
C. R. Physique 9 (2008) 570–584

http://france.elsevier.com/direct/COMREN/

Synchrotron x-rays and condensed matter/Rayonnement X synchrotron et matière condensée

Soft X-ray resonant magnetic scattering of magnetic nanostructures

Gerrit van der Laan

Daresbury Laboratory, Warrington WA4 4AD, United Kingdom

Available online 23 October 2007

Abstract

Soft X-ray resonant magnetic scattering offers a unique element-, site- and valence-specific probe to study magnetic structures
on the nanoscopic length scale. This new technique, which combines X-ray scattering with X-ray magnetic circular and linear
dichroism, is ideally suited to investigate magnetic superlattices and magnetic domain structures. The theoretical analysis of the
polarization dependence to determine the vector magnetization profile is presented. This is illustrated with examples studying the
closure domains in self-organising magnetic domain structures, the magnetic order in patterned samples, and the local configuration
of magnetic nano-objects using coherent X-rays. To cite this article: G. van der Laan, C. R. Physique 9 (2008).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Diffusion magnétique résonnante des rayons X mous dans les nanostructures magnétiques. La diffusion magnétique ré-
sonnante des rayons X mous offre une possibilité unique de sonder les structures magnétiques à l’échelle nanoscopique avec une
sensibilité à l’élément, au site et à la valence. Cette nouvelle technique, qui combine la diffusion des rayons X avec le dichroïsme
magnétique circulaire et linéaire, est idéalement adaptée à l’étude des super-réseaux magnétiques et des structures de domaines
magnétiques. Nous présentons l’analyse théorique de l’utilisation de la dépendance en polarisation pour déterminer le profil du
vecteur magnétisation. Ceci est illustré par des exemples d’étude des domaines de fermeture dans les structures magnétiques auto-
organisées, de l’ordre magnétique dans des échantillons structurés et de la configuration locale de nano-objets à l’aide de rayons X
cohérents. Pour citer cet article : G. van der Laan, C. R. Physique 9 (2008).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Keywords: X-ray scattering; Nanostructures; Polarization analysis; Magnetic dichroism; Coherent radiation; Speckle pattern; Magnetic domains

Mots-clés : Diffusion des rayons X ; Nanostructures ; Analyse de polarisation ; Dichroïsme magnétique ; Radiation cohérente ; Figure de speckle ;
Domaines magnétiques

1. Introduction

X-ray diffraction provides an indispensable tool for structural characterization of crystalline materials, which relies
on the Thomson scattering mechanism, i.e., the interaction between photons and the charge density of the electrons.
The sensitivity of X-ray scattering to magnetism has been considered theoretically by Platzman and Tzoar [1] and con-
firmed experimentally by De Bergevin and Brunel [2] in the 1970s. The so called ‘non-resonant magnetic scattering’
can be related to the scattering of the electromagnetic wave by the orbital and spin moments of the electrons. There-
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Fig. 1. Schematic picture of the soft X-ray resonant scattering process in a 3d transition metal atom, showing the virtual transitions between the
2p core level and the empty spin-polarized 3d states. The core level is split by the strong spin-orbit interaction, which leads to a difference in the
electric-dipole transition probability for left and right circularly polarized X-rays.

fore, the angular dependence of the scattering cross section allows a separation of the spin and orbit contributions
to the magnetic moment [3]. The non-resonant magnetic scattering is considerably weaker than the charge scattering
and, commonly seen as a curiosity, it lacked the versatility of magnetic scattering by neutrons [4]. However, taking
advantage of the tunability of the photon energy of synchrotron radiation in the mid 1980s, two independent discov-
eries, in X-ray absorption and resonant X-ray scattering, unexpectedly changed this situation for good. The X-ray
absorption spectrum showed a huge polarization dependence in the electric dipole allowed transitions of an electron
from the core level to the magnetically polarized valence shell, as was predicted theoretically by Thole et al. [5] and
confirmed experimentally by van der Laan et al. [6]. Likewise, the elastic process of X-ray absorption followed by
emission of a photon in resonant scattering can be regarded as a virtual transition (see Fig. 1). The sensitivity to the
magnetization arises from the strong spin-orbit interaction in the core level. A theoretical milestone by Blume [7] was
followed by the observation of large polarization dependent resonance effects by Gibbs et al. [8] and Hannon et al. [9]
in holmium metal that has served as ‘fruit fly’ for many experiments. It is important to apprehend that—contrary to the
above-mentioned non-resonant scattering—the resonant process is purely due to electric multipole transitions. Twenty
years down the line, and stimulated by the large scale access to light sources of synchrotron radiation that are tuneable
in energy and polarization, resonant magnetic X-ray scattering has developed into a mature technique for the study
of magnetic structures in rare earth, actinide and transition metal compounds. X-ray magnetic scattering measures,
like neutron scattering, the spatial Fourier transform of the magnetization, from which one can deduce the spatial
distribution of the magnetization in a unit cell and the configuration of the moments, e.g., collinear antiferromagnetic,
spiral, cone, etc. However, X-ray resonant magnetic scattering complements neutron scattering because of its element,
chemical valence and electron shell specificity, separation of spin and orbital contributions to the magnetic moment,
and it can be used in cases where neutron scattering is hampered by small sample size, q-resolution or saturation of
the absorption.

For 3d transition metal L2,3 edges [10] and rare earth M4,5 edges [11] the resonant enhancement largely exceeds
the Thomson scattering due to the large radial overlap integral between core and valence electrons. At resonance, the
magnetic scattering is comparable in size to the charge scattering. However, for these soft X-ray absorption edges, the
wavelength is usually too large for crystalline diffraction, although there are many interesting, and sometimes rather
exotic, materials, such as magnetites, perovskites and cuprates, where the elongated unit cell still results in low-order
Bragg diffraction peaks. The energy profile of the peak intensity as a function of temperature or/and magnetization
can then provide information about spin and orbital ordering, phase transition and Jahn–Teller distortion [12–15].

This article deals with an application of this technique, known as soft X-ray resonant magnetic scattering (SXRMS),
to study (pseudo) continuous magnetization distributions in (patterned) magnetic thin films. Even although the wave-
length for soft X-rays is longer than the periodicity of the charge and magnetization distributions, it allows us to
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Table 1
Extensions to X-ray scattering possible with synchrotron radiation

Extensions to X-ray scattering Allows one to probe

Tunable X-rays at resonance Element, site and valence specificity
Polarized X-rays Magnetic orbital and spin profile
Soft X-rays Nanoscale sensitivity (down to 1 nm)
Coherent radiation Local configuration
Pulsed radiation Dynamics

examine variations on larger length scales. Magnetic nanostructures (defined as 1–100 nm) can show a periodic pro-
file due to artificial patterning or self-assembly, domain structures, or domain closures at the surfaces and interfaces.
Therefore, diffraction from such systems offers new possibilities in the field of thin-film magnetism, which has been
stimulated by the technological impact of the discovery of technologically important phenomena, such as perpendic-
ular magnetic anisotropy (PMA) and giant magnetoresistance (GMR). SXRMS has the capacity to cover the entire
nanometer length scale and is relatively easy to perform on ex-situ prepared samples [16,17]. It has grown into a
workhorse technique within the time span of a few years after pioneering experiments by Dürr et al. [18] who mea-
sured the circular dichroism of the in-plane diffracted intensity from periodic stripe domains in FePd thin films in
reflection geometry. Applications of SXRMS include characterization of structural and magnetic properties of lay-
ered and domain systems, especially their interface roughness, induced magnetic order in non-magnetic spacer layer
and layer-resolved magnetic moments [19–26]. The tunability of synchrotron radiation allows us to scan the photon
energy across the resonance for each of the accessible Bragg peaks. Table 1 shows the extensions to X-ray scattering
that have been made possible thanks to synchrotron radiation. Polarization analysis of the scattered beam leads to fur-
ther characterization of the sample properties [15,27,28]. However, sometimes considered as inconvenient, scattering
measurements in the soft X-rays region need to be carried out in a diffractometer that is under vacuum, in order to
prevent X-ray absorption by air [16,17,29].

The first part of this article introduces the principles and basic concepts of SXRMS. The suitability of soft X-rays
and the probing depth are discussed in Section 2. In Section 3 we get to grips with the formalism of the magnetic
scattering cross section and specifically its polarization dependence, which can be used to determine the vector mag-
netization profile. In the second part of the paper some highlights are presented to illustrate specific applications.
Section 4 presents the quintessential magnetic scattering from magnetic stripe domains in FePd alloys, which sheds
light on the magnetic domain structure that is governed by the magnetic anisotropy, and it furthermore discusses the
micromagnetic modelling of the resonant scattering. Section 5 shows scattering results from artificial structures of
Co/Pt nanolines, which give insight in their magnetic order under applied field. Further examples can be found in
Refs. [30,31]. Section 6 describes the use of coherent X-rays for scattering with an application to the Co/Pt nanolines
to determine the local magnetic configuration. Finally, an outlook is given in Section 7.

2. Suitability of soft X-rays

We concentrate here on the L2,3 edges (0.4–1 keV) of the 3d transition metals, which are the most common
elements in magnetic materials. Considering the length scale of the periodicities that can be probed by X-ray scattering
at a wavelength λ, Bragg’s law gives mλ = 2d sin θ , where the integer m is the order of the reflection, the angle θ

with the surface plane is the Bragg angle and d is the lattice period. The maximum resolution of d = λ/2 is obtained
at back scattering. As an example, the Fe L3 edge (707 eV) corresponds to λ = 17.54 Å, so that d > 8.8 Å. For
a typical 100 µm slit on an exit arm of 175 mm [29], the angular resolution is equal to �θ = 0.033◦, limiting the
maximum length of the period that can be measured. This means that at the Fe L3 a length scale from 1 nm to 1 mm is
covered, which is usually too long for crystallography, but ideally suited for the study of magnetic domains, magnetic
multilayers, and spin valve structures.

Another important issue is the penetration depth of the soft X-rays, which is determined by the X-ray absorption
length that varies strongly across the absorption edge. For Fe metal the absorption length is about 6000 Å just below
the L3 edge, reducing to 170 Å at the top of the L3 edge and increasing again to 850 Å above the L2 edge. These
values are for the pure metal and the absorption at the L3 edge scales with the Fe concentration, so that compared to
the pure metal the probing depth will be larger in alloys, compounds and dilute systems. Therefore, while absorption
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corrections are very important, the probing depth extends over a range of a few thousand Å beneath the surface. This
probing depth is much larger than for some common related techniques, such as X-ray absorption using total electron
yield and X-ray photoemission. Furthermore, the relatively short X-ray absorption length in resonant scattering can
be turned into an advantage, since it allows depth profiling, e.g. to distinguish between buried interfaces at different
depths. It will also reduce, or even remove, the contribution from the substrate.

3. Principles of X-ray resonant scattering

3.1. Scattering amplitude

The kinetic energy operator (p − eA/c)2 in the photon-matter interaction contains a first-order term in the squared
vector potential, A2, which gives rise to the (non-resonant) Thomson scattering, and a second-order term in p · A,
describing the resonant scattering [32]. The p · A term becomes dominant at the resonance energy for excitation of a
2p core electron into an unoccupied 3d valence state. Using the electric-dipole approximation, A = ε exp(ik · r) ≈ ε,
the matrix element for the coherent amplitude of resonant photon scattering is obtained by the Kramers–Heisenberg
formulism as [9,33]

∑
b

〈g|fb|g〉 ≡
∑

b

〈g|�ε′ ∗ · p|b〉〈b|p ·�ε′|g〉
Eb − Eg − ω − iΓb/2

(1)

where�ε (�ε′) is the unit polarization vector of the incident (scattered) X-ray beam. The intermediate state b makes the
scattering selective to the environment, giving element, site, magnetism, and charge anisotropy sensitivity.

The photon energy ω selects a set of intermediate states b with lifetime Γb , assessable from the ground state g. The
intermediate state in the resonance process allows additional paths otherwise forbidden in the direct transition, such
as spin-flip transitions. The matrix element in Eq. (1) can be written as the expectation value of an effective operator
fn, which after recoupling gives the amplitude for coherent resonant magnetic scattering at the site n, [3,9]

fn(ω) = f0(�ε
′ ∗ ·�ε) − if1(�ε

′ ∗ ×�ε) · �mn + f2(�ε
′ ∗ · �mn)(�ε · �mn) (2)

where �mn is the unit magnetization vector at the nth site, and f0, f1 and f2 are the monopole, magnetic dipole
and quadrupole part of the energy dependent resonance amplitude, respectively (f0 should not be confused with the
Fourier transform of the electron density).

The f0 term gives the anomalous scattering f ′
c + if ′′

c , which is large near the absorption edge, where it is added
to the Thomson scattering. It allows us to observe the charge order. The f1 term gives the scattering f ′

m + if ′′
m, which

depends linearly on the magnetization direction and can become comparable in size to the f0 term near specific
absorption edges. As an example, Fig. 2 shows the real and imaginary parts of the charge scattering (f ′

c and f ′′
c ) and

the magnetic scattering (f ′
m and f ′′

m) at the Fe L2,3 edges of iron metal. The real and imaginary parts are related to
each other by a Kramers–Kronig transform. Thus the resonant amplitudes are complex with strongly energy dependent
phase angles. The f2 term is quadratic in the magnetization direction. Although for completeness we include the f2
term in Eq. (2), it is usually much smaller than the f0 and f1 terms, and it will not be analysed in great detail here,
despite the fact that it can give rise to interesting and even controversial effects [34,35].

3.2. Scattering intensity

The magnetic diffraction intensity is a function of both ω and the momentum transfer, given by the scattering vector
q = k′ −k, where k(k′) is the wave vector of the incident (scattered) X-ray beam. Within the first Born approximation
one obtains

I (ω,q) ∝
∣∣∣∣
∑
n

fn(ω) exp(iq · rn)

∣∣∣∣
2

(3)

where the summation is over the sites with position vector rn.
For a simple collinear structure, with all the magnetization vectors parallel, the polarization dependence of the

scattering is the same as for the single site in Eq. (2). This gives an overlap of magnetic and charge peaks, therefore
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Fig. 2. (a) Real and imaginary part (f ′
c and f ′′

c ) of the charge scattering, and (b) real and imaginary part (f ′
m and f ′′

m) of the magnetic scattering at
the Fe L2,3 edges in iron metal [65].

to study ferromagnetic materials the interference between these two amplitudes has to be used, which shows a change
in the scattering signal upon reversal of the sample magnetization. Antiferromagnetically coupled layers or domains
offer, like spiral structures, the advantage that the magnetic diffraction peaks are separated from the structural dif-
fraction peaks. Doubling the periodicity in real space gives rise to magnetic peaks with half the structural period in
reciprocal space. The distinction between magnetic scattering and Thomson scattering is achieved by tuning on and
off the resonance energy.

By taking the q-dependent Fourier transforms F0, F1, and F2 of f0, f1, and f2, respectively, and the Fourier
transforms ρ̄ and �M of the charge density and the unit magnetization vector, Eq. (2) can be written as

F(q) = F0ρ̄(�ε′ ∗ ·�ε) − iF1(�ε
′ ∗ ×�ε) · �M + F2(�ε

′ ∗ · �M)(�ε · �M) ≡ Mc(q) + Mm(q) + MQ(q) (4)

where Mc(q), Mm(q), and MQ(q) will be used below to refer to the Fourier transforms of the charge, magnetic and
quadrupolar contributions, respectively.

3.3. Polarization dependence

We discuss in detail the dependence upon the incidence polarization since it allows to determine the vector magne-
tization profile. It is convenient to write the geometric part as a 2×2 matrix,(

σ → σ ′ π → σ ′
σ → π ′ π → π ′

)

representing the different scattering channels, where the linear polarization perpendicular and parallel to the scattering
plane is denoted as σ and π polarization, respectively. The primes refer to the scattered beam. Using the unitary vectors
along the incident and scattered beams,�k = k/k and�k′ = k′/k′, respectively, we can define an orthogonal coordinate
system (�u1,�u2,�u3) given by

(
�u1
�u3

)
= 1

2

(
cos−1 θ cos−1 θ

sin−1 θ − sin−1 θ

)(
�k
�k′

)
(5a)

(
�k
�k′

)
=

(
cos θ sin θ

cos θ − sin θ

)(
�u1
�u3

)
(5b)

�k′ ×�k = −�u2 sin 2θ (5c)
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where θ is the Bragg angle, thus�k′ ·�k = cos 2θ . In the (�u1,�u2,�u3) basis, the components of �M are (z1, z2, z3). Eq. (4)
results in the following matrices

Mc(q) = F0ρ̄(�ε′ ∗ ·�ε) = F0ρ̄

(
1 0
0 �k′ ·�k

)
= F0ρ̄

(
1 0
0 cos 2θ

)
(6)

Mm(q) = −iF1(�ε
′ ∗ ×�ε) · �M = −iF1

(
0 �k · �M

−�k′ · �M (�k′ ×�k) · �M
)

= −iF1

(
0 z1 cos θ + z3 sin θ

−z1 cos θ + z3 sin θ −z2 cos 2θ

)
(7)

MQ(q) = F2(�ε
′ ∗ · �M)(�ε · �M) = F2

(
z2

2 −z2(z1 sin θ − z3 cos θ)

z2(z1 sin θ + z3 cos θ) − cos2 θ(z2
1 tan2 θ + z2

3)

)
(8)

The diagonal matrix in Eq. (6) indicates that charge term does not rotate the polarization direction. Consequently, no
charge density will be observed in the σ → π ′ or π → σ ′ channels. Eq. (7) shows that the magnetization component
parallel to the scattering plane rotates the polarization channel, i.e., σ → π ′ and π → σ ′, while the magnetization
component perpendicular to the scattering plane appears in the π → π ′ channel.

We now introduce the density matrix μ, which in Cartesian coordinates can be written as [36]

μ = 1

2
(P0σ0 + P · σ) = 1

2

(
P0 + P1 P2 − iP3
P2 + iP3 P0 − P1

)
= 1

2

(
Pσ P2 − iP3

P2 + iP3 Pπ

)
(9)

where σ0 = ( 1 0
0 1

)
is the unit matrix and σ represents the Pauli matrices, σ1 = ( 1 0

0 −1

)
, σ2 = ( 0 1

1 0

)
, and σ3 = ( 0 −i

i 0

)
. P =

(P1,P2,P3) is the Poincaré–Stokes representation of the polarization. The fraction of unpolarized light in synchrotron
radiation can be neglected. Defining Pσ = P0 + P1 and Pπ = P0 − P1 we can alternatively write μ as at the r.h.s.
in Eq. (9). The values for different pure polarization states are shown in Table 2, from which it can be seen that the
polarization average is

P0 = 1

2
(Pσ + Pπ) = 1

2
(Pleft + Pright) = 1

2
(P45◦ + P135◦) (10)

The cross-section I (q) = dσ(q)/dΩ and the polarization P′ after scattering can be calculated using the density
matrix formalism [36]

P ′
λI (q) =

∑
λλ′

pλpλ′ 〈λ|F †|λ′〉〈λ′|F |λ〉 (11)

where pλ is the probability for the incident polarization λ, and pλ′ is the probability to detect polarization λ′. The
degree of polarization is

P = 〈σ 〉 = Tr[σ · μ] (12)

Using the density matrices μ = ∑
λ |λ〉pλ〈λ| for the incident beam and μ′ = F · μ · F † for the scattered beam,

together with Eq. (11), we can write

I (q) = Tr[μ′] = Tr[F · μ · F †] (13)

Table 2
Values of the Poincaré vector components for different pure polarization states

P0 P1 P2 P3

σ polarization 1 1 0 0
π polarization 1 −1 0 0
Linear polarization at ±45◦ 1 0 ±1 0
Circular polarization 1 0 0 ±1
Polarization averaged 1 0 0 0
Linear dichroism 0 1 0 0
Circular dichroism 0 0 0 1
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and the polarization after scattering is

P′ = Tr[σ · μ′]
Tr[μ′] (14)

where Tr[A] indicates the trace (i.e., the sum of the diagonal elements) of a matrix A. Using Eq. (13) with Eq. (4)
gives the scattering cross-section

I (q) = Tr[Mc · μ · M†
c ] + Tr[Mm · μ · M†

m] + Tr[Mm · μ · M†
c − M∗

c · μ · M†
m]

≡ Ic(q) + Im(q) + Ii(q) (15)

where Ic, Im, and Ii refer to the q-dependent intensity of the charge scattering, pure magnetic scattering and interfer-
ence term between charge and magnetic scattering, respectively. Evaluation of Eq. (15) using Eqs. (6)–(9) gives

Ic(q) = 1

2
|F0ρ̄|2[Pσ + Pπ |�k′ ·�k|2] (16)

Im(q) = 1

2
|F1|2Pσ |�k′ · �M|2 + 1

2
|F1|2Pπ

[|�k · �M|2 + |(�k′ ×�k) · �M|2]
− |F1|2 Re

[
(P2 + iP3)(�k′ · �M∗)(�k′ ×�k) · �M]

(17)

Ii(q) = Pπ Im
[
F ∗

0 ρ̄∗F1
(
(�k′ ×�k) · �M)

(�k′ ·�k)
]

+ P2 Im
[
F ∗

0 ρ̄∗F1
(
�k · �M − (�k′ · �M)(�k′ ·�k)

)] + P3 Re
[
F ∗

0 ρ̄∗F1
(
�k · �M + (�k′ · �M)(�k′ ·�k)

)]
(18)

3.4. Example of collinear moments

For �M in the scattering plane: (�k′ ×�k) · �M = 0, and for �M perpendicular to the scattering plane:�k · �M =�k′ · �M = 0.
This simplifies the magnetic scattering in Eq. (17) to

Im(Mq‖) = 1

2
|F1|2

[
Pσ |�k′ · �M|2 + Pπ |�k · �M|2] (19)

Im(Mq⊥) = 1

2
|F1|2Pπ

∣∣(�k′ ×�k) · �M∣∣2 (20)

This means that σ and/or π polarization is needed to measure collinear moments in the scattering plane and that π

polarization is needed to measure out of plane collinear moments.
Likewise, Eq. (18) for interference scattering simplifies to

Ii(Mq‖) = P2 Im
[
F ∗

0 ρ̄∗F1ρ̄
∗(�k · �M − (�k′ · �M)(�k′ ·�k)

)] + P3 Re
[
F ∗

0 ρ̄∗F1
(
�k · �M + (�k′ · �M)(�k′ ·�k)

)]
(21)

Ii(Mq⊥) = Pπ Im
[
F ∗

0 ρ̄∗F1
(
(�k′ ×�k) · �M)

(�k′ ·�k)
]

(22)

Thus, either skewed linear or circular polarization is needed to measure Mq‖ and π -polarization is needed to
measure Mq⊥.

In forward scattering (FS), where �k′ =�k, this reduces further to

Ii(Mq‖)FS = 2P3 Re
[
F ∗

0 ρ̄∗F1(�k · �M)
]

(23)

Ii(Mq⊥)FS = 0 (24)

In ferromagnets the charge and magnetic scattering coincide in reciprocal space. To obtain the magnetic scattering
one can measure the flipping ratio by reversing either the magnetization or the incident light polarization.

3.5. Example of complex magnetization profile

Substituting P0 = P1 = P2 = 0 and P3 = 1 in Eq. (17) gives the circular dichroism in magnetic scattering.

Im(q) =|F1|2 Im
[
(�k′ · �M∗)(�k′ ×�k) · �M]

(25)
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As will be illustrated in Section 4.2, this requires a magnetization profile where the components in the two per-
pendicular planes must be out-of-phase. It is useful in this respect to introduce a complex magnetization vector
�Mq± ≡ �Mq‖(k′×k) ± i�Mq‖k′ for the magnetization profile with real part along �k′ ×�k and imaginary part along �k′.
This is accomplished in a sinusoidal, helical or chiral magnetization pattern [18,37]. Eqs. (13), (14) give in this case
the polarization of the scattered beam

P ′
σ = 0 (26)

P ′
π = |F1|2 Im[(�k′ · �M∗)((�k′ ×�k) · �M)]

Im(q)
= 1 (27)

which shows that the scattered beam is π polarized [38].

4. Self-organising magnetic patterns in FePd thin films

4.1. Magnetic stripe domain formation and closure domains

Thin films of FePd alloys form self-organising magnetic patterns, where the magnetization breaks up in domains of
different directions in order to reduce the stray field energy [39]. The formation of these domains coincides with the
creation of domain walls where the magnetization rotates from one direction to the other at the expense of the exchange
and anisotropy energies. The results highlighted here refer to thin films grown at the Commissariat à l’énergie atom-
ique (CEA) in Grenoble (France) by depositing ∼40 nm FePd with molecular beam epitaxy (MBE) onto a MgO(001)
substrate, and subsequent capping with a 2 nm thick Pd layer to prevent oxidation and contamination [40,41]. Code-
position of Fe and Pd at equi-atomic composition is performed at elevated temperature of the substrate to control the
partial chemical ordering [42]. A range of different anisotropies can be obtained by varying the growth conditions.
The perpendicular magnetic anisotropy is quantified by the quality factor Q = Ku/2πM2

s , where Ku is the perpendic-
ular anisotropy constant and Ms is the saturation magnetization per volume unit. The magnetic configuration depends
on both layer thickness and quality factor Q, which strongly depends on the chemical disorder as controlled by the
deposition temperature. Layer-by-layer growth at RT results in weak anisotropy (Q ≈ 0.35). Codeposition at 220 ◦C
gives medium anisotropy (Q ≈ 0.8) and codeposition at 350 ◦C gives high anisotropy (Q ≈ 1.5). Fig. 3(a) shows the
magnetic force microscopy (MFM) image of a FePd film with medium anisotropy, with aligned stripes but with the
forks and bifurcations. For samples with high anisotropy, the MFM image shows highly disordered stripes. The evolu-
tion in the stripe disorder is due to the difference in the processes that create the magnetic walls. When the anisotropy
is weak (Q < 1) closure domains will lead to a gradual rotation of the magnetization over the period of the stripe,
whereas for strong anisotropy (Q > 1) the energy of the domain walls is much larger and their creation occurs by
nucleation processes in a way that gives rise to the interlaced domains.

Although one could indirectly infer the presence of closure domains from the stripe ordering observed in the MFM
image, this technique is not able to resolve the details of the magnetic closure domains. MFM probes the magnetic
stray fields above the sample surface, so that the image reveals only the magnetization in up and down direction.
SXRMS, however, gives complementary information, such as the in-plane magnetization, depth profile and correlation
length. SXRMS is also insensitive to an applied magnetic field, which makes it a suitable technique for hysteresis loop
measurements.

4.2. Magnetic circular dichroism in scattering

Fig. 3 shows the SXRMS at the Fe L3 energy from a FePd alloy sample of medium anisotropy with striped magnetic
domain structures (MFM period of 90 nm), as reported by Dürr et al. [18]. The sample was measured with left (solid
red line) and right (dotted blue line) circularly polarized X-rays in the geometry with the scattering plane parallel to the
magnetic stripes [18,37,43]. The inset shows the experimental geometry, where the detector is scanned horizontally
across the diffraction pattern. The magnetic peaks are observed around the central, specularly reflected X-ray beam,
at qy/2π = ±0.011 Å−1 confirming the real space period of τ = 2π/qy = 90 nm (y is transverse direction). The
magnetic peaks are only observed at photon energies within a few eV of the absorption edge, which confirms their
magnetic origin. The magnetic peaks exhibit a strong circular dichroism. This requires a periodic magnetic ordering
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Fig. 3. (a) Magnetic force microscopy (MFM) image of a 2 µm by 2 µm area of a 40 nm thick FePd film grown epitaxially on MgO(001) with
striped magnetic domain structures (period of ∼90 nm). The sample has a perpendicular magnetic anisotropy of Q = 0.8. The contrast in the MFM
image is due to magnetic domains with flux lines directed upward and downward with respect to the film plane. (b) Schematic magnetization profile
in the yz plane of the film. The magnetization directions indicated by arrows illustrate the flux closure in the film. (c) Example of a micromagnetic
calculation for a unit period of the FePd layer. Each cell (∼1 nm containing ∼10 Fe atoms) is represented by a normalized magnetization vector,
shown in the yz plane while the component along the stripe direction is represented by the color gradually increasing from light grey (blue in
online version) to dark grey (red in online version). (d) Soft X-ray resonant magnetic scattering (on log scale) at the Fe L3 edge of a FePd alloy
thin film with medium size magnetic anisotropy measured with left (red, drawn line) and right (blue, dotted line) circularly polarized X-rays in a
geometry with the scattering plane parallel to the magnetic stripes. The magnetic peaks around the central, specularly reflected X-ray beam show
strong magnetic circular dichroism. The left insert shows the experimental geometry with X-rays incident along the stripe direction at grazing
angle [18,39,37].

near the surface with a pattern ↑→↓←, hence demonstrating the presence of closure domains. A magnetic pattern
↑↓↑↓ would not give circular dichroism.

The FePd film is structurally homogeneous, hence no interference scattering should be present. Eq. (25) gives
the circular dichroism in the magnetic scattering. The circular dichroism requires both a real and imaginary part
of the magnetization, which means that the components in the two perpendicular planes must be out-of-phase, i.e.,
�Mq± = �Mq‖(k′×k) ± i�Mq‖k′ (cf. Eq. (25)). The first-order satellites are present for both σ and π polarization of the
incident beam, but only the out-of-phase interference between the scatterings amplitudes from different domains leads
to π ′ polarization of the outgoing beam, cf. Eq. (27). Thus the phase relation, that is lost for linear polarization, is
retrieved with circular polarization. For an ‘ideal’ ordering (↑→↓← . . .) with a period of 2π/τ we have an (n = 4)-
fold symmetry axis. The polarized X-rays impose the two phasefactors exp(iq · rj ) and exp(±iϕ) due to the first Born
approximation and the elliptical polarization, respectively. For example, the phase factors for right and left circularly
polarized light �ε± = (�εσ ± i�επ )/

√
2 are exp(+iπ/2) and exp(−iπ/2). The phasefactors have to be matched by the

sample restrictions exp(i n
m

τ · rj ) and exp(±i n
m

ϕ) due to translation symmetry and rotation symmetry, respectively,
where m is an integer. Momentum transfer and angular momentum have to be conserved together, i.e., invariant under
simultaneous translation of the unit magnetization vectors by ± 2π

τ
m
n

and rotation by ±2π m
n

. The rotation is clockwise
(anticlockwise) for a translation in the positive (negative) direction. Therefore, right and left circularly polarized light
give magnetic scattering peaks at −τ and +τ , respectively.

4.3. Micromagnetic modelling

The microscopic magnetic structure can be calculated by solving numerically the position dependent magnetiza-
tion vectors using the micromagnetic equations and minimizing the total energy. Using the Gilbert–Landau–Lifshitz
(GLL) formulation [44,45], the magnetization is split up in elementary cells (cf. Fig. 3(c)). The total energy contains
the Zeeman energy due to external field, the exchange energy, the magnetic anisotropy energy connected with Ku and
the demagnetization energy, which depends on the form of the volume magnetization and the saturation magnetiza-
tion Ms . The energy is minimized under the constraints that the total length of the magnetization vector for each cell
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is normalized and that the derivative of the magnetization vanishes perpendicular to the surface. Beutier et al. [46,47]
performed numerical simulation of the SXRMS using Eqs. (2), (3), starting from micromagnetic model obtained with
the GLL equations which gives the position dependent magnetic moments in the domain pattern. The magnetic profile
�M(q) couples with the X-ray polarization vectors to the scalar products (�ε′ ∗ ×�ε) · �M and (�ε′ ∗ · �M)(�ε · �M).

Dudzik et al. [48] performed depth profiling of the closure domains in FePd by measuring the scattering intensity
as a function of Bragg angle. Modeling of the asymmetry ratio of the first- and second-order magnetic peaks as a
function of the Bragg angle gave a value of ∼8.5 nm for the effective depth of the closure domains for ∼40 nm FePd
films with low to medium anisotropy. This effective depth is in good agreement with the modelled micromagnetic
structure and also with the results obtained from a fit of the measured magnetic rod scans [48].

5. Artificial structure of Co/Pt nanolines

Chesnel et al. [49,50] have studied periodic arrays of silicon nanolines, covered by a Co/Pt multilayer, with per-
pendicular magnetization. SXRMS measurements were used to observe the magnetic order in the perpendicularly
magnetized line array. The possibility to tune the photon energy across the Co L3 edge enables independent measure-
ments of structural order (off-resonance) and magnetic order (at resonance). The scattering is measured in the plane
perpendicular to the nanolines. As shown in Fig. 4, the structural diffraction pattern, measured at 760 eV, exhibits
many superlattice peaks around the central specular reflection. The peak positions correspond to the structural period
of 275 nm and their intensities are modulated by an envelope function due to the form factor given by the shape of the
film deposited on the patterned structure. The asymmetry of the spectrum is due to the asymmetry of the sputtering
process (the Pt was deposited at 35◦ oblique incidence angle). Indeed, this asymmetric shape is reversed when the
sample is rotated by 180◦. At the Co L3 resonance energy, the magnetic contributions appear both on top of the struc-
tural diffraction peaks and between these peaks (Fig. 4). Hence, there will be a strong interference scattering, with the
circular dichroism given by Eq. (21) with P2 = 0 and P3 = 1. It vanishes at grazing incidence (�k′ =�k), since �M is
perpendicular to the film.

The magnetic satellites reveal the antiferromagnetic order, which is generated by the interline dipolar coupling.
Their intensities depend strongly on the magnetic history, and can be enhanced through specific demagnetisation
processes. By applying an in situ magnetic field, the evolution of the magnetic signal can be monitored through the
entire hysteresis loop. The magnetic contribution of the structural superlattice peaks can be quantified by their asym-
metry ratio, whose angular variation stems from the scattering factor. The change of the intensity with the magnetic
field is completely reproducible and characterizes the modifications of the magnetic configuration during the reversal

Fig. 4. Periodic array of silicon nanolines, covered by a Co/Pt multilayer, with perpendicular magnetization. (a) Atomic force microscopy (AFM)
image of a line grating with linewidth 200 nm, line spacing 200 nm and trench height 35 nm. (b) Normalized diffraction pattern of a line grating
with linewidth 200 nm, line spacing 75 nm and trench height 300 nm measured along qx on the first multilayer Bragg peak (qz = 0.24 Å−1) for
two energies: below the Co L3 edge and at resonance. The magnetic peaks are only observed at resonance [50].
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Fig. 5. The antiferromagnetic hysteresis loop of a periodic array of silicon nanolines, covered by a Co/Pt multilayer measured at the magnetic
diffraction peaks under in situ perpendicular magnetic field, using XMSR at the Co L3 resonance. Hc is the coercive field. The inset shows the
corresponding hysteresis loop as measured at the super lattice peaks [50].

process. A model of Ising macrospins, developed by Chesnel et al. [50], where the distribution of the magnetic reversal
fields is deduced, is in agreement with the measured results.

Applying a perpendicular magnetic field in situ with an electromagnet inside the diffraction chamber [29] enables
one to monitor the evolution of the XRMS spectrum with field strength. It is particularly interesting to study the
evolution of the magnetic AF satellites and structural peak intensities of different orders when the magnetic field
cycles through the hysteresis loop. Fig. 5 shows an example of an antiferromagnetic loop. The signal, monitored by
the intensity magnetic peak, is maximum at the coercive point. The main advantage of such measurements is the
possibility to follow the signal in real time, with a good time resolution (about 10 Oe/s), compared to MFM studies,
which cannot be performed under continuous field variation and which takes longer time.

6. Coherence of X-rays

6.1. Coherence length

Synchrotron radiation, like any other finite source, can be made coherent at the expense of flux, so that a third-
generation synchrotron source is required to produce a sufficient coherent flux. The conditions for both longitudinal
coherence and transverse coherence have to be fulfilled [51].

The longitudinal (or temporal) coherence length ξl = λ2/(2�λ) is determined by the resolving power λ/�λ of the
monochromator at given wavelength λ. In the soft X-ray region, λ/�λ is typically between 1000 and 10 000, so that
ξl is a few µm. Given that the absorption length μ−1 in Fe metal at the L3 edge is ∼30 nm, the longitudinal coherence
condition is largely fulfilled at this resonance.

The transverse (or spatial) coherence is obtained from the diffraction limit as ξt = λz/(2πds), for a distance z from
a source with diameter ds . The required transverse coherence can be achieved by spatial filtering, i.e., by inserting a
pinhole with a diameter of typically a few tens of µm at close range in front of the sample [52].

6.2. Speckle pattern

Speckle can be described as the random intensity variation in the scattering of coherent radiation from a random
sample. The speckle is caused by the random path differences between the radiation scattered from different locations
in the sample, which interfere at the detector in the far field to produce a random interference pattern. Speckle patterns
are sensitive to the particular configuration of the random sample, whereas incoherent light scattering is only sensitive
to statistical averages of the structure. By measuring the time dependence of the speckle pattern, one can study the
dynamics (fluctuation, deformation, etc.) of the system. This would mean that one can study the dynamics of the local
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magnetic moments, even when the average sample magnetization is constant. Although the use of coherent visible
radiation is well established, only the shorter wavelengths offered by synchrotron radiation will allow us to probe
on a shorter length scale than with visible light [53]. Since for X-rays the scattering is small, it is beneficial—using
the advantages of synchrotron radiation—to tune into a specific absorption edge, thereby enhancing the scattering
and becoming element specific. Polarized radiation gives sensitivity to the magnetization, and to benefit from strong
dichroic effects one needs to go to the soft X-ray region.

To reconstruct the local configuration of the illuminated objects from the speckle pattern requires the measurement
of the signal F(u) = |F(u)|eiφ(u), while only the intensity (i.e., the squared amplitude |F(u)|2) can be detected
and the phase φ(u) is lost. Only under very favourable circumstances, and for a limited number of objects, the
phase problem can be solved and the illuminated sample can be reconstructed directly from its coherent scattering
pattern [54–57]. Recently, lensless imaging by X-ray spectro-holography of magnetic nanostructures has also been
demonstrated [58,59].

The presence of magnetic speckles, displaying a very high magnetic contrast, opens up the possibility to use
SXRMS for the study of static and dynamic magnetic disorder on length scales relevant for nanomagnetism. Combined
with the time structure of synchrotron radiation, speckle measurements would enable us to study rapid fluctuations in
the local magnetic order, giving access to dynamical processes, and ultimately leading to improvements in the read-
write speed of magnetic storage devices. This photon in–photon out technique allows us to study reversal processes
as a function of magnetic field. It allows us e.g. to determine the degree to which the microscopic domain pattern is
retained after magnetization cycling [60,61].

6.3. Coherent SXRMS from Co/Pt nanolines

The use of coherent soft X-rays provides a unique opportunity to go well beyond the incoherent SXRMS results,
by following the local reversal mechanism. It has the potential to give access to the local magnetic configuration of
the line array, since the area illuminated by the pin hole contains a limited number of nanolines (∼80), so that the
spin state of each individual line can be obtained at each stage of the reversal process. The coherent scattering from

Fig. 6. Coherent scattering from Co/Pt nanolines. (a) The CCD images of the coherent scattering pattern from the patterned sample in the initial
demagnetized state, below the absorption edge. (b) At the Co L3 edge, magnetic satellites appear between the structural diffraction peaks. (c) Three
dimensional image of the intensity fluctuations in the first magnetic satellite at the right-hand side of the specular peak. The inset shows a sketch
of the experimental set up (not to scale) for coherent scattering in reflection geometry with an incidence angle θ = 22.5◦ . The scattering pattern is
recorded using a charge-coupled device (CCD) camera at 2θ = 45◦ . Each line in the Co/Pt multilayer grating studied here can have either up or
down magnetization [60].



582 G. van der Laan / C. R. Physique 9 (2008) 570–584
the Co/Pt nanolines is shown in Fig. 6. Coherent SXRMS measurements offer the possibility to probe the true local
magnetic configuration in nanostructures and its evolution under in situ fields. The remarkable changes of the speckle
patterns obtained from a Co/Pt nanoline array along the hysteresis curve provide a precise fingerprint of the evolution
of the magnetic domain configuration. The experimental results obtained by Chesnel et al. [60] show that each Co/Pt
line behaves like a macrospin that reverses completely above an intrinsic critical field. The whole reversal process of
the line assembly can be divided into two regimes: the first stage is a random reversal phase, while the second stage is
governed by the dipolar coupling favouring AF ordering. The border between the two regimes depends on the pattern
geometry, but also on the intrinsic reversal field distribution and can be modified by various parameters, such as
layer deposition mode and magnetic history. Combined with the time structure of synchrotron radiation, these speckle
patterns will allow us to study rapid fluctuations in the local magnetic order, giving access to dynamical processes,
and ultimately leading to improvements in the read-write speed of magnetic storage devices.

7. Outlook

This brief status report shows that SXRMS opens the way for detailed studies of periodic magnetic nanostructures,
which are of high potential interest for spintronics. The scattering technique offers a sufficiently large sampling depth
ideal for buried interfaces and can be performed in the presence of externally applied magnetic and electric fields. The
element specific magnetization profile is obtained using the linear and circular polarization of the synchrotron radia-
tion. This can not only be used for collinear alignments as in the case of X-ray magnetic circular and linear dichroism,
but interestingly also for helical, sinusoidal and chiral magnetization profiles. The presented practical examples of
structurally continuous films of FePd with self-organising magnetic stripe patterns and artificial nanostructures cov-
ered by a Co/Pt multilayer can be complemented with many other examples, such as the magnetic layer profiles in
multilayers [62], systems with modulated magnetic anisotropy [63], and charge, spin and orbital ordering [12], etc.
Such studies allow us to obtain direct element-specific information within the structure multilayer or spin valve, e.g.,
at a buried interface. In the soft X-ray region the magnetic scattering is large, as clearly demonstrated by the presented
examples. This brings into reach samples with low concentrations and permits to introduce delta layers to investigate
polarization of non-magnetic layers, and makes it possible to verify magnetic dead layers [64].

The use of speckle patterns obtained by coherent X-ray scattering appears to be a very promising development
to study magnetic nano-objects. Since soft X-ray absorption spectra show a huge magnetic dichroism compared to
their hard X-ray counterparts, the magnetic peak intensities are more straightforward to model. Studies using coherent
X-rays clearly hold large promises for the future of magnetic scattering, with imaging of dynamic disorder among
the possibilities. Combined with the time structure of synchrotron radiation, speckle measurements will enable us to
study rapid fluctuations in the local magnetic order, giving access to dynamical processes, and ultimately leading to
improvements in the read-write speed of magnetic storage devices. It also allows us to determine the degree to which
the microscopic domain pattern is retained after magnetization cycling.
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