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Work, dissipation, and fluctuations in nonequilibrium physics

Negative entropy production in oscillatory processes
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Abstract

Linear irreversible thermodynamics asserts that the instantaneous local spontaneous entropy production is always nonnegative.
However, for a viscoelastic fluid this is not always the case. Given the fundamental status of the Second Law, this presents a
problem. We provide a new rigorous derivation of the Second Law, which is valid for the appropriately time averaged entropy pro-
duction allowing the instantaneous entropy production to be negative for short intervals of time. We show that time averages (rather
than instantaneous values) of the entropy production are nonnegative. We illustrate this using molecular dynamics simulations of
oscillatory shear. To cite this article: S.R. Williams et al., C. R. Physique 8 (2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Production d’entropie négative dans les processus oscillatoires. La thermodynamique irréversible linéaire affirme que la pro-
duction d’entropie locale instantanée est toujours non-négative. Cependant, pour un fluide visco-élastique, ceci n’est pas toujours
le cas. Etant donné le statut fondamental du second principe, ceci constitue un problème. Nous donnons une nouvelle dérivation
rigoureuse du second principe, qui est valable pour une production d’entropie adéquatement moyennée sur le temps permettant à la
production d’entropie instantanée d’être négative sur de courts intervalles de temps. Nous montrons que les moyennes temporelles
de la production d’entropie (plutôt que ses valeurs instantanées) sont non-négatives. Nous illustrons ceci par des simulations de
dynamique moléculaire de cisaillement oscillatoire. Pour citer cet article : S.R. Williams et al., C. R. Physique 8 (2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
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Linear irreversible thermodynamics asserts that in local equilibrium (see Appendix A), the spontaneous entropy
production per unit time, per unit volume, the so-called entropy source strength σ(r, t), cannot be negative [1,2].
Further it states that the entropy source strength is a sum of products of irreversible thermodynamic fluxes Ji and
forces Xi ,

σ(r, t) =
∑

Ji(r, t)Xi(r, t) � 0 (1)
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where the source strength is calculated at a position r and a time t . For steady state processes close to equilibrium
Eq. (1) is clearly correct. However, for processes that involve time dependent or oscillatory thermodynamic forces,
in viscoelastic materials close to equilibrium, Eq. (1) is incorrect. These problems are usually resolved by separating
the fluxes into ‘storage and loss’ components [3]. Such a separation is not derived from first principles and is process
specific. A second problem with Eq. (1) is that it is restricted to the near equilibrium, linear response, regime. Further
from equilibrium the definition of entropy and therefore temperature remains an unsolved problem [4]. Until very
recently there has been no known generalization of Eq. (1) to the far from equilibrium regime.

Recent advances, which are of broad interest [5,6], have cast new light on these issues. In particular we will use
the Jarzynski Equality (JE) [7,8] to rigorously derive a variation on Eq. (1). In order to proceed we first define the
conjugate flux J, for a system which is driven away from equilibrium by a dissipative field Fe , in terms of the rate that
work is done on the system [9],

JV · Fe(t) = −kBT Ω(t) ≡ kBT Λ
(
Γ (t)

) − d

dt
H0

(
Γ (t)

)
(2)

Here V is the system volume, kB is Boltzmann’s constant, T is the temperature of the synthetic thermostat or a large
heat reservoir [10], Ω(t) is the dissipation function as defined for the Evans–Searles Fluctuation Theorem [11], Γ (t)

is the phase space vector, H0 is the internal energy, kBT Λ gives the rate that heat is lost from the system to the
thermostat or reservoir [10] and Λ is the phase space compression factor [9]. Eq. (2) is defined for arbitrary field
strengths and in the linear response regime it gives the entropy production,

−〈
JV · Fe(t)

〉
/T = kB

〈
Ω(t)

〉 = ∫
V

drσ(r, t) + O
(
F 4

e

)
(3)

where 〈. . .〉 denotes an ensemble average.
The JE has been shown [7,8] and proved [12] for the time reversible thermostatted dynamics we employ below.

It has also been experimentally verified [13,14]. The JE gives the change in Helmholtz free energy �A for a system
which has undergone a nonequilibrium process starting from an initial (t = 0) equilibrium distribution of phases
f1(Γ,0) ∝ exp[−βH(Γ,λ(0))] and initial Hamiltonian H(Γ,λ(0)) to a final Hamiltonian H(Γ,λ(τ)) at t = τ and
then relaxed to a new equilibrium. The dynamical proof [12] requires that the dynamical pathway Γ (t) be such that
the distribution of phases at t = τ can subsequently relax to a final canonical distribution at t = ∞, f∞(Γ,∞) ∝
exp[−βH(Γ,λ(τ))]. The parametric transformation of the Hamiltonian is complete at a finite time t = τ , by which
time the system is not expected to have fully relaxed to the new equilibrium. JE states,〈

exp(−βWτ )
〉 = exp(−β�A) (4)

where Wτ = ∫ τ

0 ds Ẇ (s) is the Jarzynski work function and Ẇ (t) ≡ [ d
dt

H0(Γ (t), λ(t))]−kBT Λ(Γ (t)) [12]. Although
H0(Γ (τ), λ(τ )) �= H0(Γ (∞), λ(τ )) it is clear that, Wτ = W∞.

The proof of the JE [12] requires that the two systems be connected by a path 1 → 2 and its inverse path 2 → 1.
The proof does not put restrictions on the time dependence of the path. The parametric change in the Hamiltonian
from λ(0) → λ(τ) may in addition contain work due to the system being driven by a dissipative external field [12]. If
the work is solely due to a dissipative external field (λ̇ = 0 ∀t) then the rate of work Ẇ will be the same as that given
by Eq. (2) (i.e. Ẇ = kBT Ω).

The JE allows a rigorous proof of the Second Law Inequality (SLI) from the equations of motion as first shown by
Jarzynski [8]. By combining Eq. (4) with the mathematical identity exp(x) � 1 + x we have,

e−β�A = 〈
e−β(Wτ −〈Wτ 〉)〉e−β〈Wτ 〉 � e−β〈Wτ 〉 (5)

Noting that ex is a monotonically increasing function we derive the Clausius Inequality

〈Wτ 〉 � �A, ∀τ � 0 (6)

If the system of interest is a fluid and if the transformation involves, say, a shearing deformation or perhaps the
translation of one particle through a fixed distance, then clearly �A = 0, we may treat the field as external λ̇ = 0, and
thus, by Eq. (2), Wτ = kBT Ω̄τ τ = − ∫ τ

0 ds J(s)V · Fe(s) where Ω̄τ ≡ 1
τ

∫ τ

0 ds Ω(s). The SLI then follows,

〈Ω̄τ 〉 = − 1

τkBT

τ∫
ds

〈
J(s)V · Fe(s)

〉
� 0, ∀τ � 0, ∀Fe(s) (7)
0
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which forms a generalization of Eq. (1) that is valid at arbitrary field strengths and derived from the equations of
motion. A significant difference between Eqs. (7) and (1) is that Eq. (1) applies to instantaneous values whereas
Eq. (7) applies to time averages of the entropy production starting at t = 0 from an initial canonical distribution.
We note that Eq. (7) has previously been derived under a more restrictive set of conditions from the Evans–Searles
Fluctuation Theorem [15].

We decided to test this prediction using nonequilibrium molecular dynamics simulations of shear flow in a fluid.
We consider the case of sinusoidal shear applied to a viscoelastic fluid. We employ the Lees–Edwards (sliding brick)
periodic boundary conditions along with the so-called SLLOD equations of motion for planar Couette flow [9],

q̇i = pi

m
+ iγ̇ (t)qyi , ṗi = Fi − iγ̇ (t)pyi − αpi (8)

where γ̇ ≡ ∂ux/∂y is the strain rate, pi is the peculiar momentum taken relative to the streaming velocity ux(y) =
iγ̇ (t)y and α(t) is a Gaussian thermostat multiplier which holds the kinetic temperature fixed [9]. For Couette flow
with a constant strain rate the SLLOD equations of motion are known to give an exact description of steady adia-
batic planar Couette flow for arbitrary values of the strain rate [9]. For time dependent shear flows it is known that
the SLLOD equations give an exact description of such flows in the linear response regime for both adiabatic and
thermostatted flows [9]. For high shear, oscillatory flows it is not known whether SLLOD is exact, but it is widely
assumed this is so.

To apply the SLI, Eq. (7), to the equations of motion (8), we note that the equilibrium Hamiltonian or internal
energy is H0 = ∑

p2
i /2m + Φ where Φ is the total interparticle pair potential. The dissipation function, which in the

linear response regime gives the entropy production equation (3), may then be obtained from,

kBT Ω(t) = −γ̇ V Pxy = −γ̇

(
N∑

i=1

pxipyi

m
−

N∑
i<j

Fxij qyij

)
(9)

where N is the number of particles, Pxy is the xy element of the pressure tensor, Fxij is the x component of the
pairwise additive force on particle i due to particle j , qyij is the y component of the vector connecting their centers
and pxi is the x component of the momentum of particle i. So in this case for JV · Fe we have J = Pxy and Fe = γ̇ .

Simulations of oscillatory shear were carried out on a fluid in three dimensions using the pair potential φij =
ε[(σ/rij )

12 − (σ/rij )
6 + 0.25] ∀rij < 21/6, with the volume and temperature held constant. The equations of mo-

tion were solved using a fourth order Runge–Kutta algorithm with a time step �t = 0.001. The number density is
ρ = Nσ 3/V = 0.95, N = 108, kBT = ε and the time unit is

√
mσ 2/ε throughout. For times t � 0 the system was

in equilibrium. The initial equilibrium configurations were obtained by sampling an equilibrium trajectory, at time
intervals of 5, which was generated by solving Eq. (8) with γ̇ = 0. Starting from these initial configurations a total of
5 × 105 nonequilibrium oscillatory Couette flow trajectories were computed: γ̇ (t) = γ̇0 sin(ωt), t > 0 with ω = 4π

and γ̇0 = 0.2. The duration of the nonequilibrium trajectories was 2.
In Fig. 1 the dissipation function, 〈Ω(t)〉 in units of kB (which was calculated by ensemble averaging all of the

nonequilibrium trajectories) is plotted as a function of time along with the ensemble averaged rate of heat absorbed by
the thermostat, Q̇(t) = −3NkBT 〈α(t)〉 = kBT 〈Λ〉 in units of ε. Also shown is the strain rate, 10 × γ̇ (t). The initial
transients in the response decay very rapidly. It is clear that the response of the fluid is viscoelastic: there is a phase
lag between Pxy(t) and γ̇ (t) due to the relatively high frequency ω. This shows that the dissipation function (or at
weak fields, equivalently, the entropy production equation (3)) is negative within certain intervals of time even though
the system’s response is linear. This effect is not due to the amplitude of the shear rate γ̇0 being large. This is clearly
at odds with the traditional view from irreversible thermodynamics. In contrast Eq. (7) is satisfied at all times as may
be seen in Fig. 2 where the integral 〈Ω̄t 〉t and the time average 〈Ω̄t 〉 are plotted as a function of time t .

In summary we have shown the assertion of linear irreversible thermodynamics that the instantaneous entropy
production is always nonnegative is incorrect for the case of time dependent viscoelastic fluids even if they are in the
linear response regime close to equilibrium. The Second Law Inequality (7) derived from the Jarzynski Equality states
that the time integral (starting from t = 0) of the ensemble averaged dissipation function cannot be negative for arbi-
trary integration times and arbitrary field strengths (of course in the weak field limit the dissipation function is equal
to the entropy production equation (3)). This inequality requires that the Helmholtz free energy of the corresponding
equilibrium system does not change. For planar shear this is a necessary condition for the fluid state, which by defini-
tion cannot support a constant stress. For a solid, undergoing oscillatory nonplastic deformation, the equilibrium free
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Fig. 1. The response of the system to the oscillatory shear, in the linear
response regime, which began at time t = 0 following Eq. (8). The solid
line is the entropy production, 〈Ω(t)〉 = −γ̇ Pxy(t)V/ε. The dashed line
is the instantaneous rate of heat absorbed by the thermostat 〈dQ/dt〉/ε.
The dotted line gives the strain rate γ̇ (t) multiplied by a factor of 10.
The data for the heat exchange is considerably more noisy than the other
data. Clearly 〈Ω(t)〉 is at times negative.

Fig. 2. The dashed line is the integral, 〈Ω̄t 〉t , which is nonmonotonically
increasing but always nonnegative. The solid line (black) is the time
average 〈Ω̄t 〉 which is also always nonnegative.

energy would depend on the deformation and the Clausius Inequality (6) will need to be used rather than the Second
Law Inequality (7).

Lastly we note that the Second Law Inequality is a macroscopic consequence of the Jarzynski Equality and of
the Evans–Searles Fluctuation Theorem [15]. All previously derived consequences of the JE and the Fluctuation
Theorem were microscopic in nature. The Second Law Inequality in the form Eq. (7), has important consequences in
applications such as atmospheric physics where the principle of maximum entropy in nonequilibrium states has been
employed [16].
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Appendix A. Local equilibrium

Local equilibrium requires that the local thermodynamic potentials are the same function of thermodynamic state
variables that they are in total equilibrium [2]: in the case presented here the same function of the thermostat temper-
ature and the number density. For an isotropic fluid variables such as the pressure, the internal energy and the entropy
do not change to linear order in the amplitude of the external field regardless of the time dependence. Thus the local
equilibrium requirement and the linear response regime are formerly equivalent. This can be shown from response
theory [9]. To linear order the average of the xy element of the pressure tensor Pxy , for a process which begins at
t = 0, is given by the Green–Kubo relation

〈
Pxy(t)

〉 = −βV

t∫
0

ds γ̇ (t − s)
〈
Pxy(0)Pxy(s)

〉
0 + O

(
γ̇ 3

0

)

where the notation 〈. . .〉0 denotes that the correlation function is determined for a system in equilibrium. Thermo-
dynamic potentials are scalar variables which, in an isotropic fluid, do not change to linear order. If we denote a
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scalar variable as B(t) then, in an isotropic fluid, its cross correlation function with a tensor element has the property,
〈B(0)Pxy(t)〉0 = 0 ∀t , due to symmetry. Thus to linear order in the external field scalar variables do not change,

〈
B(t)

〉 = −βV

t∫
0

ds γ̇ (t − s)
〈
B(0)Pxy(s)

〉
0 + 〈

B(0)
〉 + O

(
γ̇ 2

0

) = 〈
B(0)

〉 + O
(
γ̇ 2

0

)

Equivalently one may expand the distribution function fFe(�, t) as a Taylor series in the external field,

fFe(�, t) = f0(�, t) + f1(�, t)Fe + O
(
F 2

e

)
,

where f0(�, t) is the equilibrium distribution function, and arrive at the same conclusion. This is shown in detail for
dense gases using Enskog theory in Ch. IX, §6 of Ref. [2].
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