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Abstract

Although most metal–insulator transitions in doped insulators are generally viewed as Mott transitions, some systems seem
to deviate from this scenario. Alkali metal–ammonia solutions are a brilliant example of this. They reveal a phase separation in
the range of metal concentrations where a metal–insulator transition occurs. Using a mean spherical approximation for quantum
polarizable fluids, we argue that the origin of the metal–insulator transition in such a system is likely to be similar to that proposed
by Herzfeld a long time ago, namely, due to fluctuations of solvated electrons. We also show how the phase separation may appear:
the Herzfeld instability of the insulator occurs at a concentration for which the metallic phase is also unstable. As a consequence,
the Mott transition cannot occur at low temperature. The proposed scenario may provide a new insight into the metal–insulator
transition in condensed-matter physics. To cite this article: G.N. Chuev, P. Quémerais, C. R. Physique 8 (2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Instabilité de Herzfeld versus transition de Mott dans les solutions de métaux dans l’ammoniac. Bien que la plupart des
transitions isolant–métal dans les semiconducteurs dopés soient interprétées comme des transitions de Mott, certains systèmes
semblent échapper à ce scénario. Les solutions de métaux alcalins dans l’ammoniac en sont un brillant exemple. Elles présentent
une séparation de phase dans la gamme de concentration pour laquelle la transition isolant–métal se produit. En utilisant des
approximations adéquates pour les fluides quantiques polarisables, nous montrons que l’origine de la transition isolant–métal
dans ce système est probablement similaire à celle proposée il y a longtemps par Herzfeld, c’est-à-dire, due aux fluctuations des
électrons solvatés. Nous montrons également pourquoi la séparation de phase peut apparaître : l’instabilité de Herzfeld de l’isolant
se produit à une concentration pour laquelle la phase métallique est aussi instable. En conséquence, la transition de Mott ne peut pas
se produire à basse température. Le scénario proposé ouvre de nouvelles perspectives pour la transition isolant–métal en physique
de la matière condensée. Pour citer cet article : G.N. Chuev, P. Quémerais, C. R. Physique 8 (2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
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1. Introduction

In his theory of metalization, Herzfeld [1], following previous studies of Goldhammer [2], has considered dipolar
fluctuations of neutral atoms as the origin of a metal–insulator transition (MIT). He emphasized that the restoring
force of an electron bound to an atom collapses and the substance becomes metallic at increased densities due to
local field effects. Despite some successful examples of applications [3–6], serious doubts arose because most of the
experiments gave evidence in favor of the Mott scenario [7]. The two theories are based on very different effects, since
Mott considered the MIT from the metallic side of the transition, whereas Herzfeld investigated the same phenomenon
from the insulating one. Recent studies on a Wigner crystal formed by large polarons have, however, opened new
perspectives for the Herzfeld idea [8,9]. Motivated by these studies, we argue that a modified Herzfeld approach
may provide a key to understand the MIT in certain real systems. In particular, we focus in this paper on the metal–
ammonia solutions (MAS). Although it is a century-old problem [10], the phase diagram of MAS (see Fig. 1) has
remained mysterious up to now. Many studies have been performed and a large volume of experimental data have
been accumulated about this fascinating system (for review, see [12,13]). Once an alkali metal is dissolved in liquid
ammonia, it immediately dissociates to give two separated entities with unlike charges: the solvated ions and the
excess electrons. At low metal concentration, the solution remains non-metallic (electrolytic) and has an intense
blue colour independently on the type of alkali metal. Jortner [14] argued that due to short-range interactions with
ammonia molecules, an excess electron forms a cavity free of solvent in which it localizes with the help of the
polarization carried by the surrounding ammonia molecules. This process results in a trap formation similar to that for
the polarons in solids. The radius of the cavity has been estimated to be rc ≈ 3.2 Å [14]. Modern theories based on
path integral simulations [15], or on the density functional approach [16,17] provide an evaluation of the microscopic
structure around solvated electrons but they all yield the same physical picture as that described above. At large enough
metal concentration, the MAS becomes a liquid metal with a typical bronze coloration. However, at concentrations
varying from 1 to 10 mole percent of metal (MPM), a separation between the low density blue phase and the higher
density bronze one takes place, resulting in a miscibility gap below a critical temperature (Fig. 1). Importantly, the
phase separation occurs for Li, Na, or K, but was not observed in the case of Cs. However, for all type of alkali
metal, many experimental data reveal the presence of a MIT in the same range of densities [12], as reported in Fig. 1
for the case of Na. Earlier models considering the Mott mechanism [18] or involving an association of localized
electrons in clusters [19] were not able to explain the whole phase diagram observed in MAS satisfactorily. What is
the reason? From an electrostatic point of view, solvated electrons behave more or less like some solvated anions,

Fig. 1. Phase diagram of Na–NH3. The experimental data on the locus of the phase separation are indicated by the square [10] and diamond symbols
[11], respectively. The triangles show the change in sign of the derivative of the conductivity coefficient dσ/dT , which is used to estimate the locus
of the MIT [12]. The solid curve corresponds to our calculations of the locus of the polarization catastrophe. All dotted curves are guides for the
eyes, except the dashed horizontal line at T = −80 ◦C indicating the solidification temperature of ammonia. [1(MPM) ≈ 2 × 1020 cm−3.]
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the counterpart of the solvated metal cations. The Debye screening length �D = (8πβne2/εs)
−1/2 is found to be

about 1 Å at 4 MPM and T = −40 ◦C. Here n is the density of metal atoms, β is the inverse temperature, and the
static dielectric constant of ammonia is εs = 22 at this temperature. This makes the MAS a strong electrolyte in this
concentration range, and the static Coulomb interactions are already screened when the MIT occurs, and therefore
cannot be its origin. The short-range interactions between electrons are also unlikely to be responsible for the MIT
and the phase separation, because the mean distance between electrons is still about 12 Å at the relevant concentration
4 MPM, which is enough to neglect any overlapping between the wave-functions of the electrons localized in their
ground state. The origin of the MIT must be found elsewhere, and a reasonable hypothesis is that it results from
quantum momentum fluctuations of the solvated electrons. These ones are self-trapped quantum particles, whose
dipolar momentum effectively fluctuates due to their quantum nature, with a characteristic frequency ω0(T ). This
frequency corresponds to electronic transitions of the electrons between two states bound in their own trap potentials.
They are experimentally detected by ordinary optical absorption measurements. The latter reveal a broad absorption
line peaked at ω0(T ) ∼ 0.9 eV at low concentration and T = −70 ◦C. For a given temperature, the maximum of
optical absorption shows a pronounced red shift at metal concentration above 0.1 MPM, which cannot be caused
by short-range or static Coulomb interactions as it has been discussed above. The frequency ω0(T ) characterizing
the solvated electron state, is a significant phenomenological parameter of our theory. It is associated to the static
polarizability α0(0) = e2/mω2

0 ∼ 913 a3
0 of a solvated electron. Here, m and e are the electron mass and charge, while

a0 = h̄2/me2 is the Bohr radius. We see that α0(0) is a huge polarizability with respect to the one of a single ammonia
molecule αNH3 ∼ 18.8 a3

0 [20] or that of a sodium ion αNa+ ∼ 1.34 a3
0 [21]. Therefore, these quantum fluctuations

of isolated solvated electrons and their induced dipole–dipole interactions, which are nothing but their Van der Waals
interactions [22], may have a dominant role in the MIT.

2. The state with solvated electrons

The key idea of Herzfeld was to evaluate the effect of the local field, with the help of the Clausius–Mossotti
(CM) relation. Nevertheless, his calculation did not take into account the interactions between particles, which induce
collective modes of polarization. Taking into account both the local field and the interactions effects, the CM relation
may be generalized as [23,24]

ε(T ,ω)/εNH3(T ,ω) − 1

ε(T ,ω)/εNH3(T ,ω) + 2
= 4π

3
δχ(ω) (1)

where εNH3(T ,ω) is the temperature- and frequency-dependent dielectric function of pure ammonia, ε(T ,ω) is the
similar quantity of the solution. δχ(ω) is the change of susceptibility due to the dissolution of metal in the solvent. The
susceptibility may be expressed in terms of an effective dynamical polarizability α(ω) of a single solvated electron,
by the relation δχ(ω) = nα(ω)/ε∞. Hence, the problem focuses on the calculations of α(ω). To overcome this barrier
we choose a simple semi-analytical model suitable to calculate α(ω) with a reasonable accuracy. The complete details
of the model will be provided elsewhere, we just give here the main idea. It consists to separate classical degrees
of freedom which are the ionic positions {R+

i } and the center of mass of the solvated electrons {R−
j }, from the

quantum fluctuating degrees of freedom of the electrons {uj } with respect to the {R−
j } (such that rj = R−

j + uj is
the Cartesian coordinate of the electron j ). After quadratic expansion of the Coulomb interactions with respect to
the {uj }, it appears three kinds of terms. First, the Coulomb interactions between the classical degrees of freedom,
which might be treated by the classical theory of electrolytes. As we have seen, they are essentially screened. The
second kind of interactions are the induced dipole–charge interactions. It may be shown that they vanish owing to
the spherical symmetry of the liquid state. Finally, it remains the quantum induced dipole–dipole interactions, which
result in Van der Waals attractions between the solvated electrons, and that we are looking for in the present paper.
We thus consider MAS as a fluid of quantum particles localized in cavities with diameter σ = 2rc, which interact
through induced dipole–dipole interactions. They can be treated as a set of quantum Drude oscillators with isolated
polarizability α0(ω) = e2/m(ω2

0 −ω2). In the simplest approximation the interactions between particles can be cut off
at small distances by the cavity size, whereas short-range details are ignored. Similar models of quantum polarizable
fluids have been extensively studied [25–28], and we use the results which were previously obtained.
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The problem is to evaluate the effective polarizability α(ω). Due to the dipolar interactions between the oscillators,
the polarizability α(ω) is modified with respect to the non-interacting case and is given by the self-consistent equation:

ε∞/α(ω) = ε∞/α0(ω) − 2E
(
α(ω)/ε∞

)
(2)

where the last term accounts the correlations between induced dipoles. Eq. (3) has been derived in [25], we only
modify it by taking into account the high-frequency screening by the solvent (the use of ε∞ in Eq. (2)). Formally the
quantity 3αE(α)/β equates with the dipolar part of the internal energy per particle of a classical liquid of nonpolar-
izable particles with permanent dipole momentum (3α/β)1/2 [25,28], where β is the inverse temperature. Once the
function E(α) is known, all the physical properties of the system can be evaluated by solution of Eq. (3). The simplest
method to obtain E(α) is the Padé approximation [25,26], which is an interpolation between the case of low and large
polarizability α(ω). Adapting this method to our case, we get

E
(
α(ω)/ε∞

) = I0(nσ 3)nα(ω)

ε∞σ 3 + I1(nσ 3)α(ω)
(3)

where I0(x) and I1(x) are analytical functions which depend only on a dimensionless density x = nσ 3 [28]. Replacing
Eq. (4) in Eq. (3) leads to a quadratic equation, which allows complete calculations of both the real and the imaginary
part of α(ω):

[
ε∞I1

(
nσ 3) − 2I0

(
nσ 3)nα0(ω)

]
α2(ω) = [

ε2∞σ 3 − ε∞I1
(
nσ 3)α0(ω)

]
α(ω) − ε3∞α0(ω) (4)

The roots of Eq. (4) are complex, i.e. α(ω) = α′(ω) + iα′′(ω). The imaginary part is non-zero only in a finite
range of frequency ω−(T ,n) < ω < ω+(T ,n) that corresponds to the dispersion of the collective polarization modes,
regarded as a distribution of eigenvalues. Their density of states (DOS) is given by D(ω) ∝ ωα′′(ω) [27]. For numer-
ical evaluations, we use as input phenomenological parameters in Eq. (4): (i) σ = 2rc = 3.2 Å [14] which remains
fixed for all our calculations; (ii) ε∞ = 1.76 [29]; and (iii) ω0(T ) extracted from experimental data. This last pa-
rameter induces an implicit temperature dependence of α(ω). From [30], we take ω0(T = −70 ◦C) = 0.86 eV and
∂ω0(T )/∂T = −2.2 × 10−3 eV/K for higher temperature (−70 ◦C < T < +70 ◦C). It allows us to calculate α0(ω)

as needed in Eq. (4). Moreover, the static dielectric constant is calculated by taking εs(T = −70 ◦C) = 25, and
∂εs/∂T = −0.1 K−1 [29] for the solvent. Fig. 2(a) illustrates our calculation at T = −35 ◦C. At low concentra-
tions, the DOS is peaked at ω0(T ), whereas the spectrum broadens progressively as the density n increases, indicating
the drastic effect of the interactions.

Since our model is quadratic, the squared eigenfrequencies of the collective modes have to be positive. The ap-
proach of the low edge ω2−(n,T ) to zero is an indication of the instability of the system. We define a critical density
nc1 as

ω−(T ,nc1) = 0 (5)

In the vicinity of nc1 (just above) the static dielectric constant diverges, indicating the onset of metalization. Thus
Eq. (5) may be viewed as the generalization of the Herzfeld criterion for the polarization catastrophe and onset of
metalization at nc1. We have reported in Fig. 1 the calculated critical densities obtained with the use of Eq. (5). It
indicates that the MIT occurs between 2 and 5 MPM depending on the temperature, which is quite comparable to
the experimental data. The evaluation of the original Herzfeld critical density, i.e. without taking into account the
interactions, provides the MIT located at about 14 MPM at T = −70 ◦C. That shows how important the effect of the
interactions is to correctly evaluate the MIT. As discussed above, another consequence of the polarization catastrophe
is that the low-frequency dielectric constant ε(T ,ω) diverges in the vicinity of nc1 as it is experimentally observed
in MAS [31,32]. Comparing the calculated data with the experimental ones, we find a good agreement between
them (Fig. 2(b)). We also have calculated the real and the imaginary parts of the dielectric constant and evaluate the
optical absorption coefficient A(ω). Again the calculated concentration dependence of A(ω) at the locus ωmax of its
maximum, agrees well with the experimental data [33,34] at concentrations below nc1 (Fig. 2(c)).

3. The metallic state with delocalized electrons

Above the critical concentration nc1, the localized electrons are not stable. Hence, the behaviour of the system
above nc1 depends on thermodynamics of the metallic state. This one is known to be unstable at sufficiently low
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Fig. 2. (a) Normalized density of states (DOS) of the collective polarization modes of interacting dipoles, drawn for various metal concentrations
at T = −35 ◦C. The DOS is normalized to

∫
D(ω)dω = 3 (three degrees of freedom per particle). In (b) and (c): concentration dependencies

of the dielectric constant (b) and the locus of the maximum of optical absorption (c). In (b) the square symbols correspond to the experimental
data [31] on dielectric constant at T = +20 ◦C, the circle symbols to that at T = −35 ◦C [32]. The solid and dashed curves show our results
at T = +20 ◦C and −35 ◦C, respectively. In (c) the triangle symbols indicate the experimental data on the absorption maximum in Na–NH3 at
T = −65 ◦C obtained from [33] and square symbols from [34], while the solid curve shows our results at the same temperature. In (d): reduced
isothermal compressibility of the electron gas as a function of concentration at T = −70 ◦C. The solid and the dashed curves correspond to the case
of Na and Cs counterions, respectively. The arrow shows the locus of the dielectric catastrophe for the solvated electrons, indicating a miscibility
gap between nc1 and nc2(Na) for Na, which does not occur in the case of Cs ions.

densities due to occurrence of a negative compressibility. Therefore, if the polarization catastrophe occurs at a lower
density than this instability, it should provoke a phase separation. The MAS seems to be just this case. To reveal it,
we have calculated the electronic part of the compressibility for the metallic state with the use of a modified model of
stabilized jellium [35] for several alkali metals.

In a metallic state, the solution represents a plasma consisting of a degenerate electron gas strongly coupled with the
ions dissolved in ammonia. Although a microscopic study of the system is still beyond possibilities of current methods,
low temperatures and low metal concentrations of MAS simplify our analysis. We treat the influence of the solvent
simply as a screening effect of the interactions, but we use different dielectric constants for the interacting electron
gas and the ionic potential, because the latter are additionally screened by the orientational polarization of solvent
molecules. We characterize the plasma by dimensionless parameters rs = (4πn/3)−1/3a−1

0 , Γe = βe2/ε∞a0rs , and
Γi = βe2/εsa0rs , where a0 = h̄2/me2. We can express the change of the free energy caused by the dissolution of
metal atoms in terms of the dimensionless parameters, and write the change f per electron (or per metal atom) as
the sum of the electron, the ion, and the electron–ion contributions

f (n) = fe(Γe) + fi(Γi) + fie(Γe,Γi, rs, ai) (6)

where ai is a parameter related with the short-range electron–ion pseudopotential, which takes into account deviations
from Coulomb interactions between electrons and ions. Because Γe 	 Γi , it may be checked that the electron gas
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gives the main contribution to f (n), whereas the ionic contribution is only a correction. We can thus ignore thermal
effects for simplified evaluations. We take the expression obtained for the stabilized jellium model as in [35]:

f (n) = 3k2
F

10
− 3kF

4πε∞
+ ec(n) + CM

εsrs
+ ain (7)

where kF = (3π2n)1/3a0 is the Fermi wave vector, and Cm ≈ −0.89774 is the Madelung constant in atomic units
(a.u.). The first, the second, and the third terms in Eq. (7) are the kinetic, the exchange, and the correlation contributions
to the total energy of the homogeneous electron gas with a positive jellium background. The last two terms are
corrections which take into account the atomic nature of the cations. The only difference with the stabilized jellium
model [35], resides in the use of the dielectric constant in the relevant contributions. The local density approximation
[36] was applied to calculate ec(n). The main difficulty is to evaluate ai . The first attempt to provide it for MAS and
account polarizability of ammonia molecules has been considered in [37]. In simple metals, the parameter ai may be
estimated as ãi ≈ 2πR2/3, where R is the ion-core radius related with the atomic number of the ion. Advanced models
treating smooth continuous pseudopotentials [35] yield numerical corrections to this trend. We apply ãi derived from
[35] and take the polarizability of solvent into account, i.e. ai = ãi/ε∞. Importantly, we here use ε∞ because ai

represents the short-range part of the interaction between electrons and ions. As a result, we find ai =10.8 and 26.1
a.u. for Na and Cs respectively. Numerical deviations of about 10 percent from these values do not change our results
significantly. With the use of Eq. (7) we calculated the electronic part of the reduced isothermal compressibility
κF ∼ [n∂2(nβf )/∂n2]−1 and found the concentration nc2 below which the electron gas is unstable. Fig. 2(d) shows
the two curves obtained for Na and Cs respectively. In the case of Na, the compressibility κF diverges at a critical
density nc2 ≈ 6 MPM, whereas the dielectric catastrophe of the solvated electron state occurs at nc1 ≈ 5 MPM. This
is the origin of the miscibility gap and the associated phase separation: it exists a range of density n ∈ [nc1, nc2] for
which both states are unstable. Another consequence of this phenomenon is that a Mott mechanism for the MIT, which
requires a stable electron gas at the critical density, appears impossible since the experimental MIT occurs at lower
concentration than nc2. The second curve in Fig. 2(d) is for Cs. It is seen in that nc2 < nc1, contrary to the case of
Na. No miscibility gap is thus expected in the case of Cs. This result is also coherent with the experimental facts.
Although our estimations give upper and lower bounds for nc1 and nc2 respectively, underestimating the instability
range, they reveal a correct trend in the dependence on the size of ions, namely, a decrease of the instability range for
heavier ions, due to scattering of delocalized electrons on ion cores. The latter may decrease nc2 enough to destroy
the miscibility gap.

4. Conclusion

Following the Goldhammer–Herzfeld idea and using the hard-sphere models for quantum polarizable fluids, we
have evaluated peculiarities of MIT in MAS, namely, the anomalies of dielectric response and concentration changes
in the absorption maximum. Our estimations of the behaviour of the insulating and the metallic phases have revealed
an instability range at low temperatures. Our calculations tell us that MAS may deviate from the usual Mott scenario.
At this stage, the theory is not complete. In particular, only the thermodynamics, which necessitates the evaluation
and the comparison of different free energies, will allow us to determine all the lines of the phase diagram (spinodal
lines for example), as well as the critical temperature. We reserve this problem for a next publication. We should
also mention, that we have neglected one phenomenon: a possible pairing between the spins of two adjacent solvated
electrons which seems to have been experimentally detected above n ∼ 1 MPM [13]. We do not believe that this
phenomenon influence so much the main features of the MAS phase diagram.

Finally, we also think that the proposed scenario may be applied to some other systems. For instance, in alkali
metal–alkali halide solutions, solvated electrons, phase separation and dielectric anomalies were experimentally ob-
served [38]. Another example is the case of doped polar solids such as oxides where formation of large polarons
occurs. For such materials α0σ

−3 ∼ ε−1∞ − ε−1
s and the origin of the unusual behaviour is essentially due to different

scales of screening at various frequencies εs 	 ε∞ like in the Wigner crystal of polarons [8]. The case of excitonic
phase diagrams in usual semiconductors [39,40], could also be good candidates.
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