fundamental models, [1], and therefore the time reversal symmetry can be an issue only if one deals with
phenomenological models in which dissipation is empirically introduced: as in the case of Navier–Stokes equations
for fluids, for instance.

The discovery, published in the paper [2], of the fluctuation relation, has led to renewed efforts towards the for-
mulation of a theory of nonequilibrium stationary states. In the paper a link is attempted with the earlier proposal
[3] for the description of the probability distribution for chaotic stationary states in fluids. Although the paper was
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a real breakthrough, the original argument needed to be made precise. A direct connection with [3] was established
and called “fluctuation theorem” in [4]: where it was shown how the paradigm of chaotic evolution constituted by the
hyperbolic (also called ‘Anosov’) systems allowed for a precise formulation of sufficient conditions under which the
fluctuation relation held.

The latter proof has been considered interesting because in a sense the hyperbolic evolutions perform for chaotic
systems the role played by the harmonic oscillators for ordered systems. From these works emerged the interest for
Physics of two new fundamental concepts, the chaotic hypothesis and a general mechanical notion for the entropy
creation.

The first is an extension of the proposals, [3], that identified the probability distributions forming the ensembles
suitable to give the statistical properties of states of turbulent fluids with the special class of distributions, well known
and studied in the theory of dynamical systems, called SRB distributions.

The extension can be formulated, [3,4], in the form a hypothesis:

Chaotic hypothesis. Motion on the attracting set of a chaotic system can be regarded as ‘hyperbolic’.

This hypothesis is very ambitious as it should be seen as an extension of the ergodic hypothesis, which it implies if
applied to a system which is isolated and subject only to conservative forces.

It allows us to state existence of time averages of mechanical observables x → F(x), identified with func-
tions of the phase space point x representing the microscopic state of the system, i.e. the existence of the limits
limT →∞ 1

T

∑T −1
j=0 F(Sjx) for all initial data x chosen in the vicinity of the attracting set, setting aside a set of 0 phase

space volume. It also implies that, the limit is independent of x (apart from the zero volume possible exceptions) and
therefore define a statistics, i.e. a probability distribution μ such that

lim
T →∞

1

T

T −1∑
j=0

F
(
Sjx

) =
∫

μ(dy)F (y) (1)

In other words for chaotic systems, motions have a well defined statistics, i.e. a probability distribution that allows us
to define (in principle) the time averages of the observables.

The nontriviality of the above statements becomes perhaps more clear in the case of systems subject to steady dissi-
pation. Their stationary states cannot be described by statistics which are not singular: i.e. which attribute probability
1 to sets of 0 phase space volume.

This is a seemingly odd situation: we are interested in data randomly chosen with a probability distribution with
density on phase space and, yet, they evolve with a statistics which is singular. Such a situation, however, appears to
be quite clearly correct as soon as simulations are attempted in virtually any system which exhibits chaos (i.e. positive
Lyapunov exponents) and is subject to some kind of dissipation: hence it is simply accounted for by the chaotic
hypothesis, see for instance [5].

However, technically, the hypothesis is far more rich of implications. In fact the distribution μ is, in hyperbolic
systems, identified with the SRB distribution, which is not well known but it should be viewed as a generalization of
the microcanonical distribution for isolated systems. In a sense that can be made very precise it is the distribution that
gives equal probability to cells into which the phase space can be imagined discretized, [6–8]. It allows one to give a
mathematical formula for the averages in Eq. (1) and even to give a precise definition of coarse grained cells in phase
space, [6,9,10].

Without entering here in more technical details this means that we have, from the theory of the SRB distributions
for hyperbolic systems, expressions for the averages in terms of mechanical quantities. The latter can therefore be used
to derive general relations between observables averages even though, as it is virtually always the case, we cannot
hope to compute their actual values.

Just as in equilibrium where we can write the averages as integrals with respect to the Liouville distribution on
the energy surface (or the canonical one) but we can hardly compute them: nevertheless we can establish, by using
the formal expressions, general relations which turn out to be extremely interesting precisely because of their gen-
erality. A celebrated example is Boltzmann’s heat theorem, i.e. the second law of equilibrium thermodynamics, as a
consequence of the assumption that the statistics of motion (of an isolated system subject to conservative forces) is
the microcanonical distribution.
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The chaotic hypothesis has a rather general consequence which should be seen as a generalization, at any distance
from equilibrium, of Onsager–Machlup fluctuations theory near equilibrium, [11,12].

Consider a mechanical system of particles described by a generic equation of motion for the representative point x

in phase space

ẋ = f (x) (2)

where x denotes the position and velocity components. The equation will be a model describing a finite system on
which external non conservative forces act.

Therefore the equation will be non Hamiltonian and phase space volume will not be conserved. As a consequence
the divergence

σ(x) = −
∑

i

∂xi
fi(x) (3)

does not vanish. However, in the presence of time reversal symmetry, it will be odd under time reversal σ(x) =
−σ(Ix). The system will be called dissipative if even the time average

σ+ = lim
T →∞

1

T

T∫

0

σ(Stx)dt =
∫

μ(dy)σ (y)

of σ is positive.
In a dissipative system, σ+ > 0, in the stationary state described by the statistics μ, consider the probability that

fj (Stx) ∼ ϕ(t) for t ∈ [− 1
2τ, 1

2τ ] where t → ϕ(t) is a prescribed pattern. The symbol ∼ means that |f (Stx)−ϕ(t)| <
ε for some very small ε (see [13–15] for a quantitative form of the notion of ‘very small’). Define the dimensionless
phase space contraction σ(x) as the divergence of the equations of motion changed in sign. Suppose that the average
(with respect to the statistics μ, i.e. the integral of σ(x) with respect to μ, see Eq. (1)) phase space contraction σ+ is

positive σ+ > 0 and define p = 1
τ

∫ τ
2

− τ
2

σ(St x)
σ+ dt . Suppose that f1(x), . . . , fn(x) are n observables with defined parity

under time reversal, suppose odd for definiteness: fi(Ix) = −fi(x). Then

Fluctuation relation. Suppose that the n observables form a complete set in the sense that the average phase space
contraction p is determined by the patterns followed by the observables f1, . . . , fn (for instance σ is one among the
fj or p is the sum of the averages of some of the fj ). Then if σ+ > 0 and the time evolution is reversible there exists
p∗ � 1 and

Pτ (for all j and t ∈ [− 1
2τ, 1

2τ ]: fj (Stx) ∼ ϕj (t))

Pτ (for all j and t ∈ [− 1
2τ, 1

2τ ]: fj (Stx) ∼ −ϕj (−t))
= ep σ+ τ+O(1), |p| < p∗ (4)

where Pτ (E) denotes the probability of the event E with respect to the statistics SRB of the motions.

1.1. Remarks

(1) In particular this holds for the single observable σ(x)/σ+, [4,16], and it is a theorem for hyperbolic systems. This
is the form in which the fluctuation relation was discovered experimentally, [2], and the above is an extension of
it under the same assumptions, [13,14].

(2) The extension was found first in the special case f1 = σ(x)/σ+, f2 = ∂Eσ(x) where it has been shown to imply
the Onsager reciprocity and Green–Kubo formulae, [17], E being a parameter controlling f (x) in Eq. (2).

(3) Another particular case is obtained by considering the probability that the averages f 1, . . . , f n, over the time
interval (− τ

2 , τ
2 ) of the considered observables, have a given value a1, . . . , an with p determined by a1, . . . , an.

Then for |p| < p∗

P(f 1 ∼ a1, . . . , f n ∼ an)

P (f 1 ∼ −a1, . . . , f n ∼ −an)
= epσ+τ+O(1) (5)

which is a very surprising relation because of the arbitrariness of the observables fj which do not appear in the
r.h.s. except through their function p. The above relation appeared recently in the context of Kraichnan’s theory
of passive scalars in a case in which p = ∑

ai , [18].
i
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(4) A mathematically precise form of the theorem, [4,19], is to say that for |p| < p∗ the probability that p ∈ Δ has the
form exp(τ maxp∈Δ ζ(p) + O(1)) and the function ζ(p), which for hyperbolic systems is known to be analytic
and convex in a natural interval of definition (−p∗,p∗) (and −∞ outside it) satisfies, for |p| < p∗ the symmetry
property

ζ(−p) = ζ(p) − pσ+ (6)

(5) A further consequence is that the stationary average of exp
∫ τ

0 σ(Stx)dt satisfies

〈
e
∫ τ

0 σ(St x)dt
〉 ∼ 1 (7)

where ∼1 means that the quantity is bounded as τ → ∞ (Bonetto’s formula, [14, Eq. (9.10.4)]): see below for a
hint to possible applications and for its similarity to Jarzynski’s formula, [20,21].

(6) The chaotic hypothesis and the fluctuation relation have been tested quite extensively, starting with [5], and it has
almost become a test of the correctness of the computer program simulations of chaotic systems rather than a
formula to be tested. The situation is quite different with experiments where a lot of difficulties arise, on a case
by case basis, in setting up experiments and interpreting them. Nevertheless there have been several attempts and
it can be hoped that more will come, [22–27].

(7) The formulae above hold for time evolutions described by map iterations as well as for those described by dif-
ferential equations. It is worth stressing that most works, in particular [4], deal with discrete time evolutions. The
case of continuous time is considered less frequently, and for the first time it has been formulated as a theorem
in [16]. The case of maps is possibly closer to applications as observations are usually done when some timing
events occur and evolution appears as a map between timing events. However, a close examination of the rela-
tions between the continuous and discrete cases reveals a number of delicate properties (particularly in the case
in which singular forces may be acting, like Lennard-Jones type of repulsive cores) which if neglected may lead
to errors, as exemplified in [28].

2. Entropy creation

The result in the previous section hints at another major point of the research in the last 20 years of the 1990s: in the
1980s a concrete model of a thermostat became necessary to perform simulations of molecular dynamics in systems
out of equilibrium.

The ‘Nosé–Hoover’, the ‘isokinetic’ or the ‘isoenergetic’ thermostats are prominent examples that were put forward
and employed to study a large number of problems: see [29] for a thorough discussion of the related problems. One
of the results was the discovery of the fluctuation relation.

Another important byproduct was the identification of the (not yet defined at the time) entropy creation rate with the
phase space contraction. Although the original authors quite clearly attributed to the words they employed a meaning
close to the physical one suggested by the given names the general attitude was, it seems, to regard the thermostat
models as unphysical and, consequently, to attribute little value to the concept of entropy creation as related in some
way to the thermodynamic entropy.

The above (extension) of the fluctuation theorem and relation, Eq. (4), suggests that one should give a fundamental
physical sense to the phase space contraction, at least in finite, time reversible systems. Since as said above ultimately
time reversal (or the equivalent, for our purposes, TCP symmetry) is a law of nature all models should either display
the symmetry or be equivalent to symmetric models.

In my view this identification between phase space contraction and entropy creation rate is an important new
development, [29–31], that is still not as fully appreciated as it should be.

It has to be stressed that, although since more than a century we are familiar with the entropy of equilibria and its
mechanical interpretation, no mechanical definition of entropy creation rate in a process out of equilibrium has been
proposed (or, better, accepted). The above extended fluctuation relation is clearly saying that the independence of the
ratio in Eq. (5) means that the conditional probability that a pattern occurs in presence of an average (dimensionless)
phase space contraction p is the same as that of the reverse pattern in presence of the opposite average phase space
contraction (i.e. −p).
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Fig. 1. Schematic illustration of the geometry. The equations of motion are written here assuming unit mass for the particles.

In other words if the entropy creation rate is reversed during a time interval then evolution of the other observables
‘proceeds backwards’ with the same likelihood it had to ‘proceed forward’ when the average entropy production
was p. All that has to be done to reverse the time arrow is to reverse the entropy creation rate.

All this leads to say that the identification of entropy creation rate and phase space contraction has to be taken
seriously. Its identity with what one would naturally call entropy creation in the many particular cases studied in the
works summarized in [29], and continuing since, should not be considered a curious coincidence but as a new insight
into the foundations of nonequilibrium statistical mechanics.

Note that we are saying that in nonequilibrium entropy creation is defined and identified with mechanical quan-
tities: but entropy itself is not defined (yet?), not even in stationary states. It might even not be needed and not be
unambiguous, [14,9].

To illustrate further the new identification of entropy creation rate with the mechanical quantity expressed by the
divergence of the equations of motion, Eq. (3), and its physical interest I discuss a class of examples which, it seems
to me, fully justify the mentioned identification, [32,33].

Consider a mechanical system C0 in contact with the mechanical systems Ci , i = 1,2, . . . . Microscopically the
state is described by the positions X0,X1, . . . ,Xn of the N1,N1, . . . ,Nn constituent particles. The systems interact
via short range pair forces with potential energies Ua(Xi ), Ua(Xi,X0). There is no direct interaction between the
particles in Ca, a > 0. Fi are, possibly present, nonconservative external forces stirring the system.

The systems in Ca, a > 0 should be thought as ‘thermostats’ acting on the system C0 across the separating walls
via their mutual pair interactions (Fig. 1).

The thermostats temperature Ta is defined to be proportional to the kinetic energy via the Boltzmann’s constant
kB . Setting

Ka ≡ 1

2

∑
a

Ẋ2
a

def= 3

2
kBTa Na

it is supposed constant and kept such by the action of suitable (phenomenological) forces on the ith particle in Ca of
the form −αaẊai . The αa can be taken

αa = Wa − U̇a

3NakBTa

(8)

where the work performed by the system on the thermostats particles −∑
Ẋa · ∂Xa

Ua(X0,Xa) can be called Wa =
Q̇a = heat given to the thermostat Ca by the system in C0. The external forces Fi are assumed to be purely positional.

Given the above dynamical model (for heat transport) remark that it is reversible and time reversal is just the usual
velocity reversal (because the thermostat forces are even under global velocities change). Furthermore the divergence
of the total phase space volume can be immediately computed and turns out to be σ(X) = σ0(X) + U̇ (X) with

σ0(X) =
n∑

a=1

Q̇a

kBTa

3Na − 1

3Na

=
n∑

a=1

Q̇a

kBTa

(9)

where

U(X) =
n∑ U̇a

kBTa

3Na − 1

3Na

a=1
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and O(N−1
a ) has been neglected in the last equality in Eq. (9).

When computing time averages the ‘extra term’ U̇ will not contribute because being a time derivative its aver-
age will be 1

T
(U(ST X) − U(X)) and therefore will give a vanishing contribution for large T and the average of∑n

a=1
Q̇a

kBTa
= σ0 will be the average of σ . If the interaction U is bounded also the fluctuations of the averages of σ

and σ0 will coincide. In the cases in which the interactions are not bounded (e.g. Lennard-Jones repulsive cores) care
has to be exercised in the fluctuations analysis: the picture does not change except in a rather well understood, trivial,
way and this will not be discussed here, [34,28].

Note that σ0 is a ‘boundary term’, in the sense that it depends on the forces through the boundaries and the forces
are supposed short range. Thus the question arises whether such kind of thermostats and short range interactions can
lead to stationary states: this is not obvious but the ‘efficiency’ of such thermostats has been investigated in molecular
dynamics simulations, [35,36], leading (not surprisingly) to the result that the thermostat mechanism in Fig. 1 can
lead to stationary states (even in presence of additional positional forces stirring particles in C0).

Since the thermostats are regarded in equilibrium the above expression shows that σ(X) can be ‘legitimately’ called
the entropy increase of the reservoirs: so the mechanical notion of phase space contraction acquires a clear physical
meaning: and this is a no small achievement of a long series of works based on simulations of molecular dynamics,
[29,31].

3. Comments

3.1. Other studies of fluctuations have been proposed: they are rather different and apply to systems which are
not stationary. The object of study are initial data sampled within an equilibrium distribution of a Hamiltonian system
and subsequently evolved with the equations of motion of a dissipative time reversible system.

Then the phase space contraction averaged over a time τ , a
def= 1

τ

∫ τ

0 σ(Stx)dt , will be such that the probability
P0(a) with respect to the initial equilibrium distribution for a to have a given value is such that

P0(a)

P0(−a)
= eaτ (10)

This is an exact identity, immediately following from the definitions. It involves no error terms, unlike the ‘similar’
equation (6) that can be written also as P(p)

P (−p)
= epσ+τ+O(1), with P the probability with respect to the stationary

distribution, which is singular with respect to the equilibrium distributions if σ+ > 0.
It has been claimed that, being valid for all times, it implies the fluctuation relation, Eq. (6), for stationary states

(at least when the stationary state exists). This would imply a simple, direct and assumptionless derivation of the
fluctuation theorem in Eq. (7) and should hold in spite of the fact that in [4] an assumption about the chaotic nature of
the motions is needed to derive it, together with a rather detailed understanding of the nature of chaotic systems.

However a derivation of the fluctuation theorem, Eq. (6), from Eq. (10) involves considering Eq. (10) after the limit
τ → ∞ has been performed: a rather unclear procedure (note that the r.h.s. depends on τ ). Leaving aside the logical
consistency problems it should be kept in mind that in the stationary state, at least in the interesting cases in which
σ+ > 0 and there is dissipation, the statistics of motion will be controlled by a distribution that has nothing to do with
the initial equilibrium distribution in which the averages in Eq. (10) are considered.

Therefore the claim is incorrect and it is no surprise that some kind of chaos has to be present to obtain the
fluctuation relation (6). In fact one can give examples of simple systems in which Eq. (10) holds for all times, the
system evolves towards a stationary state and nevertheless Eq. (6) does not hold, [37]. The confusion has crept into
the literature and even affected experiments: this can only be explained by a certain lack of attention to the literature
due to the urge to find an easy way of testing the large fluctuations in real systems (fluids, granular materials, or even
biological systems).

Another aspect of Eq. (10) is that it involves a rather than p = a/σ+. This is clearly a matter of convention:
however, care has to be exercised because the fluctuation relation (6) is valid for |p| < p∗ with p∗ � 1 being a
physically nontrivial quantity, [19]. In terms of a this means that it is valid for |a| < σ+. Overlooking this fact has led
one to think that it should hold for all a’s and has led to errors in the literature. The errors are particularly noticeable
in cases in which σ+ is close to zero, when the interpretation of simulations becomes quite difficult because long time
scales become relevant. It has to be noted that σ−1+ is a time scale diverging as σ+ → 0, see the discussion in [28].
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3.2. A different, interesting, fluctuation result is Jarzynski’s formula which provides the means of computing the
free energy difference between two equilibrium states at the same temperature.

Imagine extracting samples x = (p, q) in phase space with a canonical probability distribution

μ0(dp dq) = Z−1
0 e−βH0(p,q) dp dq

with Z0 being the canonical partition function, and let S0,t (p, q) be the solution of the Hamiltonian time dependent
equations

ṗ = −∂qH(p,q, t), q̇ = ∂pH(p,q, t)

for 0 � t � 1. Let H1(p, q)
def= H(p,q,1), then, [20,21]:

Consider the ‘time 1 map’ (p′, q ′) def= S0,1(p, q) and call W(p′, q ′) def= H1(p
′, q ′) − H0(p, q) the corresponding

variation of the energy function. Then the distribution Z−1
1 e−βH1(p

′,q ′) dp′ dq ′ is exactly equal to the distribution
Z0
Z1

e−βW(p′,q ′)μ0(dp dq). Hence

〈
e−βW

〉
μ0

= Z1

Z0
= e−βΔF(β) (11)

where the average is with respect to the Gibbs distribution μ0 and ΔF is the free energy variation between the
equilibrium states with Hamiltonians H1 and H0 respectively.

Remarks.

(i) The reader will recognize in this exact identity an instance of the Monte Carlo method. Its interest lies in the fact
that it can be implemented without actually knowing neither H0 nor H1 nor the protocol H(p,q, t). To evaluate
the difference in free energy between two equilibrium states at the same temperature of a system that one can
construct in a laboratory, when the system changes its energy function from H0 to H1 (not necessarily explicitly
known), then ‘all one has to do’ is:
(a) To fix a protocol, i.e. a procedure, to transform the forces acting on the system along a well defined fixed once

and for all path from the initial values to the final values in a fixed time interval (t = 1 in some units); and
(b) Measure the energy variation W generated by the machines implementing the protocol. This is a really mea-

surable quantity at least when W can be interpreted as the work done on the system, or related to it;
(c) Then average of the exponential of −βW with respect to a large number of repetitions of the protocol and

apply Eq. (11). This can be useful even, and perhaps mainly, in biological experiments.
(ii) Imagine a protocol consisting in lifting a container with a gas in equilibrium to height z: the Hamiltonian changes

by Mgz, if M is the total mass and g gravity constant. Eq. (11), of course, is correct, being an identity, and
gives a free energy variation equal to βMgz while normally one would say that the free energy, and every other
thermodynamic quantity, should have remained unchanged. Whether or not there has been a free energy variation
really depends on what one is interested in studying. Thus if the interest is in measuring free energy variations
in a biological experiment care has to be given (and is actually given) to make sure that the protocol followed
does not introduce spurious, quite hidden, forms of work. This makes, once more, it clear that the application of
a mathematical identity to real systems requires careful examination of the conclusions drawn.

The two formulae (11) and (7) bear some similarities but are, however, quite different:

(1) the
∫ τ

0 σ(Stx)dt in Eq. (7) is an entropy creation rather than the energy variation W ;
(2) the average in Eq. (7) is over the SRB distribution of a stationary state, in general out of equilibrium, rather than

on a canonical equilibrium state;
(3) Eq. (7) says that 〈e− ∫ τ

0 ε(St x)dt 〉SRB is bounded as τ → ∞ rather than being 1 exactly unlike Eq. (11) which holds
without corrections, [20,21].
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Eq. (11) has proved useful in various equilibrium problems (to evaluate the free energy variation when an equilib-
rium state with Hamiltonian H0 is compared to one with Hamiltonian H1); hence there is some interest to investigate
whether Eq. (7) can have some consequences.

If a system is in a steady state and produces entropy at rate σ+ (e.g. a living organism feeding on a background) the
fluctuation relation Eq. (6) and its consequence Bonetto’s formula, Eq. (7), gives us informations on the fluctuations
of entropy production, i.e. of heat produced, and Eq. (7) could be useful, for instance, to check that all relevant heat
transfers have been properly taken into account. This suggests that the fluctuation relation for stationary states could
have some applications even in experiments in biology and be a valuable complement to Eq. (11).

3.3. Finally the identification of entropy creation and phase space contraction suggests a possible quantitative
measure for ‘how irreversible’ is a transformation between two different stationary states (equilibrium or not). Since
physical processes are often accompanied by volume changes with time V → Vt it is natural to allow them and to
change the definition of phase space contraction (9) to, [33],

σΓ (X) = σ0(X) + U̇ − N
V̇t

Vt

(12)

where N is the number of particles in the volume V .
Then one can try to define the ‘irreversibility time scale’ τ(Π) for a process Π measuring the time scale over

which the process manifests its irreversibility. Suppose that in the process Π the parameters controlling the forces
change with time from an initial value F0 to a final one F∞; to be definite suppose

F(t) = F0 + (
1 − e−γ t

)
(F∞ − F0) (13)

Eq. (13) allows us to consider the quasi-instantaneous changes (γ → ∞) as well as the quasi-static ones (γ → 0).
Starting the N -particles system in the stationary state μ0 with parameters F0 it evolves to μt and, eventually, to the

stationary state μ∞ with parameters F∞.
Let μsrb,t = be the SRB distribution with parameters F(t) ‘frozen’ at value taken at time t . Then if σ srb

t is the
entropy creation rate in the ‘frozen’ state μsrb,t an irreversibility time scale for Π could be defined as

τ(Π)−1 = 1

N2

∞∫

0

(〈
σΓ

t

〉
μt

− 〈
σ srb

t

〉
SRB,t

)2 dt (14)

which can be checked to give the ‘expected results’ in simple cases like the Joule expansion, see [33]. Quasi-
instantaneous processes Π have a short τ(Γ ), meaning that irreversibility becomes noticeable immediately, while
quasi static processes have a long τ(Π) indicating the opposite situation.

3.4. Although the above analysis is restricted to particle systems it can be extended to more general systems, in
particular to fluids and turbulence, not surprisingly, as turbulence has been a source of inspiration for the development
of the above ideas, [15,33].
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