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Abstract

We analyse the different situations where a fluctuation theorem can be proved for a single macroscopic current of a system in
a nonequilibrium steady state sustaining several transport processes. We express the conditions under which such a fluctuation
theorem will hold in terms of the cycles and transport processes of the network. In this case, a given macroscopic current obeys
a fluctuation theorem regardless of the other transport processes. To cite this article: D. Andrieux, P. Gaspard, C. R. Physique 8
(2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Conditions thermodynamique et de réseau du théorème de fluctuations pour un seul courant macroscopique. Nous analy-
sons les différentes situations où un théorème de fluctuations peut être démontré pour un seul courant macroscopique d’un système
dans un état stationnaire de non-équilibre soutenant plusieurs processus de transport. Nous exprimons les conditions sous les-
quelles un tel théorème de fluctuations tiendra en termes des cycles et des processus de transport sur le réseau. Dans ce cas, un
courant macroscopique donné obéit à un théorème de fluctuations sans implication des autres processus de transport. Pour citer cet
article : D. Andrieux, P. Gaspard, C. R. Physique 8 (2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
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1. Introduction

Natural systems are driven out of equilibrium if their temperature, pressure, or chemical potentials are nonuni-
form. This is the feature of many physical, chemical, and biological systems [1–8]. Such nonequilibrium systems are
crossed by currents of energy or matter generated by the aforementioned nonuniformities, also called affinities [9].
The currents contribute to positive entropy production according to the second law of thermodynamics.
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At the mesoscopic level, the time evolution of these systems is ruled by a stochastic process which obeys a master
equation for the probability distribution of the coarse-grained states. Accordingly, all systems present fluctuations in
their currents. Recently, remarkable properties of the molecular fluctuations have been discovered in nonequilibrium
systems. The time evolution of the molecular fluctuations can be characterized in terms of their large deviations with
respect to their average. Several large-deviation dynamical relationships have been obtained such as the formulas of
the escape-rate and hydrodynamic-mode theories [10], as well as the nonequilibrium work theorem [11,12] and the
fluctuation theorems [13–25]. The fluctuation theorems are symmetry relations originating from microreversibility for
the probability distributions of fluctuating quantities, which are of interest for nonequilibrium thermodynamics and
transport properties. These new large-deviation relationships apply to mesoscopic devices ranging from electronic
transport in mesoscopic conductors [26] to chemically driven molecular motors [27]. These devices typically operate
in far-from-equilibrium regimes [28,29].

Here, we are interested in the fluctuation theorem for a single macroscopic current. Indeed, it has been proved in
Refs. [30,31] that there exists a fluctuation relation for the ensemble of nonequilibrium currents crossing the system
in a nonequilibrium stationary state. It is expressed in terms of the corresponding macroscopic affinities. However, in
experimental situations, it is not always possible to consider simultaneously all the currents and one usually measures
a subset of all possible currents. Moreover, the question whether a fluctuation theorem exists for a single macroscopic
current has been raised in relation with the sign of currents in ratchets [37]. Our aim is thus to derive the conditions
under which a fluctuation relation for such a single macroscopic current will hold.

The article is organized as follows. We introduce the stochastic description in terms of the master equation in
Section 2, as well as the cycle formalism developed in Ref. [33]. In Section 3, we define the generating function of the
currents and a fluctuation theorem for the cycle currents is proved at the mesoscopic level of description. We discuss
the relations between the macroscopic thermodynamic quantities and the cyclic paths of the process in Section 4. In
particular, we show that a single macroscopic current can be expressed in terms of the cyclic paths of the process. We
then derive the sufficient and necessary conditions under which a single macroscopic current will satisfy a fluctuation
symmetry. We also detail its implications on the response theory. In Section 5, we illustrate and discuss the different
results for a specific Markov process and a chemical reaction network process. Conclusions are drawn in Section 6.

2. Master equation and its cycle representation

2.1. The master equation

Many nonequilibrium phenomena are successfully described at the mesoscopic level in terms of continuous-time
random processes. They are ruled by an evolution equation, called the master equation, for the probability P(ω, t) to
find the system in some coarse-grained state ω at time t :

dP(ω, t)

dt
=

∑
ω′

[
W(ω′,ω)P (ω′, t) − W(ω,ω′)P (ω, t)

]
(1)

The coefficients W(ω′,ω) denote the rates of the transitions ω′ → ω. We assume that, if W(ω′,ω) > 0, the re-
versed transition is also possible W(ω,ω′) > 0. In the general case, W(ω′,ω) is composed of several transition rates
Wρ(ω′,ω) corresponding to the elementary processes ρ = 1,2, . . . , r and such that W(ω′,ω) = ∑

ρ Wρ(ω′,ω). This
is for instance the case in chemical reaction networks where each reaction defines an independent macroscopic cur-
rent and contributes separately to the entropy production [6,7,13,24,30] so that it is important to separate them in the
master equation. However, in order to simplify the notations in this paper, we here consider the case where there is
only one elementary process. Its extension to the general case is straightforward.

The master equation is known to evolve towards a steady state where dP/dt = 0. This stationary state is the
equilibrium one if the conditions of detailed balance

Peq(ω)W(ω,ω′) = Peq(ω
′)W(ω′,ω) (2)

are satisfied for all the possible forward and backward transitions ω � ω′. An equivalent condition can be expressed
in terms of the sole transition rates as

W(ω1,ω2)W(ω2,ω3) · · ·W(ωn,ω1) = W(ω1,ωn)W(ωn,ωn−1) · · ·W(ω2,ω1) (3)
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for every cyclic path ω1 → ω2 → ·· · → ωn → ω1 [7]. In the following, such a cycle will be denoted by c ≡
(ω1ω2 · · ·ωn) and the corresponding reversed cycles by c− ≡ (ω1ωn · · ·ω2). Here, we introduce the quantities
wc ≡ W(ω1,ω2) · · ·W(ωn−1,ωn)W(ωn,ω1) as the product of the transition rates along the cycle c. The equilibrium
conditions (3) are thus equivalent to

wc = wc− (4)

for every cycle c. If this condition is violated for a cycle, the system is in a nonequilibrium stationary state character-
ized by the presence of nonvanishing probability currents and a positive entropy production [7].

2.2. Stochastic trajectories and cycle representation

The equilibrium and nonequilibrium properties of the master equation can be characterized by a cycle representa-
tion of the Markov process. Such representation of the master equation has been extensively used in the biochemical
context by Hill [34–36]. This approach was latter developed by the Qians [13,33]. We now introduce this framework
in detail as we use this description in the following sections.

A stochastic trajectory ω corresponding to the master equation (1) is composed of transitions en ≡ ωn−1 → ωn

at random times tn. These transitions are the directed edges of the graph of the process while the states ωn are its
vertices. In this respect, we can consider a derived process η where we prune and list the cycles formed up to time t .
An example of construction of this process is

n 0 1 2 3 4 5 6 7 . . .

ωn 1 2 3 4 2 3 5 1 . . .

ηn [1] [12] [123] [1234] [12] [123] [1235] [1] . . .

cycles formed – – – – (234) – – (1235) . . .

where ωn denotes the states of the original process ω and ηn the states of the derived process η. We use the notations
of Ref. [13] where the process η has been extensively studied.

In this representation, all the different cycles c are taken into account at the time each cycle is completed. A
graphical representation of the derived process η is given by a tree with vertices corresponding to states [ω0ω1 · · ·ωs].
The states of the process η will be denoted η in the following. We notice that there is usually much more states η

than original states ω. However, this is not exactly a tree since there exist transitions towards the previous states. In
this case, one necessarily accomplishes the formation of a cycle and this transition is irreversible (except in the case
of back and forth cycles [ω0ω1 · · ·ωs] → [ω0ω1 · · ·ωsωs+1] → [ω0ω1 · · ·ωs]). Indeed, in the previous example, we
see that the transition [1234] → [12] can be accomplished but not the reversed one. An important point is that the
properties of a state [ω0ω1 · · ·ωs] are uniquely determined by its final value ωs when considering the transition rates
and waiting times. We thus define a mapping η̃ = [ω0ω1 · · ·ωs] → ωs . Another important remark is that the process η

constructed in this way depends on the initial value ω0 of the trajectory. However, it has been shown in Ref. [13] that
each such subprocess presents the same long-time properties.

We can now assign an arbitrary orientation to every different cycle so that it splits into a forward cycle c+ and a
backward cycle c−. The associated current jc is positive when the cycle c+ is completed and negative when the cycle
c− is. The associated cycle currents are thus defined as jc = jc+ − jc− along with their mean values Jc± ≡ 〈jc±〉.
We notice that the cycle currents jc are time-dependent fluctuating quantities while their mean values Jc = 〈jc〉 are
stationary if the system is in a steady state. The currents in the positive and negative orientations are related by
Jc+/Jc− = exp(wc+/wc−) as shown in [13,36]. It is therefore natural to define the affinity of a cycle as

A(c) = ln
wc+
wc−

(5)

This is also consistent with Schnakenberg’s approach [7].

3. Fluctuation theorem for mesoscopic cycle currents

In this section we want to show that one can derive a fluctuation theorem for single cycle currents as introduced in
Section 2. We point out that these cycle currents are still mesoscopic properties.
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We consider the derived process η. We associate with each different cycle c± a corresponding parameter λc. The
generating function is defined as

Q(λc1 , λc2, . . . , λcr ) ≡ lim
t→∞−1

t
ln

〈
e−∑

c λc

∫ t
0 dt ′ jc(t

′)〉 (6)

We first show that the generating function Q presents the symmetry

Q(λc1 , . . . , λcs , . . . , λcr ) = Q
[
λc1, . . . ,A(cs) − λcs , . . . , λcr

]
(7)

for any cycle cs and this in terms of its corresponding affinity (5). This remarkable result is a consequence of the
special structure of the derived process η. In particular, this result shows that all the cycles are independent in the
long-time limit.

The generating function (6) adds a contribution exp(∓λc) each time a directed cycle c± is completed. In order to
simplify the proof without loss of generality, we will consider the process η in discrete time.

This is not a restriction since we are here interested in a topological property holding in the long-time limit so that
it is equivalent to consider the embedded Markov chain defined by pωω′ = W(ω,ω′)/

∑
ω′ W(ω,ω′) if ω 
= ω′ and

pωω = 0 otherwise. In this case, the probability to observe a trajectory ω = ω1 · · ·ωn is given by

P(ω) = P(ω1 · · ·ωn) = pst(ω1)pω1ω2 · · ·pωn−1ωn (8)

If this trajectory ω contains nc cycles of type c, the corresponding trajectory ω′ where all the cycles of type cs are
completed in the reverse direction has the probability

P(ω′) = P(ω) exp
[−ncs (ω)A(cs)

]
(9)

where we used Eq. (5). We notice that this property would not hold for the process ω, in which the currents do not
change at the moments the cycles are completed. The probability P(Nc1 , . . . ,Ncs , . . . ,Ncr ) to observe a fixed number
Nci

of cycles is given by the sum of the probabilities of all the trajectories satisfying the constraints {Nci
} so that

P(Nc1 , . . . ,−Ncs , . . . ,Ncr ) = P(Nc1, . . . ,Ncs , . . . ,Ncr ) exp
[−Ncs A(cs)

]
(10)

since the relation (9) is valid for every trajectory. Therefore

〈
e−∑

i λci
Nci

〉 = +∞∑
Nci

=−∞
P(Nc1 , . . . ,Ncs , . . . ,Ncr )e

−∑
i λci

Nci

=
+∞∑

Nci
=−∞

P(Nc1 , . . . ,−Ncs , . . . ,Ncr )e
−[λcs −A(cs)]Ncs e−∑

i 
=s λci
Nci

= 〈
e−[A(cs)−λcs ]Ncs e−∑

i 
=s λci
Nci

〉
(11)

hence Eq. (7). This argument explicitly shows that the result (7) is based on the definition that the current jc changes
at the moment the cycle c is completed. The result (7) would not hold otherwise. Therefore, we have proved the
symmetry relation (7).

4. Conditions for single macroscopic current fluctuation theorems

In this section, we will consider the fluctuations of a single macroscopic current. A fluctuation theorem for the
ensemble of macroscopic currents has been derived in Refs. [30,31]. We will use the results of the previous section
in order to derive the general conditions under which a given macroscopic current will also satisfy a fluctuation
symmetry.

4.1. Thermodynamic description

We first show how thermodynamic quantities like macroscopic currents and affinities can be expressed in terms of
the cycles of the process. Indeed, from a macroscopic point of view, there is a finite number of irreversible processes k.
Each one is characterized by a mean current Jk and a driving force or affinity Xk [1]. Schnakenberg showed how to
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extract these independent quantities in the stochastic description [7], thanks to a graphical representation of the master
equation. In this framework, a maximal tree defines a set of independent cycles. A set of independent affinities Xk

can be associated with these fundamental cycles and they correspond to the macroscopic affinities defined in terms of
the differences of temperature, pressure, or chemical potentials between the heat or particle reservoirs maintaining the
system out of equilibrium.

Each cycle in the graph can be expressed in terms of the set of fundamental cycles [7]. The affinity A(c) of a cycle
c can thus be expressed in terms of the independent affinities Xk of the system [7] as

A(c) =
∑

k

ρk(c)Xk (12)

where ρk(c) ∈ Z counts the (positive or negative integer) contribution of the cycle to the given transport process k and
can be obtained from the structure of the graph [7]. Accordingly, a cycle c will contribute to the macroscopic current
Jk with a factor ρk(c) so that [13]

Jk =
∑

c

ρk(c)Jc (13)

This will be illustrated by an example in Section 5.

4.2. Single macroscopic current fluctuation theorems

We now consider the fluctuations of a particular macroscopic current i. If a cycle c contributes to the macroscopic
current i by a factor ρi(c) then the generating function of the current i should thus be defined as

Q̄i(λ) ≡ lim
t→∞−1

t
ln

〈
e−λ

∑
c ρi (c)

∫ t
0 dt ′ jc(t

′)〉 (14)

It is expressed in terms of the generating function of the cycles (6) as

Q̄i(λ) = Q
[
ρi(c1)λ, . . . , ρi(cr )λ

]
(15)

A first possibility is that only one cycle cs contributes to the macroscopic current Ji , so that ρi(cl) = 0 for cl 
= cs .
In this case, the symmetry (7) directly leads to Q̄i(λ) = Q̄i[A(cs)/ρi(cs) − λ].

In the general case where several cycles contribute to the macroscopic current Ji , we will look at the evolution
operator L̂ of the generating function and its eigenvalues s as done in Ref. [31] but at the level of the process η.
The matrix L̂ has thus elements Lηη′ = Wωω′ for transitions of type η = [ω0 · · ·ω] → η′ = [ω0 · · ·ωω′] and elements
Lηη′ = Wωω′ exp[−λρi(c)] if the transition η → η′ corresponds to the completion of cycle c in the ω space. Its diagonal
elements are −∑

j Wij . The eigenvalues equation thus reads

det
(
L̂ − sÎ

) = det M̂ = 0 (16)

where we have introduced the matrix M̂ ≡ L̂ − sÎ . The eigenvalues s are thus obtained as the zeroes of a poly-
nomial whose coefficients are functions of the parameter λ. The determinant can also be expressed as a sum over
the permutation group. The contribution of a cycle c to the determinant of the operator M̂ is therefore expressed as
mc = Mη0η1Mη1η2 · · ·Mηnη0 = wc exp[−ρi(c)λ] × D(c). Here, D(c) is the determinant of M̂ with the columns and
lines indexed in the complementary set of c = (ω1 · · ·ωm) and where we have also removed all the other cyclic con-
tributions. In particular, we note that D(c+) = D(c−) = D(c). Likewise, we can define the quantities D(c1, . . . , cr ).
The dependence on the eigenvalues s is contained in the terms D(c1, . . . , cr ). The determinant is then expressed as a
sum over all possible combinations of cycles.

Therefore, let us consider the case where we have at least two cycles c1 and c2 contributing to Ji , that is with
ρi(c1), ρi(c2) 
= 0. In this case, they are either disjoint (i.e. they do not possess any common edge) or not. In the case
the cycles c1 and c2 are disjoint, this determinant contains the terms[

e−λρi(c1+) + eλρi(c1+)−A(c1)
]
wc1+D(c1)

+ [
e−λρi(c2+) + eλρi(c2+)−A(c2)

]
wc2+D(c2)

+ {
e−λ[ρi (c1+)+ρi(c2+)] + eλ[ρi(c1+)+ρi(c2+)]e−A(c1)−A(c2)

}
wc1+wc2+D(c1, c2)

+ · · · (17)
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where we used that ρi(c+) = −ρi(c−), as well as the definition of the affinities (5). On the other hand, any symmetry
of the type λ → A − λ must be satisfied for any power of s. This implies that there cannot be any such symmetry
unless we have A = A(c1)/ρi(c1) = A(c2)/ρi(c2) = · · · = A(cs)/ρi(cs) for all the cycles with ρi(cs) 
= 0.

In the case the cycles c1 and c2 have a common vertex, we have instead[
e−λρi(c1+) + eλρi(c1+)−A(c1)

]
wc1+D(c1)

+ [
e−λρi(c1+) + eλρi(c2+)−A(c2)

]
wc2+D(c2)

+ · · · (18)

Since each term of the determinant det M̂ corresponds to a permutation of the states, a term corresponding to a
configuration with a state common to both cycles c1 and c2 is not possible. Indeed, such a configuration would
contradict the property of invertibility of the permutation group. Therefore, the term containing both cycles c1 and c2
does not appear in this case. Consequently, we here also see that there cannot be any symmetry of the type λ → A−λ

if the conditions A = A(c1)/ρi(c1) = A(c2)/ρi(c2) = · · · = A(cs)/ρi(cs) for all the cycles with ρi(cs) 
= 0 are not
satisfied. In the case ρi(c1+) = ρi(c2+), we cannot have a more complex symmetry because the terms D(c) still
contains the eigenvalues s and any symmetry should be satisfied for any power of s.

We thus have shown that the constraints derived above are necessary conditions in order for a single macroscopic
current symmetry to hold.

We can now use the result (7) to show that they also define sufficient conditions. Indeed, if the conditions A =
A(c1)/ρi(c1) = A(c2)/ρi(c2) = · · · = A(cs)/ρi(cs) for all the cycles with ρi(cs) 
= 0 are satisfied, the correspondence
(15) and the symmetry (7) immediately imply Q̄(λ) = Q̄(A − λ).

We now address the problem of determining the constant A. Let us consider the fundamental cycle Ci defining the
current Ji [7]. In particular, it satisfies ρi(Ci) = 1 as well as A(Ci) = Xi . The constant A is thus simply given by Xi .

We therefore obtain our central result:

Fluctuation theorem for a single macroscopic current. The generating function (14) of the integrated fluctuating
current obeys the symmetry

Q̄i(λ) = Q̄i(Xi − λ) (19)

if and only if the network is such that Xi = A(c1)/ρi(c1) = A(c2)/ρi(c2) = · · · = A(cs)/ρi(cs) for all the cycles c

with ρi(c) 
= 0.

Let us consider in more detail the conditions of the theorem. According to Eq. (12), the affinity of a cycle will
contain the term ρi(c)Xi so that the constant ratio A(cl)/ρi(cl) = Xi imposes

0 =
∑
j 
=i

ρj (cl)Xj (20)

for the cycles cl such that ρi(cl) 
= 0. The usual situation where these conditions (20) are satisfied is when the other
transport processes contributing to the given current i are partially at equilibrium.

We can also consider the more complex case with several mechanisms ρ of transitions between the states, as
discussed in Section 2. The main reasoning remains unchanged. However, we will show in the next section that,
in some specific cases, one can nevertheless satisfy an individual fluctuation symmetry even if the conditions
A = A(c1)/ρi(c1) = A(c2)/ρi(c2) = · · · = A(cs)/ρi(cs) for all the cycles with ρi(c) 
= 0 are not met. Indeed, the
conditions derived in the present section are sufficient but not necessary conditions when there exists several transi-
tion mechanisms ρ.

4.3. Consequences

It is important to notice that the fluctuation symmetry (19) does not depend explicitly on the other affinities present
in the system. This is an important point regarding the theory of linear and nonlinear responses. Indeed, one can use
the fluctuation theorem for the set of currents to derive relations between the response coefficients and the fluctuations
in near- and far-from-equilibrium situations [32]. Here, we demonstrated that, under certain circumstances, a single
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macroscopic current presents a symmetry involving only one affinity. We may wonder about the implications for the
response theory. The mean currents can be expanded in terms of the macroscopic affinities as

Jα =
∑
β

LαβXβ + 1

2

∑
β,γ

Mαβγ XβXγ + 1

6

∑
β,γ,δ

Nαβγ δXβXγ Xδ + · · · + 1

n!
∑

β,...,μ

C
(n)
αβ···μ Xβ · · ·Xμ︸ ︷︷ ︸

n

+· · · (21)

We now consider the response with respect to the set of thermodynamic forces that are not equal to zero for the
fluctuation theorem (19) to hold. Using the symmetry (19) and the response theory of Ref. [32], we see that all the
coefficients C

(n)
αβ···μ are equal to zero if all the indices β, . . . ,μ are different from α. All the remaining contributions

are thus at least proportional to Xα . In particular, the Onsager reciprocity relations are trivially satisfied since Lαβ = 0
if β 
= α. Thus, the mean current has the form

Jα = Γ (1)Xα + 1

2
Γ (2)X2

α + 1

6
Γ (3)X3

α + · · · (22)

with coefficients Γ (n) depending on the other affinities Xβ with β 
= α. Therefore, the mean current vanishes if and
only if Xα = 0 regardless of the other thermodynamic processes at stake.

5. Examples

5.1. Model with seven states

In this section, we illustrate the result of Section 3. We consider a schematic Markov process with 7 states. The
graph of this Markovian process is depicted in Fig. 1.

In this graph, there exists 8 cycles ci which are respectively (123), (134), (234), (1234), (124), (1423), (1243)

and (567). A priori, there exist four independent currents Jk with the corresponding thermodynamic forces Xk (k =
1,2,3,4). In order to illustrate the case where two mesoscopic currents contribute to the same macroscopic current,
we suppose that the mesoscopic transitions 1 → 2 and 4 → 1 equally contribute to the macroscopic current J3. On the
other hand, we assume that the transitions 6 → 7 contribute to the macroscopic current J1 and the transitions 4 → 2
to the current J2. Consequently, the macroscopic currents are given in terms of the cycle currents according to

J1 = J(567) (23)

J2 = J(234) − J(124) − J(1243) − J(1324) (24)

J3 = J(123) + J(134) + 2J(124) + 2J(1234) + J(1243) (25)

which allows us to read the coefficients ρk(c). Using Eq. (12), the affinities of the cycles can thus be expressed in
terms of the macroscopic thermodynamic forces as

A(567) = X1, A(234) = X2, A(134) = X3, A(123) = X3 (26)

A(1324) = X3 − X2, A(1234) = 2X3, A(124) = 2X3 − X2, A(1243) = X3 − X2 (27)

Fig. 1. Graph of the Markov process with 7 states. There exist 8 cycles in the graph which are specified in the text. The currents are defined on the
dashed edges which are the chords of the four independent currents. The chords 1 → 2 and 4 → 1 are supposed to contribute equally to the current
J3. The arrows indicate the directions of the currents J1, J2, and J3. The multiplicity of the arrows corresponds to the number γ = 1,2,3 of the
current Jγ .
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Using the techniques developed in Ref. [31], we can derive a fluctuation theorem for these currents which takes the
form

Prob[{ 1
t

∫ t

0 dt ′ jγ (t ′) ∈ (αγ ,αγ + dαγ )}]
Prob[{ 1

t

∫ t

0 dt ′ jγ (t ′) ∈ (−αγ ,−αγ + dαγ )}] � exp
∑
γ

Xγ αγ t (t → ∞) (28)

with γ = 1,2,3.
Now, we may wonder if only one of these currents obeys a single macroscopic current fluctuation theorem. Ac-

cording to the analysis of Section 4.2, we have to look at the cycles contributing to the given current. Let us consider
the current J3. In this case, we readily see from Eq. (27) and Fig. 1 that the different cycles contributing to the macro-
scopic current (25) present the same affinity if one sets X2 = 0 regardless of X1. In this case, we have the fluctuation
theorem

Prob[ 1
t

∫ t

0 dt ′ j3(t
′) ∈ (α,α + dα)]

Prob[ 1
t

∫ t

0 dt ′ j3(t ′) ∈ (−α,−α + dα)] � expX3αt (t → ∞) (29)

Fig. 2. Probability distribution of I3 = (1/t)
∫ t

0 dt ′ j3(t ′) for different values of the thermodynamic forces X1, X3 at time t = 70. X2 must be equal
to zero. The parameters take the values k12 = k23 = k34 = k56 = k67 = k78 = 1.5, k21 = k32 = k43 = k65 = k76 = k87 = 1, k18 = k81 = 2, while
the other transition rates are fixed according to the thermodynamic forces Xγ .

Fig. 3. Negative part of the probability distribution of I3 = (1/t)
∫ t

0 dt ′ j3(t ′) for the same values of the thermodynamic forces Xγ as in Fig. 2. In
each case, the probability distribution is compared with the prediction (29) of the fluctuation theorem with the macroscopic affinity X3 (crosses).
A nice agreement is observed in all the cases.
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which concerns the single macroscopic current I3 = (1/t)
∫ t

0 dt ′ j3(t
′). Indeed, the symmetry (19) is equivalent to

the large-deviation property (29). The probability distribution of (1/t)
∫ t

0 dt ′ j3(t
′) is illustrated in Fig. 2 for different

values of the parameters while the fluctuation relation (29) is checked in Fig. 3. In the same way, we have a fluctuation
symmetry for J2 if X3 = 0, while J1 always satisfies a fluctuation theorem. Note that the fluctuation theorem for J2
and J3 would hold even if the right-hand part of the graph, namely the states 6 and 7, would be replaced by a more
complex graph with more states and transitions.

5.2. Chemical reaction network

Here, we consider the following reaction network:

R1
k+1�
k−1

N, R2
k+2�
k−2

N, . . . , Rr

k+r�
k−r

N (30)

For this simple network, the transition rates are given by the mass-action law [5]

Wρ(N |N + 1) = k+ρ〈Rρ〉 (31)

Wρ(N |N − 1) = k−ρN (32)

where 〈Rρ〉 denotes the mean number of reactant molecules Rρ with ρ = 1,2, . . . , r and N = 0,1,2, . . . is the fluctu-
ating number of molecules of the intermediate species N. With these transition rates, the stationary state of the master
equation (1) is given by the Poisson distribution:

Pst(N) = e−〈N〉st
〈N〉Nst

N ! (33)

with the mean value

〈N〉st =
∑r

ρ=1 k+ρ〈Rρ〉∑r
ρ=1 k−ρ

(34)

Therefore, this model has several transition mechanisms ρ = 1,2, . . . , r . Although it does not satisfy the network
conditions of Section 3, we will show that it nevertheless does satisfy a fluctuation relation for each single macroscopic
current. This is due to the particular topology of the network for these transition rates.

Here, we present the generating function of one current in order to illustrate the single macroscopic current fluc-
tuation theorem with an analytical solution. The detailed derivation is given in the appendix. We find the following
result for the fluctuations of reaction 1

Q(λ) ≡ lim
t→∞−1

t
ln

〈
e−λ

∫ t
0 j1(t

′)dt ′ 〉

=
r∑

ρ=1

k+ρ〈Rρ〉 −
∑r

ρ=2 k+ρ〈Rρ〉
(
∑r

ρ=1 k−ρ)(
∑r

ρ=2 k−ρ)
φ(λ)φ(A − λ) (35)

where

φ(λ) = k−1eλ +
r∑

ρ=2

k−ρ (36)

The driving force is here given by

A = X1 + ln

( ∑r
ρ=2 k−ρ∑r

ρ=2 k−ρeXρ

)
(37)

with the thermodynamic forces

Xρ ≡ ln
k−rk+ρ〈Rρ〉

(38)

k−ρk+r 〈Rr 〉
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and Xr = 0. The asymmetry with respect to the reaction r results from our choice of the dependent reaction in the
network. The function (35) presents the symmetry

Q(λ) = Q(A − λ) (39)

of the fluctuation theorem. Here, the driving force is not directly given by one of the thermodynamic forces Xρ ,
although both are macroscopic.

6. Conclusions

In this article, we derived the conditions under which a fluctuation theorem should hold for a single macroscopic
current. These conditions can be expressed in terms of the cycles and transport processes occurring in the network. If
the transport process is accomplished over an ensemble of cycles with the same macroscopic affinity the corresponding
current will obey a fluctuation theorem with a driving force corresponding to this macroscopic affinity. These results
are important for several applications as it is not always possible to keep track of all the currents present in the system.
The fluctuation theorem for single currents has also important consequences as discussed in Ref. [37] in the context
of flashing ratchets. It can be shown that the conditions we have here derived do no apply to such systems where a
fluctuation theorem should not exist for single currents. This can already be checked in the simple model introduced
in Ref. [38]. However, there could exist several systems where single macroscopic currents would satisfy a fluctuation
symmetry. This is for instance the case in the simple model we constructed or for a chemical reaction network. This
fluctuation relation could also be used to detect new biochemical cycles. Indeed, if a fluctuation relation is not observed
for a current when its conditions of validity are satisfied, this would strongly suggests the existence of a hidden—even
rare—biochemical cycle as such cycles will usually break the fluctuation symmetry of an individual current.
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Appendix A. Current generating function for the chemical network

For simplicity, we consider the case of a reaction network with only two reservoirs. The general case is obtained
thanks to the substitutions k+2〈R2〉 → ∑r

ρ=2 k+ρ〈Rρ〉 and k−2 → ∑r
ρ=2 k−ρ .

Let us introduce the probability P(N,k, t) to have N particles at time t while having a signed cumulated current
of k particles for the reaction 1. We can derive an evolution equation for this quantity in the following way

dP(N,k, t)

dt
= k+1〈R1〉P(N − 1, k − 1, t) − k+1〈R1〉P(N,k, t)

+ k−1(N + 1)P (N + 1, k + 1, t) − k−1NP(N,k, t)

+ k+2〈R2〉P(N − 1, k, t) − k+2〈R2〉P(N,k, t)

+ k−2(N + 1)P (N + 1, k, t) − k−2NP(N,k, t) (A.1)

Let us introduce the generating function of this quantity

F(s, s1, t) =
∞∑

N=0

+∞∑
k=−∞

sNsk
1P(N,k, t) (A.2)

With the knowledge of F , we can recover the various probabilities by developing F in powers of s and s1, or equiv-
alently by taking derivatives at s = 1. Note that we can trace out the information we do not need by putting the
corresponding variable s or s1 equal to unity. Besides, the normalisation requires that F(1,1, t) = 1, ∀t . Since we are
interested in the steady state, the initial condition will be

P(N,k, t = 0) = e−〈N〉 〈N〉N
δ0,k (A.3)
N !
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or

F(s, s1, t = 0) = e〈N〉(s−1) (A.4)

We can now deduce the evolution equation for F(s, s1, t)

∂F (s, s1, t)

∂t
=

∞∑
N=0

+∞∑
k=−∞

sNsk
1
∂P (N,k, t)

∂t
(A.5)

which, after some manipulations, becomes

∂F (s, s1, t)

∂t
= [

k+1〈R1〉(ss1 − 1) + k+2〈R2〉(s − 1)
]
F(s, s1, t)

+
[
k−1

(
1

s1
− s

)
+ k−2(1 − s)

]
∂F (s, s1, t)

∂s
(A.6)

We now have to solve a first-order partial differential equation with the initial condition (A.4). Using the method of
characteristics to solve it, we find

F(s, s1, t) = exp

[
t
AC − BD

D
− B

D
− (A − B)C

D2

(
1 − e−Dt

)]
exp

{
s

[
B

D
e−Dt + A

D

(
1 − e−Dt

)]}
(A.7)

where

A = k+1〈R1〉s1 + k+2〈R2〉 (A.8)

B = k+1〈R1〉 + k+2〈R2〉 (A.9)

C = k−1

s1
+ k−2 (A.10)

D = k−1 + k−2 (A.11)

We notice that 〈N〉 = B/D. We can check the consistency condition of the normalisation, and also that the steady
state solution is recovered if s1 = 1. Since we are interested in the current, we can evaluate the function F at s = 1
with s1 = e−λ to get

F(1, s1, t) =
∞∑

N=0

+∞∑
k=−∞

sk
1P(N,k, t) =

+∞∑
k=−∞

e−λkP (k, t) = 〈
e−λ

∫ t
0 j1(t

′)dt ′ 〉 ∼ e−Q(λ)t (A.12)

where P(k, t) is the probability of a signed cumulated current of k particles for the reaction 1, regardless the number N

of particles of the intermediate species N. In this way, we should obtain the generating function (35) of the fluctuations
of reaction 1 in the long-time limit t → ∞. Using the solution (A.7), we find that

F(1, s1, t) = exp

[
t
AC − BD

D
− (A − B)(C − D)

D2

(
1 − e−Dt

)] ∼ e−Q(λ)t (A.13)

In the long-time limit t → ∞, the generating function (35) is thus given by

Q(λ) = B − AC

D
= k+1〈R1〉 + k+2〈R2〉 − 1

k−1 + k−2

(
k−1eλ + k−2

)(
k+1〈R1〉e−λ + k+2〈R2〉

)
(A.14)

according to the definitions (A.8)–(A.11) with s1 = e−λ.
Finally, we obtain the expression (35) using the substitution mentioned at the beginning of this appendix and the

expression (37) of the driving force.
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