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Abstract

Using a generalisation of detailed balance for systems maintained out of equilibrium by contact with 2 reservoirs at unequal
temperatures or at unequal densities, one can recover the fluctuation theorem for the large deviation function of the current. For
large diffusive systems, we show how the large deviation function of the current can be computed using a simple additivity principle.
The validity of this additivity principle and the occurrence of phase transitions are discussed in the framework of the macroscopic
fluctuation theory. To cite this article: T. Bodineau, B. Derrida, C. R. Physique 8 (2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Cumulants et grandes déviations du courant dans des états stationnaires hors équilibre. En généralisant la relation de
bilan détaillé à des systèmes maintenus hors équilibre par contact avec deux réservoirs à des températures ou à des densités
différentes, nous retrouvons le théorème de fluctuations pour la fonction de grandes déviations du courant. Pour de grands systèmes
diffusifs, nous montrons comment la fonction de grandes déviations du courant peut être calculée simplement à l’aide d’un principe
d’additivité. La validité de ce principe d’additivité et l’existence de transitions de phase sont discutées dans le cadre d’une théorie
des fluctuations à l’échelle macroscopique. Pour citer cet article : T. Bodineau, B. Derrida, C. R. Physique 8 (2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
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1. Introduction

A physical system in contact with two heat baths at unequal temperatures Ta and Tb is one of the simplest situations
for which one can observe a non-equilibrium steady state (Fig. 1). At equilibrium, i.e. when the two heat baths are at
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Fig. 1. A system maintained in contact with two heat baths at unequal temperatures reaches in the long time limit a non-equilibrium steady state.

Fig. 2. A typical shape of the large deviation function F(j) which vanishes at the typical current j̄ .

the same temperature (Ta = Tb = T ), the probability P(C) of finding the system in a given microscopic configuration
C is given by the usual Boltzmann–Gibbs weight

P(C) = Z−1 exp

[
−E(C)

kT

]
(1)

where E(C) is the internal energy of the system in configuration C. Over the whole 20th century, studies in equilibrium
statistical mechanics have been based on this expression or its microcanonical counterpart, and the great success of
the theory was to show that (1) was the right starting point to explain the equilibrium properties of a large variety
of physical systems (fluids, magnets, alloys, plasmas, . . . ) and to understand all kinds of effects, in particular phase
transitions and critical phenomena. A very simplifying aspect of (1) is that it depends neither on the precise nature of
the coupling with the heat bath (at least when this coupling is weak) nor on the detailed dynamics of the system.

As soon as the two temperatures Ta and Tb are different [1], there is not such a simple expression [2,3] which
generalizes (1) for the steady state weights P(C) of the microscopic configurations. In fact, for a non-equilibrium
system, the steady state measure P(C) depends in general on the precise description of the dynamics of the system,
of the heat baths and on their couplings. So far the exact expression of these weights is known only for a few non-
equilibrium models [4–7].

In addition to the steady state weights, one might be interested in the flow of energy through the system. For an
interval of time t , one may consider Qt , the energy transfered from the heat bath at temperature Ta to the system. In
the steady state, this energy fluctuates and one might try to predict its various cumulants 〈Qn

t 〉c or its large deviation
function F(j) defined as

Pro

(
Qt

t
= j

)
∼ exp

[−tF(j)
]

for large t (2)

A typical shape of this large deviation function is shown in Fig. 2.
We refer to [8,9] for a full account on the large deviation theory. Note also that other definitions of the current

distribution have been considered in [10,11].
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The whole distribution of Qt and a fortiori its cumulants depend in principle on the initial configuration Cinitial, on
the final configuration Cfinal and on the place where the flux of energy is measured. However if the internal energy
of the system is bounded (maxC |E(C)| < ∞), the cumulants of Qt (in the long time limit) and the large deviation
function F(j) do not depend on where the flow of energy is measured. In particular, if one measures the flux of energy
between the system and the other heat bath, the large deviation function F(j) is unchanged. Also if the system relaxes
faster than the time t over which Qt is measured, the cumulants 〈Qn

t 〉c divided by t and the large deviation function
F(j) do not depend on the initial and final configurations Cinitial,Cfinal. In fact in this case it is elementary to verify
that F(j) is convex, that is if 0 � α � 1

F
(
αj1 + (1 − α)j2

)
� αF(j1) + (1 − α)F(j2) (3)

as the probability distribution Pro(Qt |Cinitial,Cfinal) of Qt , given the initial and final configurations Cinitial and Cfinal,
satisfies

Pro(Q|Cinitial,Cfinal) =
∑
Cτ

∑
q

Pro(q|Cinitial,Cτ )Pro(Q − q|Cτ ,Ct )

� Pro(q|Cinitial,Cτ )Pro(Q − q|Cτ ,Cfinal)

which leads to (3) in the long time limit when τ = αt , q = j1αt , Q − q = j2(1 − α)t . The importance of convexity
was understood in [12] (see Section 5 below).

It is sometimes easier to work with the generating function of Qt . For large t one has〈
eλQt

〉 ∼ etμ(λ) (4)

where 〈·〉 denotes the expectation over the dynamics and μ(λ) is the Legendre transform of the large deviation func-
tion F

μ(λ) = max
j

[
jλ −F(j)

]
(5)

From the knowledge of μ(λ), one can often determine the cumulants of Qt in the long time limit by

lim
t→∞

〈Qn
t 〉c
t

= dnμ(λ)

dλn

∣∣∣∣
λ=0

(6)

This relation is based on the assumption that the order of the limits t → ∞ and λ → 0 can be exchanged. One
can show that these limits can be exchanged only for very few examples, although one believes that the assumption
remains valid for general diffusive systems. There are however cases where these limits do not commute and for which
the moments of the fluctuations cannot be deduced from the knowledge of the large deviation function [13].

2. Generalized detailed balance and the fluctuation theorem

In principle, determining the evolution of Qt requires the integration of the evolution equations of the system in
presence of the heat baths. This is a difficult task, in particular because the heat baths are often described by an infinite
number of degrees of freedom. Nevertheless, it can be shown in some cases that integrating the variables of the heat
baths leads to effective reservoirs with stochastic noise. We refer to [14,15] and references therein for various ways of
describing thermostats.

Instead of considering mechanical systems, it is simpler to model the interactions with the heat baths by a stochastic
term in the equations of motion of the system (like in a Langevin equation). The microscopic dynamics becomes then
stochastic. This means that the evolution is given by a Markov chain with transition matrix W(C′,C) which represents
the rate at which the system jumps from a configuration C to a configuration C′ (i.e. the probability that the system
jumps from C to C′ during an infinitesimal time interval dt is given by W(C′,C)dt).

At equilibrium, one usually requires that the transition matrix satisfies detailed balance

W(C′,C)e− E(C)
T = W(C,C′)e− E(C′)

T (7)
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which ensures the time reversal symmetry of the microscopic dynamics. If one introduces q the energy transfered
from the heat bath at temperature T to the system, and Wq(C′,C)dt , the probability that the system jumps during dt

from C to C′ by receiving an energy q from the heat bath, one can rewrite (7)

e
q
T Wq(C′,C) = W−q(C,C′) (8)

If one accepts that detailed balance gives a good description of the coupling with a single heat bath at tempera-
ture T , one can wonder what would be the right way of describing the dynamics of a system coupled to several heat
baths at unequal temperatures like in Fig. 1. When the system jumps from one configuration C to another configura-
tion C′, energies qa, qb, qc, . . . are transferred from the heat baths at temperatures Ta,Tb, Tc, . . . to the system. The
straightforward generalization of (8) is

e
qa
Ta

+ qb
Tb

+ qc
Tc

+···
Wqa,qb,qc,...(C

′,C) = W−qa,−qb,−qc,...(C,C′) (9)

For a system in contact with several reservoirs at temperature Ta,Tb, Tc, . . . , this simply means, by comparing with (8),
that the exchanges of energy with the heat bath at temperature Ta tend to equilibrate the system at temperature Ta , the
exchanges with the heat bath at temperature Tb tend to equilibrate the system at temperature Tb and so on.

The fluctuation theorem [16,17] can be easily recovered from the generalized detailed balance relation (9). To see
this, one can compare the probability of a trajectory in phase space and its time reversal for a system in contact with
two reservoirs. Similar approaches have been implemented for stochastic dynamics in [18–21]. A trajectory ‘Traj’ is
specified by a sequence of successive configurations C1, . . . ,Ck visited by the system, the times t1, . . . , tk spent in
each of these configurations, and the energies qa,i , qb,i transfered from the heat baths to the system when the system
jumps from Ci to Ci+1.

Pro(Traj) = dtk−1

[
k−1∏
i=1

Wqa,i ,qb,i
(Ci+1,Ci)

]
exp

[
−

k∑
i=1

tir(Ci)

]

where r(C) = ∑
C′

∑
qa,qb

Wqa,qb
(C′,C) and dt is the infinitesimal time interval over which jumps occur.

For the trajectory “−Traj ” obtained from “Traj ” by time reversal, i.e. for which the system visits successively the
configurations Ck, . . . ,C1, exchanging the energies −qa,i ,−qb,i each time the system jumps from Ci+1 to Ci , one
has

Pro(−Traj) = dtk−1

[
k−1∏
i=1

W−qa,i ,−qb,i
(Ci,Ci+1)

]
exp

[
−

k∑
i=1

tir(Ci)

]

One can see from the generalized detailed balance relation (9) that

Pro(Traj)

Pro(−Traj)
= exp

[
−

k−1∑
i=1

qa,i

Ta

+ qb,i

Tb

]
= exp

[
−Q

(a)
t

Ta

− Q
(b)
t

Tb

]
(10)

where Q
(a)
t = ∑

i qa,i and Q
(b)
t = ∑

i qb,i are the total energies transfered from the heat baths a and b to the system

during time t . If the internal energy of the system is bounded, energy conservation implies that |Q(a)
t + Q

(b)
t | < E,

and one gets

exp

[
Q

(a)
t

(
1

Tb

− 1

Ta

)
− E

Tb

]
<

Pro(Traj)

Pro(−Traj)
< exp

[
Q

(a)
t

(
1

Tb

− 1

Ta

)
+ E

Tb

]
(11)

If P(C) is the steady state probability of configuration C, the probability that Qt ≡ Q
(a)
t is the total energy trans-

fered from the heat bath a to the system is given by

Pro(Qt ) =
∑

Cinitial

∑
Cfinal

∑
Traj(Cinitial,Cfinal,Qt )

P (Cinitial)Pro
(
Traj(Cinitial,Cfinal,Qt )

)
where the sums are over all initial configurations Cinitial, final configurations Cfinal and all trajectories Traj(Cinitial,

Cfinal,Qt ) starting in configuration Cinitial, ending in configuration Cfinal with a total transfer of energy Qt . Now as

Pro(−Qt) =
∑ ∑ ∑

P(Cfinal)Pro
(
Traj(Cfinal,Cinitial,−Qt)

)

Cinitial Cfinal Traj(Cfinal,Cinitial,−Qt )
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one can see that, if for any pair of configurations the ratio of their steady state weights remains bounded

∀C,C′ 0 < A <
P(C)

P (C′)
< B < ∞

one has because of (11) that

A

B
exp

[
− E

Tb

+ Qt

(
1

Tb

− 1

Ta

)]
<

Pro(Qt )

Pro(−Qt)
<

B

A
exp

[
E

Tb

+ Qt

(
1

Tb

− 1

Ta

)]
Taking the log and then the long time limit (2) leads to the fluctuation theorem

F(j) −F(−j) = −j

(
1

Tb

− 1

Ta

)
(12)

which states that the difference F(j) − F(−j) is linear in j with a universal slope related to the difference of the
inverse temperatures.

We see that in the framework of stochastic dynamics, the fluctuation theorem is an elementary consequence of the
generalized detailed balance relation (9) satisfied by the dynamics and of the assumptions that the energy is bounded
(see [22–24] for examples where the energy is not bounded in which case the fluctuation theorem has to be modified)
and the fact that the time t is much longer than the relaxation times in the system. In terms of the Legendre transform
(4), (5) the fluctuation theorem becomes

μ(λ) = μ

(
−λ + 1

Ta

− 1

Tb

)
(13)

Remarks:

(i) In the limit of small Ta − Tb (i.e. close to equilibrium), one can recover from (13) the fluctuation–dissipation
relation between the variance of the current at equilibrium

〈Q2
t 〉

t
→ σ̃ for Ta = Tb (14)

and the response to a small temperature gradient

〈Qt 〉
t

→ (Ta − Tb)D̃ for Ta − Tb small (15)

In fact from these definitions of σ̃ and D̃, one has

μ(λ) = (Ta − Tb)D̃λ + σ̃

2
λ2 + O

(
λ3, λ2(Ta − Tb), λ(Ta − Tb)

2) (16)

and for this expression to satisfy the fluctuation theorem (13), the coefficients σ̃ and D̃ have to satisfy

σ̃ = 2T 2
a D̃ (17)

which is the usual Einstein fluctuation–dissipation relation between the response coefficient D̃ and the fluctuation
coefficient σ̃ . Note that in general both D̃ and σ̃ depend on the temperature Ta .

(ii) One can easily extend the generalized detailed balance (9) and the fluctuation theorem (12), (13) to other types
of currents. For example, in the case of a current of particles, (9) becomes

z
−qa
a z

−qb

b Wqa,qb
(C′,C) = W−qa,−qb

(C,C′) (18)

where za and zb are the fugacities associated to the reservoirs of particles and qa and qb are the numbers of
particles transfered from the reservoirs while the system jumps from configuration C to configuration C′. The
fluctuation theorem (12), (13) becomes then

F(j) −F(−j) = j [log zb − log za] and μ(λ) = μ(−λ + log zb − log za) (19)

Close to equilibrium, if one defines as in (14), (15), the fluctuation and the response coefficients for a system in
contact with two reservoirs

〈Q2
t 〉 → σ̃ for ρa = ρb and

〈Qt 〉 → (ρa − ρb)D̃ for ρa − ρb small (20)

t t
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where D̃ and σ̃ are now functions of the density ρa . One can show, by expanding in powers of λ and of za − zb

as in (16) that

σ̃ = 2D̃
dρ

d log z
= 2D̃Tρ2κ (21)

where κ = ρ−1 dρ/dp is the compressibility. (To see why the compressibility appears, one can write logZ =
−F/T = −Vf (N/V )/T where F is the free energy and f the free energy per unit volume; one uses the facts
that T log z = dF/dN = f ′(ρ) and that p = −dF/dV = ρf ′(ρ) − f (ρ); then one can see that dρ/d log z =
T/f ′′(ρ) = Tρ dρ/dp.)

(iii) Another easy extension is to consider systems with several types of currents (for example a current of particles
and a current of energy, or several types of particles, or systems in contact with more than two reservoirs). The
extension of the fluctuation theorem to these cases allows one to recover Onsager’s reciprocity relations in the
close-to-equilibrium limit [25,20].

(iv) The fluctuation theorem is usually formulated in terms of entropy production [26,27,21] as, in the steady state,
the entropy of the system remains stationary whereas a current j of energy from the heat bath at temperature Ta

into a heat bath at temperature Tb gives a rate j (1/Tb − 1/Ta) of increase of entropy.

2.1. An example: the symmetric simple exclusion process (SSEP) [28–31]

There are only few examples of non-equilibrium steady states for which the cumulants 〈Qn
t 〉c or the large deviation

function F(j) of the current can be calculated [32–34]. One of the simplest cases is the symmetric simple exclusion
process shown in Fig. 3.

The model is defined as a one dimensional lattice of L sites with open boundaries, each site being either occupied
by a single particle or empty. During every infinitesimal time interval dt , each particle has a probability dt of jumping
to the left if the neighboring site on its left is empty, dt of jumping to the right if the neighboring site on its right is
empty. At the two boundaries the dynamics is modified to mimic the coupling with reservoirs of particles: at the left
boundary, during each time interval dt , a particle is injected on site 1 with probability α dt (if this site is empty) and a
particle is removed from site 1 with probability γ dt (if this site is occupied). Similarly on site L, particles are injected
at rate δ and removed at rate β . (Note that one could consider that in the SSEP the particles represent quanta of energy
and all the properties could be interpreted in terms of heat transport.)

From the definition of the model, one can see that the dynamics satisfies the generalized detailed balance relation
(18) with

za = α

γ
; zb = δ

β

If τi is a binary variable which indicates whether site i is occupied (τi = 1) or empty (τi = 0), it is easy to calculate
the steady state profile [32]

〈τi〉 = ρb + L − i + b

L + 1 + a + b
(ρa − ρb) (22)

where

ρa = α

α + γ
, ρb = δ

β + δ
and a = 1

α + γ
, b = 1

β + δ

Clearly, in the expression (22) of the profile, ρa and ρb represent the densities in the reservoirs at the two ends of the
chain. The calculation of the first cumulants can be done either directly or by a perturbation theory in λ by using the
generating function [32].

Fig. 3. The symmetric simple exclusion process.
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Fig. 4. The fourth cumulant versus ρb for ρa = 1. The thin lines represent the fourth cumulant obtained from exact calculations of μL(λ) for
system sizes L = 5,9,13,17, whereas the thick line represents expression (23) valid in the limit L → ∞.

lim
t→∞

〈Qt 〉
t

= ρa − ρb

L + a + b − 1

lim
t→∞

〈Q2
t 〉c
t

= 1

L1
(ρa + ρb − 2ρaρb)

+ a(a − 1)(2a − 1) + b(b − 1)(2b − 1) − L1(L1 − 1)(2L1 − 1)

3L3
1(L1 − 1)

(ρa − ρb)
2

where L1 = L + a + b − 1. For large L, the first four cumulants (see Fig. 4, for a graphical representation of the
fourth) are given by:

lim
t→∞

〈Qt 〉
t

� ρa − ρb

L

lim
t→∞

〈Q2
t 〉c
t

� 1

L

[
ρa + ρb − 2ρ2

a + 2ρaρb + 2ρ2
b

3

]

lim
t→∞

〈Q3
t 〉c
t

� 1

L

[
ρa − ρb − 2

(
ρ2

a − ρ2
b

) + 16ρ3
a + 12ρ2

aρb − 12ρaρ
2
b − 16ρ3

b

15

]

lim
t→∞

〈Q4
t 〉c
t

� 1

L

[
ρa + ρb − 14ρ2

a + 2ρaρb + 14ρ2
b

3
+ 32ρ3

a + 8ρ2
aρb + 8ρaρ

2
b + 32ρ3

b

5

− 96ρ4
a + 64ρ3

aρb − 40ρ2
aρ2

b + 64ρaρ
3
b + 96ρ4

b

35

]
(23)

3. The additivity principle

One can formulate a conjecture, the additivity principle [35], based on a simple physical picture, which allows
one to determine all the cumulants and the large deviation function F(j) for more general one dimensional diffusive
systems. Applied to the SSEP, this leads to the same expression of the cumulants (23) and provide a way of calculating
all the higher cumulants. Here we will limit the discussion to non-equilibrium steady states of systems in contact with
two reservoirs of particles. As shown below everything can be easily generalized to systems in contact with two heat
baths. For a system of length L + L′ in contact with two reservoirs of particles at densities ρa and ρb, the probability
of observing, during a long time t , an integrated current Qt = j t has the following form (2)

ProL+L′(j, ρa, ρb) ∼ e−tFL+L′ (j,ρa,ρb) (24)

The idea of the additivity principle is to relate the large deviation function FL+L′(j, ρa, ρb) of the current to the large
deviation functions of subsystems of lengths L and L′ by writing that for large t

ProL+L′(j, ρa, ρb) ∼ max
[
ProL(j,ρa, r) × ProL′(j, r, ρb)

]
(25)
r
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This means that the probability of transporting a current j over a distance L+L′ between two reservoirs at densities
ρa and ρb is the same (up to boundary effects which give for large L subleading contributions) as the probability of
transporting the same current j over a distance L between two reservoirs at densities ρa and r times the probability of
transporting the current j over a distance L′ between two reservoirs at densities r and ρb . One can then argue that one
should choose for r the density which makes this probability maximum. From (25) one gets the following additivity
property of the large deviation function:

FL+L′(j, ρa, ρb) = min
r

[
FL(j,ρa, r) + FL′(j, r, ρb)

]
(26)

By repeating this procedure, one gets that

FL(j,ρa, ρb) = min
r1,...,rk−1

{
k−1∑
i=0

Fl(j, ri , ri+1)

}
(27)

where k = L/l, r0 = ρa and rk = ρb.
For large L and k (with L/k still very large), if one considers current fluctuations of order 1/L, it is advantageous,

to minimize (27), to make the differences ri − ri+1 small. As the current j is also small one can consider that each
piece of length l is close to equilibrium and has Gaussian fluctuations at the leading order

Fl(j, ri , ri+1) � [j − D(ri )(ri−ri+1)

l
]2

2σ(ri )
l

(28)

where the parameters D and σ are defined for a system of length l in contact with two reservoirs at densities ρa and
ρb by

〈Q2
t 〉

t
→ σ(ρa)

l
for ρa = ρb (29)

〈Qt 〉
t

→ (ρa − ρb)
D(ρa)

l
for ρa − ρb small (30)

These are the same parameters as in (14), (15), (20) up to a factor l. (In the definitions (29), (30), one should take first

the t → ∞ limit, i.e. σ(ρa) = liml→∞ limt→∞ l〈Q2
t 〉

t
.)

If for large k, the optimal density ri in (27) varies slowly with i

ri = ρ

(
i

l

L

)
for some smooth density ρ(x) (see Fig. 5) then combining (27) and (28), we get

FL(j,ρa, ρb) = min{ri }

k−1∑
i=0

[j − D(ri )(ri−ri+1)

l
]2

2σ(ri )
l

= min
ρ(x)

1

L

1∫
0

[Lj + ρ′(x)D(ρ(x))]2

2σ(ρ(x))
dx (31)

with ρ(0) = ρa and ρ(1) = ρb. Note that (28) is a local equilibrium assumption, i.e. that both the current j and the
difference ri − ri+1 are small. Therefore one cannot expect (31) to be valid when the current deviation j is not of
order 1/L.

Fig. 5. The dashed line represents the steady state profile. The optimal density in (31) changes in the bulk to facilitate the deviation of the current.
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The steady state profile ρ(x) is the one which makes vanish the large deviation function FL. It therefore satisfies

Lj + D
(
ρ(x)

)
ρ(x)′ = 0

where the most likely current j is fixed by the boundary conditions

j = 1

L

ρa∫
ρb

D(ρ)dρ

4. The large deviation function obtained from the additivity principle

4.1. The optimal profile

The profile ρ0(x) which optimizes (31) satisfies

d

dρ

L2j2

2σ(ρ0(x))
− ρ′

0(x)2 d

dρ

D2(ρ0(x))

2σ(ρ0(x))
− 2ρ′′

0 (x)
D2(ρ0(x))

2σ(ρ0(x))
= 0

If one multiplies this expression by ρ′
0(x), one can integrate once. Finally one gets that the optimal profile satisfies

ρ′
0(x)2 = (Lj)2(1 + 2Kσ(ρ0(x)))

D2(ρ0(x))
(32)

where the integration constant K is fixed by the boundary conditions ρ0(0) = ρa and ρ0(1) = ρb .
Suppose that ρa > ρb and that the deviations are not too large so that the optimal profile remains monotone, i.e.

ρ′
0(x) = −Lj

√
1 + 2Kσ(ρ0(x))

D(ρ0(x))
(33)

one can rewrite (31) as

FL(j,ρa, ρb) = j

ρa∫
ρb

[
1 + Kσ(ρ)

[1 + 2Kσ(ρ)]1/2
− 1

]
D(ρ)

σ(ρ)
dρ (34)

where the constant K is fixed from (33) by the boundary condition (ρ(0) = ρa and ρ(1) = ρb), i.e.

Lj =
ρa∫

ρb

D(ρ)

[1 + 2Kσ(ρ)]1/2
dρ (35)

The optimal profile (33) remains unchanged when j → −j (simply the sign of [1 + 2Kσ(ρ)]1/2 is changed) in
(34), (35) and one gets that

FL(j) − FL(−j) = −2j

ρa∫
ρb

D(ρ)

σ (ρ)
dρ (36)

which is the fluctuation theorem (19). In fact already in (31) it was clear by expanding the square that the optimal
ρ0(x) does not depend on the sign of j and that (36) had to be satisfied.

The physical meaning of the optimal profile ρ0 (32) is that adopting this profile is the easiest way to flow through
the system an atypical current j . The large deviation functional (31) shows that the optimal density profile ρ0 and
the current deviation j are coupled in a non-trivial way. One can think of the system as a pipe with diameter σ(ρ)

depending on the local density. The easiest way to increase the particle current is to adjust the size of the pipe σ(ρ)

and therefore the local density, in order to facilitate the flow of particles. In the example of the SSEP with reservoirs
at equal densities ρ = ρa = ρb , the variance of the current σ(ρ) = 2ρ(1 − ρ) is maximum at density ρ = 1/2. When
ρa = ρb < 1/2, it is favorable to have in the bulk a density ρ0(x) > ρa in order to facilitate the flow of particles and
the optimal way of doing it is by choosing the profile ρ0(x) which satisfies (32). If ρa = ρb = 1/2, then the optimal
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density profile remains flat for any current deviation and the large deviation functional (31) is quadratic [32,35]. In
general the complicated expression of the cumulants (23) expresses the non-trivial coupling between the flux j and
the optimal density profile ρ0(x).

4.2. The cumulants

The parametric expression (34), (35) for the large deviation function FL(j) can be transformed into another para-
metric form for μL(λ) defined in (4), (5)

μL(λ,ρa,ρb) = −K

L

[ ρa∫
ρb

D(ρ)dρ√
1 + 2Kσ(ρ)

]2

(37)

with K = K(λ,ρa,ρb) is the solution of

λ =
ρa∫

ρb

dρ
D(ρ)

σ (ρ)

[
1√

1 + 2Kσ(ρ)
− 1

]
(38)

By eliminating K , one can obtain the expansion of μL in powers of λ and by taking successive derivatives (5), (6)
with respect to λ one gets for the cumulants of the current:

〈Qt 〉
t

= 1

L
I1,

〈Q2
t 〉 − 〈Qt 〉2

t
= 1

L

I2

I1

〈Q3
t 〉c
t

= 1

L

3(I3I1 − I 2
2 )

I 3
1

,
〈Q4

t 〉c
t

= 1

L

3(5I4I
2
1 − 14I1I2I3 + 9I 3

2 )

I 5
1

(39)

where the integrals In are given by

In =
ρa∫

ρb

D(ρ)σ (ρ)n−1 dρ

In the case of the SSEP, one has D(ρ) = 1 and σ(ρ) = 2ρ(1 − ρ). One can simplify (37), (38) and get

μL(λ) = 1

L

[
log

(√
1 + ω + √

ω
)]2 with ω = (

eλ − 1
)
ρa + (

e−λ − 1
)
ρb − (

eλ − 1
)(

e−λ − 1
)
ρaρb (40)

From this one can recover the cumulants (23) and determine all the higher cumulants. Expressions equivalent to (40)
were derived in the theory of shot noise of mesoscopic conductors [36,37].

Remark. The density ρ is the physical relevant parameter. However it can be useful [38] to consider instead the
conjugate field β = log z (see (21)). Formula (31) then simplifies as it depends only on one macroscopic input σ(β)

FL(j,βa,βb) = min
β(x)

1

L

1∫
0

[Lj + σ(β(x))
2 β ′(x)]2

2σ(β(x))
dx (41)

where the minimum is taken over the chemical potential profiles such that β(0) = log za and β(1) = log zb .

4.3. Heat flux

All the above discussion can be generalized to the case of a heat flux in diffusive systems: one has to replace
everywhere the density profile ρ(x) by the temperature profile T (x). There is even one simplification as in the thermal
case D and σ are related as in (17) so that for D(T ) defined as in (30) (i.e. 〈Qt 〉/t = (Ta − Tb)D(T )/L for small
Ta − Tb), one gets

Lj =
Ta∫

dT D(T )

[1 + 4KT 2D(T )]1/2
, FL(j) = j

Ta∫
dT

2T 2

[
1 + 2KT 2D(T )

[1 + 4KT 2D(T )]1/2
− 1

]
(42)
Tb Tb
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5. The macroscopic fluctuation theory

Building on the hydrodynamic large deviation theory [39,29,30], Bertini et al. developed [40–42] a general frame-
work to determine the steady state large deviation function of non-equilibrium systems. This framework has been
extended [12,43] to the current large deviations. Let us sketch briefly their approach. For diffusive systems (such as
SSEP), the total flux Qi(t) flowing through position i between time 0 and time t and the density ρi(t) near position i

are, for a large system of size L and for times of order L2, scaling functions of the form

Qi(t) = LQ̂

(
i

L
,

t

L2

)
, and ρi(t) = ρ̂

(
i

L
,

t

L2

)
It is convenient to introduce the instantaneous current defined in terms of the rescaled time τ

q̂(x, τ ) = ∂Q̂(x, τ )

∂τ
(43)

In fact Lq̂(x, τ )dτ is simply the total flux of particles through position [xL] during the microscopic time interval
[L2τ,L2(τ + dτ)], with 1/L  dτ  1 so that there is a large number of particles which contribute to the integrated
current but the density does not vary over this small time interval. Remark that the current q̂ is defined after a diffusive
rescaling, i.e. the space is scaled by 1/L and the time by 1/L2. Thus unlike the microscopic current, q̂ remains of
order 1. The conservation of the number of particles implies that

∂ρ̂(x, τ )

∂τ
= −∂2Q̂(x, τ )

∂τ∂x
= −∂q̂(x, τ )

∂x
(44)

The macroscopic fluctuation theory [12,43] gives for the probability of observing a certain density profile ρ̂(x, τ ) and
a current q̂(x, τ ) over the rescaled time interval 0 < τ ′ < τ

Pro
({

ρ̂(x, τ ′), q̂(x, τ ′)
}) ∼ exp

[
−L

τ∫
0

dτ ′
1∫

0

dx
[q̂(x, τ ′) + D(ρ̂(x, τ ′)) ∂ρ̂(x,τ ′)

∂x
]2

2σ(ρ̂(x, τ ′))

]
(45)

Of course ρ̂ and q̂ have to satisfy the relation (44). (Note that if t is the microscopic time, then τ = t/L2 plays
the role of a macroscopic time.) Similar expression were obtained in [46–48] by considering stochastic models in
the context of shot noise in mesoscopic quantum conductors. The functional (45) was used to calculate the large
deviation functional of the density for several systems [41,44] and in the case of SSEP the results agree with an exact
microscopic derivation [45].

The large deviation function F(j) (2) for observing the total current j , i.e. the following event

Lj = 1

τ

τ∫
0

dτ ′
1∫

0

dx q̂(x, τ ′) (46)

as predicted in [12,43] by the macroscopic fluctuation theory (45) becomes

F(j) = 1

L
lim

τ→∞
1

τ
min

ρ̂(x,τ ′)
q̂(x,τ ′)

τ∫
0

dτ ′
1∫

0

dx
[q̂(x, τ ′) + D(ρ̂(x, τ ′)) ∂ρ̂(x,τ ′)

∂x
]2

2σ(ρ̂(x, τ ′))
(47)

where the minimum is over all the density profiles {ρ̂(x, τ ′), 0 < τ ′ < τ } and the currents {q̂(x, τ ′), 0 < τ ′ < τ }
which satisfy the conservation law (44) and the global constraint (46).

If the optimal density and current profiles are time independent (up to boundary effects for τ ′ close to 0 or τ which
do not contribute in the τ → ∞ limit), one recovers the predictions of the additivity principle (31) and F(j) = FL(j).
When the optimal profile is time dependent the additivity principle predictions (31) give only an upper bound: F(j) �
FL(j). In [12,43], Bertini et al. provided an example for which the functions FL and F are different. In their example,
FL was not a convex function of j and F was its convex envelope (see (3)). They also proved (see [43] Section 6.1)
that F reduces to FL under the following global condition on D and σ

For all ρ, D(ρ)σ ′′(ρ) � D′(ρ)σ ′(ρ) (48)
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This holds for the SSEP and the Zero Range process [30]. Condition (48) is however only sufficient.
In general a dynamical phase transition [43,49] may occur where the system switches from a time independent

to a time dependent optimal profile. To calculate the large deviation function F one needs to determine the optimal
time dependent profile ρ̂(x, τ ), which is not an easy task as the optimization problem is non-linear. A complete
characterization of the regime for which the additivity principle holds (F(j) = FL(j)) remains a challenging problem.

6. Phase transitions

In this section, we try to determine the phase boundary where the optimal profile becomes time dependent. To do
so we consider a more general situation with a small driving force (like an electric field) in the bulk. Adding such a
driving force of amplitude ν/L to an open system of length L with reservoirs ρa,ρb modifies the mean current (30)
as follows [29,49]

〈Qt 〉
t

→ (ρa − ρb)
D(ρa)

L
+ ν

L
σ(ρa) for ρa − ρb small (49)

In (49), the conductivity σ which was defined as the variance of the current in (29) can also be understood as the
linear response to the small field ν/L. The effect of the field can be easily taken into account in the framework of the
macroscopic fluctuation theory [43,49] by arguing that locally the current has Gaussian fluctuations with mean value
given by (49). The functional (47) becomes

F(j) = 1

L
lim

τ→∞
1

τ
min

ρ̂(x,τ ′)
q̂(x,τ ′)

τ∫
0

dτ ′
1∫

0

dx
[q̂(x, τ ′) + D(ρ̂(x, τ ′)) ∂ρ̂(x,τ ′)

∂x
− νσ(ρ̂(x, τ ′))]2

2σ(ρ̂(x, τ ′))
. (50)

with the constraint (46) on the total current.

6.1. Stability of the functional

The time independent optimal profile ρ0(x) is now a solution of (see (32))(
D

(
ρ0(x)

)
ρ′

0(x)
)2 = (

jL − νσ
(
ρ0(x)

))2 + 2Kσ
(
ρ0(x)

)
(51)

where the constant K has to be adjusted so that ρ0 satisfies the boundary conditions (ρ0(0) = ρa and ρ0(1) = ρb).
A situation for which ρ0(x) is certainly not optimal in (50) is when a small time dependent perturbation is sufficient
to lower (50). To investigate the stability of ρ0(x) against such perturbations, one can write

ρ̂(x, τ ′) = ρ0(x) + δρ(x, τ ′)
q̂(x, τ ′) = j + δj (x, τ ′)

where δρ and δj have zero time averages and are related by (44). Inserting these expressions into (50), one gets at the
second order

τ∫
0

dτ ′
1∫

0

dx

{
(δj)2

2σ(ρ0)
− j

σ ′(ρ0)

σ 2(ρ0)
δρδj + A(ρ0)(δρ

′)2 + 2
[
A′(ρ0)ρ

′
0

]
δρδρ′ + 1

2

[
B ′′(ρ0) + A′′(ρ0)(ρ

′
0)

2](δρ)2
}

where we introduced the functions

A(u) = D2(u)

2σ(u)
, and B(u) = j2

2σ(u)
+ ν2

2
σ(u).

The coefficients of the quadratic form are x dependent but time independent. Thus to analyze the stability, one can
consider perturbations of the form

δρ(x, τ ′) = i

ω
exp(iωτ ′)ϕ′

1(x) − i

ω
exp(−iωτ ′)ϕ′

2(x)

δj (x, τ ′) = exp(iωτ ′)ϕ1(x) + exp(−iωτ ′)ϕ2(x) (52)
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where ϕ2(x) = ϕ∗
1 (x). The quadratic form can be rewritten as

τ

1∫
0

dx

{
ϕ1ϕ2

σ(ρ0)
− j

σ ′(ρ0)

σ 2(ρ0)

i

ω
[ϕ′

1ϕ2 − ϕ1ϕ
′
2] + 2

ω2
A(ρ0)ϕ

′′
1 ϕ′′

2

+ 2

ω2

[
A′(ρ0)ρ

′
0

][ϕ′
1ϕ

′′
2 + ϕ′′

1ϕ′
2] + 1

ω2

[
B ′′(ρ0) + A′′(ρ0)(ρ

′
0)

2]ϕ′
1ϕ

′
2

}
(53)

For the time independent profile ρ0(x) to be stable against small time dependent perturbations, the quadratic form (53)
has to be positive for all ω. In general, all the coefficients in (53) are spatially dependent through ρ0(x) and it is difficult
to provide from (53) a more explicit characterization of this local stability.

6.2. Periodic systems

For a system of N particles on a ring of length L with density ρ̄ = N/L, the flat profile ρ0(x) = ρ̄ remains a
solution of the Euler–Lagrange equation associated to (50). In this case, the coefficients of the quadratic form have
no x dependence and the different spatial modes decouple. One can choose ϕ1 = exp(ikx) and ϕ2 = exp(−ikx) and
the positivity of the quadratic form implies that for any k (multiple of 2π ) and ω, one has

1

σ(ρ̄)

(
1 + Lj

kσ ′(ρ̄)

ωσ(ρ̄)

)2

+ k2

ω2

(
k2D(ρ̄)2

σ(ρ̄)
− (Lj)2 σ ′′(ρ̄)

2σ(ρ̄)2
+ ν2 σ ′′(ρ̄)

2

)
> 0. (54)

The first mode to become unstable is the fundamental mode k = 2π , thus the flat profile is stable when [49]

8π2D2(ρ̄)

σ (ρ̄)
> σ ′′(ρ̄)

[
(Lj)2

σ 2(ρ̄)
− ν2

]
(55)

Let jc be the critical current for which (55) becomes an equality. If σ ′′(ρ̄) > 0 (resp. σ ′′(ρ̄) < 0), the flat profile
becomes unstable for currents |j | > |jc| (resp. |j | < |jc|). Remark that the instability regime is always symmetric
with respect to 0 as predicted by the fluctuation theorem (19) which becomes in presence of a driving force

F(j) −F(−j) = −2νj − 2j

ρa∫
ρb

D(ρ)

σ (ρ)
dρ

Beyond the threshold (55) a bifurcation occurs and a traveling wave of the form ρ(x − vt) is more favorable than the
flat profile ρ̄. From (54), we get that close to the phase transition, the optimal velocity is given by

ω = −2πLjc

σ ′(ρ̄)

σ (ρ̄)
⇒ v = Ljc

σ ′(ρ̄)

σ (ρ̄)
(56)

If we make the assumption that no first order transition occurs before the second order transition predicted at jc ,
we can compute the expansion of F close to jc. We consider small current perturbations

Lj = Ljc + ε, with Ljc =
√

ν2σ(ρ̄)2 + 8π2D(ρ̄)2σ(ρ̄)

σ ′′(ρ̄)
(57)

Let us limit the discussion to the case σ ′′(ρ̄) < 0. Then for ε > 0 the flat profile remains optimal and one expects that
the large deviation function is quadratic

∀ε > 0, F(j) = (Ljc + ε − νσ(ρ̄))2

2σ(ρ̄)
(58)

On the other hand for σ ′′(ρ̄) < 0, the flat profile is unstable for ε < 0 and the expansion of F(j) at the second order
in ε can be obtained by approximating the travelling wave as follows

ρ0(x, t) ≈ ρ̄ + √−εa1 sin
(
2π(x − vt)

) + εa2 cos
(
4π(x − vt)

)
(59)
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where the velocity v = Ljc
σ ′(ρ̄)
σ (ρ̄)

is given by (56). In fact the expansion should also include corrections in ε to the
velocity as well as other Fourier modes, but a computation shows that they do not contribute to the second order
expansion of F . Inserting the test function (59) in (50) implies that the second order of F(j) in ε is given by the
quartic form(

Ljcσ
′′(ρ̄)

4σ(ρ̄)2
+

(
−3π2D′(ρ̄)D(ρ̄)

σ (ρ̄)
+ 3π2D(ρ̄)2σ ′(ρ̄)

2σ(ρ̄)2
+ π2D(ρ̄)2σ (3)(ρ̄)

2σ(ρ̄)σ ′′(ρ̄)

)
a2

)
a2

1

+
(

−π2D(ρ̄)2σ (4)(ρ̄)

16σ(ρ̄)σ ′′(ρ̄)
+ π2D(ρ̄)2σ ′(ρ̄)

2

4σ(ρ̄)3
+ π2D(ρ̄)2σ ′′(ρ̄)

4σ(ρ̄)2
− π2D(ρ̄)D′(ρ̄)σ ′(ρ̄)

2σ(ρ̄)2

+ π2D(ρ̄)D′′(ρ̄)

4σ(ρ̄)
+ π2D′(ρ̄)

2

4σ(ρ̄)
+ 3ν2σ ′′(ρ̄)

2

64σ(ρ̄)

)
a4

1 + 3π2D(ρ̄)2

σ(ρ̄)
a2

2 + 1

2σ(ρ̄)
(60)

where σ (3), σ (4) denote the third and fourth derivatives. The optimal amplitudes a1, a2 of the traveling wave (59) are
the minimizers of the quartic form. Note that (60) is not always stable and for some specific choices of the functions D

and σ , the minimum of (60) can be −∞. For example the sign of the coefficient a4
1 depends on σ (4)(ρ̄) which can a

priori take any arbitrary value. The condition for the quartic form (60) to be stable can be written as

A(ρ̄) > 0, (61)

where

A(ρ̄) = 9ν2σ(ρ̄)2σ ′′(ρ̄)
4 − 96π2D′(ρ̄)

2
σ(ρ̄)2σ ′′(ρ̄)

2 + 48π2D(ρ̄)D′′(ρ̄)σ (ρ̄)2σ ′′(ρ̄)
2

+ 12π2D(ρ̄)2σ ′(ρ̄)
2
σ ′′(ρ̄)

2 − 24π2D(ρ̄)2σ(ρ̄)σ ′(ρ̄)σ ′′(ρ̄)σ (3)(ρ̄)

+ 48π2D(ρ̄)2σ(ρ̄)σ ′′(ρ̄)
3 + 48π2D(ρ̄)D′(ρ̄)σ (ρ̄)σ ′(ρ̄)σ ′′(ρ̄)

2

+ 48π2D(ρ̄)D′(ρ̄)σ (ρ̄)2σ ′′(ρ̄)σ (3)(ρ̄) − 4π2D(ρ̄)2σ(ρ̄)2σ (3)(ρ̄)
2

− 12π2D(ρ̄)2σ(ρ̄)2σ ′′(ρ̄)σ (4)(ρ̄) (62)

If (61) is not satisfied then one expects that a first order transition occurred before jc .
We suppose as before that σ ′′(ρ̄) < 0 and that (61) is satisfied. Then the minimum of (60) is achieved for

a1 = 2

√
−6Ljcσ (ρ̄)σ ′′(ρ̄)3

A(ρ̄)
and a2 =

(
D′(ρ̄)

2D(ρ̄)
− σ ′(ρ̄)

4σ(ρ̄)
− σ (3)(ρ̄)

12σ ′′(ρ̄)

)
a2

1 (63)

where A(ρ̄) is defined in (62). Thus for ε < 0, one finds at the second order

F(j) = (Ljc + ε − νσ(ρ̄))2

2σ(ρ̄)
− 3σ ′′(ρ̄)

4
(Ljc)

2

σ(ρ̄)A(ρ̄)
ε2 + O

(
ε3). (64)

Comparing (58) to (64), we see that if A(ρ̄) > 0 the time dependent profile gives lower F(j) than the flat profile.
As an example, we consider the weakly asymmetric simple exclusion process (WASEP) which follows the same

exclusion rule as the SSEP with jump rates biased by exp(ν/L) to the right and exp(−ν/L) to the left. In this case
D(ρ) = 1 and σ(ρ) = 2ρ(1 − ρ). Since σ ′′(ρ̄) = −4, the threshold of stability of the flat profile is given by

Ljc =
√

ν2σ(ρ̄)2 − 2π2σ(ρ̄)

For ε < 0, a perturbation of the form (59) leads to the quartic form (60)

π2 + 3
4 (ν2σ(ρ̄)2 − 4π2σ(ρ̄))

σ (ρ̄)3
a4

1 + 3π2σ ′(ρ̄)

2σ(ρ̄)2
a2

1a2 + 3π2

σ(ρ̄)
a2

2 − Ljc

σ (ρ̄)2
a2

1 + 1

2σ(ρ̄)
(65)

The quartic form (65) is stable so that the amplitudes of the traveling wave (59) are given by

a1 =
√

2Ljcσ (ρ̄)

3ν2σ(ρ̄)2 − 6π2σ(ρ̄) + π2
and a2 = − σ ′(ρ̄)

4σ(ρ̄)
a2

1 (66)
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Finally for ε < 0, one finds at the second order

F(j) = (Ljc + ε − νσ(ρ̄))2

2σ(ρ̄)
− ν2σ(ρ̄) − 2π2

3ν2σ(ρ̄)2 − 6π2σ(ρ̄) + π2
ε2 + O

(
ε3)

It is interesting to note that for the WASEP on a ring at density ρ̄ = 1/2, the optimal velocity is 0, thus the optimal
profile remains time independent. This means that the phase transition could have been detected already at the level
of the functional FL.

Finally, let us mention that in the large drift limit ν → ∞, the asymptotic cost for (50) as well as the asymptotic
shape of the optimal traveling waves can be computed [49]. In particular for the WASEP, the current large deviation
function (50) converges in the large drift limit ν → ∞ to the current large deviation function of the totally asymmetric
simple exclusion process [50,51]. We refer the reader to [49] for further details and to [52] for a study of the large
drift limit in the case of open systems.

7. Conclusion

In this article, we have shown how to generalize the detailed balance relation to take into account the effect of
reservoirs. From this generalized detailed balance relation the fluctuation theorem [16,17] can be recovered which
characterizes the odd part of the large deviation function of the current. By a simple additivity principle [35], one
can predict for diffusive systems the whole large deviation function as well as all the cumulants of the current. These
predictions agree with previous exact computations for some stochastic models like the symmetric simple exclusion
process [32]. For some models, however, the additivity principle provides only an upper bound of the large devia-
tion function of the current [12]. This fact as well as the occurrence of phase transitions has been discussed in the
framework of the macroscopic fluctuation theory [43,49].

A challenging issue would be to characterize precisely the range of validity of the additivity principle in the case of
diffusive stochastic models. Here we were only able to address the local stability of the time independent solution of
the additivity principle. How to calculate the large deviation function of the heat or particle current in a more general
framework (several species of particles, additional conserved or non-conserved quantities) is also an interesting open
question.
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