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Abstract

Resonant X-ray scattering is a method which combines high- �Q resolution X-ray elastic diffraction and atomic core-hole spec-
troscopy for investigating electronic and magnetic long-range ordered structures in condensed matter. During recent years the
development of theoretical models to describe resonant X-ray scattering amplitudes and the evolution of experimental techniques,
which include the control and analysis of linear photon polarization and the introduction of extreme environment conditions such
as low temperatures, high magnetic field and high pressures, have opened a new field of investigation in the domain of strongly
correlated electron systems. To cite this article: L. Paolasini, F. de Bergevin, C. R. Physique 9 (2008).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Étude de systèmes électroniques fortement corrélés par diffusion magnétique et résonnante des rayons X. La méthode de
diffusion résonnante des rayons X combine la diffraction à haute résolution en �Q avec la spectroscopie des niveaux atomiques de
cœur. Elle permet l’étude, dans la matière condensée, des structures électroniques et magnétiques ordonnées à grande distance. Les
dernières années ont vu le développement de modèles théoriques décrivant les amplitudes de diffusion résonante des rayons X, et
une évolution des techniques expérimentales incluant le contrôle et l’analyse de la polarisation linéaire des photons et l’introduction
d’environnements extrêmes tels que basses températures, champ magnétiques élevés et hautes pressions. Ces développements
théoriques et expérimentaux ont ouvert un nouveau champ d’investigation dans le domaine des systèmes électroniques fortement
corrélés. Pour citer cet article : L. Paolasini, F. de Bergevin, C. R. Physique 9 (2008).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
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1. Introduction

The use of photon beam techniques to study the magnetic properties of materials has received a large impulse
with the advent of the so-called third generation synchrotron radiation sources. The improvement in brightness, po-
larization and energy tunability of the light delivered by the insertion devices (wigglers and undulators) have been
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key ingredients for a wide range of applications of synchrotron radiation in many diverse areas of condensed matter,
including physics, chemistry, material science, biology, medicine, geology. The research field of Resonant X-ray Scat-
tering (RXS) has experienced tremendous theoretical and experimental progress during the last years, and today it is
one of the most important areas of investigation of modern synchrotron radiation sources [1]. This method uses the
photon beam as a quantum probe to investigate structural, magnetic and electronic ordered structures of solids, and
combines high- �Q resolution X-ray diffraction and atomic spectroscopy for investigating the subtleties of microscopic
electronic and magnetic interactions in solids.

The fundamental idea of RXS is that the incident photon energy, tuned across an absorption edge, is sufficient to
cause a core-level electron to be injected to a partially filled valence band shell and to subsequently decay through
the emission of an elastically scattered photon with a particular polarization dependence. Whereas the pure X-ray
magnetic scattering amplitude is very weak, and enables the separation of spin and orbital moment contributions
to the total magnetization density without any underlying models [2], large enhancements of the resonant magnetic
scattering amplitudes can be found tuning the incident photon energy at L-edge of rare earths or at M-edge of actinides
[3]. The special nature of this process is that it is both electron shell and element specific, and it has introduced species
sensitivity directly into the determination of magnetic structures.

A feature of the resonant enhancement is the tensor character of atomic structure factors near the absorption edge
which reflect the anisotropy of the electronic shells: low site symmetry, Jahn–Teller distortion, local magnetization
or electronic orbital order. Due to the tensorial character of the RXS cross-section, superlattice diffraction peaks,
forbidden for the space group symmetries, would appear originating from the occurrence of the long range ordering
of any physical quantity coupled with the electronic density of states. Similar to the photon spectroscopy, the light
polarization is strongly influenced by small changes of local site electronic symmetries, and the polarization analysis
of the scattered photons as a function of the incident energy and the sample orientation is the method to unravel the
physics that is at the origin of the resonant signals.

Today the RXS technique is particularly active in the research domain of strongly correlated electron systems, in
which the electronic correlations play a dominant role, promoting structural, magnetic and electronic phase transitions,
driven by a variety of external thermodynamical parameters such as the magnetic field, electric field, high pressure
and temperature. The investigation of the order parameters and their evolution as a function of the thermodynamical
variables is one of the main research field in the domain of strongly correlated electron systems and complex materials,
in which different and often competing order parameters are present, giving rise to many spectacular manifestations
of quantum physics in condensed matter. Strongly correlated systems are also a challenge for theoretical models that
aim to calculate the electronic structure as it is necessary to correctly treat electron–electron interactions.

Several scattering techniques such as neutrons, X-rays, muons or electrons are exploited to investigate the structure
of materials, static and dynamic electronic correlations and collective excitations. Neutrons have occupied an impor-
tant role in the studies of magnetism in condensed matter for the last fifty years. The evolution of X-ray scattering
techniques and the advance in theoretical interpretation of resonant X-ray spectroscopies make synchrotron radiation
studies at the forefront of the modern scattering techniques.

2. Historical view

The coupling between magnetism and photons was predicted many years ago, with the observation of important
modifications of the Thomson scattering cross-section at high scattering vectors, and this effect is included in the
Klein–Nishina formula for Compton scattering [4,5]. In the 1950s different works on Compton magnetic γ -ray scat-
tering were published, motivated by its use for polarization measurements in nuclear and particle physics [6–8]. In the
field of solid state physics, seminal and pre-synchrotron magnetic X-ray scattering experiments were carried out in the
1970s by de Bergevin and Brunel at the CNRS in Grenoble, and they demonstrated the feasibility of magnetic X-ray
scattering experiments by using a standard X-ray tube on NiO [9], suggested by the theoretical paper of Platzman and
Tzoar [10]. The non-resonant limit is well described by these authors in the classical description of the interaction
of linearly polarized photons with an electron, as shown in Fig. 1 [11]. A plane wave with a linear polarization ε̂

interacts with an electron not only with the charge density as in the case of the Thomson scattering mechanism, but
also with the spin and orbital magnetic density of the electrons. The electromagnetic field of the radiation acts as a
driving force on the electronic charge which is accelerated with its magnetic moment. The light is re-emitted with a
polarization ε̂′ after the collision, and the re-radiation mechanisms can be classified as shown in Fig. 1. Beside the
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Fig. 1. Classical representation of the dominant scattering mechanisms of the photon–electron interaction [11].

Fig. 1. Représentation en théorie classique des principaux mécanismes d’interaction photon–électron [11].

dominant Thomson term (a), associated to the dipole re-radiation of the scattered field with a classical dependence of
the polarization (ε̂ · ε̂′), the electric and magnetic fields of the radiation interact also with the magnetic moment of the
oscillating electron, emitting the magnetic quadrupole (term (b) in Fig. 1). The term (c) corresponds to the interaction
between the spin moment of the electron and the magnetic field H of the radiation. The term (d) is associated to the
precession of the electronic spin moment which re-radiate a magnetic dipole. Finally the last term (e) corresponds to
the correction to the Thomson scattering when the electron has a translational motion, which gives rise to a scattering
by orbital moment when integrated over its orbit.

These terms, in general, are very weak, because the relativistic character of the electron–photon interaction in-
troduces a scale factor (h̄Q)/(2πmc) = 2(λc/λ) sin θ between the magnetic scattering and the Thomson scattering
amplitudes, respectively, where here λc is the Compton wavelength of the electron (λc = 2h̄/mc = 0.002426 nm).
Compared to the classical charge scattering the pure magnetic scattering amplitude is significantly reduced by a factor
of h̄ω/mc2:

σmag

σcharge
�
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h̄ω

mc2

)2(
Nm

N

)2

〈M〉2
(
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f

)2

(1)

where mc2 = 511 keV is the rest mass of an electron, Nm is the number of magnetic electrons per atom and N the
number of electrons per atom. 〈M〉 is the magnetic order parameter, being equal to one only at low temperature, when
the system is magnetically saturated (fm and f are the magnetic and charge form factors). For example, this ratio
becomes

σmag
σcharge

∼ 10−6 for the Mn+2 ion (assuming that fm/f ∼ 1).
The advent of energy-tunable synchrotron sources has opened the possibility to adjust the photon energy to dif-

ferent values of absorption edges, living the opportunity of observing resonant effects in many materials [12]. These
experiments have opened the avenue for the modern synchrotron radiation experiments, allowing the extraction of
information from the anisotropic tensors of the atomic structure factor near a resonance: the energy dependence, the
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Table 1
Photoabsorption edges for different series of magnetic elements, with the characteristic energy ranges (keV), wavelength λ (Å) and the allowed
atomic transitions to the electronic shells. The right column indicates the estimated resonant magnetic scattering amplitudes expressed in r0 units.
The non-resonant pre-factor h̄ω/mc2 in Eq. (1) is typically 0.01 r0

Tableau 1
Table montrant les seuils d’absorption pour diverses séries d’éléments magnétiques, avec les domaines d’énergie caractéristiques (keV), les lon-
gueurs d’onde λ (Å) et les transitions permises entre couches atomiques. La colonne de droite indique l’amplitude de diffusion magnétique résonante
estimée, exprimée en unités r0. Le préfacteur non résonant h̄ω/mc2 dans l’Éq. (1) vaut typiquement 0,01 r0

Series Abs.
edge

Energy
(keV)

λ

(Å)
Shells Type Resonant

amplitude

3d L2,3 0.4–1.0 12–30 2p → 3d E1 ≈ 1.00
K 4.5–9.5 1.3–2.7 1s → 4p E1 ≈ 0.02

1s → 3d E2 ≈ 0.01

5d L2,3 5.4–14 0.9–2.2 2p → 5d E1 ≈ 1.00

4f L2,3 5.7–10.3 1.2–2.2 2p → 5d E1 ≈ 0.10
2p → 4f E2 ≈ 0.05

M4,5 0.9–1.6 7.7–13.8 2d → 4f E1 ≈ 100

5f L2,3 17–21 0.6–0.7 2p → 6d E1 ≈ 0.05
2p → 4f E2 ≈ 0.01

M4,5 3.5–4.5 2.7–6 3d → 5f E1 ≈ 10.0

azimuthal rotation and the polarization analysis of the forbidden lattice reflections, appear as a consequence of broken
lattice symmetries, as, for example, due to the presence of screw-axis or glide plane broken symmetries [13].

The first resonant magnetic enhancement was reported by Namikawa et al. [14], working at the K-edge of ferro-
magnetic Ni. In addition to the non-resonant magnetic signal, the authors observed at photon energies close to the
K-edge a supplementary signal, which they also interpreted to be of magnetic origin. Since then, the X-ray magnetic
circular dichroism is widely used to study ferromagnetic systems. Namikawa’s result remained unnoticed until 1988,
when Gibbs et al. observed the first resonant enhancement in an antiferromagnetic system [3]. At the L3-edge of
Ho they measured a 50 fold enhancement of the magnetic intensity, explained by the theoretical paper of Hannon
et al. [15]. During the 1990s a large number of experiments was performed on magnetic materials, showing large
magnetic enhancement at L-edges of rare earths, M-edges of actinides and K-edges of transition metals. The ex-
perimental characterization of magnetic resonances and the contiguous theoretical development of the RXS theories
have opened with the advent of new beamlines dedicated to RXS studies which today progress in combination with a
growing number of experimentalists and theoreticians.

Table 1 shows the absorption edges exploited for RXS studies and associated to the elements of interest for mag-
netic diffraction. The lines in italic represent absorption edges in the soft X-ray regime, where the scattering conditions
are not fulfilled for most of the ordered magnetic structures, but with a huge enhancement of the resonant magnetic
amplitude, as shown in the last column (L-edges of transition metals and M-edges of rare earths). The most important
edges for hard RXS cover the energy range 3.5–15 keV, which include K-edges of transition metals, the L-edges of
Rare-Earths and both the L-edges and the M-edges of actinides. Following the Hannon model for resonant exchange
scattering [15], two possible photoelectron transitions are considered in the RXS regime: the electric dipole (E1) and
the electric quadrupole (E2) transitions, which are related to the symmetry of the electronic shell and to the type of
orbitals probed in the intermediate states. The last column of Table 1 shows the estimation of the magnetic scattering
amplitude for the different shells [16]. Notice the strong enhancement at M-edges of rare earths and actinides, arising
from the asymmetry of the transition probabilities coupled with the spin-orbit splitting either in the ground state or in
the intermediate states, as we will see in the following section.

During the last years, the possibility to single out structural, magnetic and anomalous scattering components
through Bragg diffraction, and to study the polarization dependence of the diffracted beam as a function of scattering
angles and incident photon energy has provided a large amount of experimental data, that in turn have stimulated
theoretical calculations and interpretations. In particular, the Hannon model, valid when a spherical symmetry is bro-
ken by an axial vector which determine the magnetic moment, has demonstrated its limitation in the case of strongly
correlated electron systems. The discovery of forbidden lattice reflections on V2O3 is one of the examples [17] which
today still promotes an intense debate on the origin of resonant effects at K-edge of transition metals [18,19], and the
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necessity of classifying the high-order multipole resonances taking into account of mixing effects due to parity and
time-reversal breaking symmetries. Today, the separation of the RXS signal in terms of electromagnetic multipoles
is one of the most fashionable ways to classify these experiments and opens new perspectives in this research field
[20–22]. Due to the relatively new domain of research and the complexity of the RXS cross-sections, sophisticated
equipment and complex measurements are necessary to disentangle the high-order multipole resonances and to assign
the correct character of order parameters involved in the phase transitions. In the following section we will summarize
the main theoretical development in this field during the last years, suggesting new experimental investigations and
highlighting the role of RXS as the tools to investigate the physics of strongly correlated electron systems.

3. Theory of magnetic and resonant X-ray scattering

The fundamental interaction of X-rays with bound electrons can be due to the electron charge or the coupling
between the electric and magnetic field of the incident photons with the atomic magnetic moment. Charge scattering
is the dominant mechanism and the basis for crystallographic investigation of condensed matter. When we consider the
coherent X-ray elastic diffraction on single crystals, the individual atomic scattering amplitudes interfere at different
lattice sites n and the elastic scattering cross-section can be written as:

dσ

dΩ
= r2

0

∣∣∣∣∑
n

eiQ·Rnfn(k,k′, ε̂, ε̂′, h̄ωk)

∣∣∣∣
2

(2)

where fn(k,k′, ε̂, ε̂′, h̄ωk) is the scattering amplitude of the electrons at site n, Rn is the position of the nth site in the
crystal, Q = k − k′ is the scattering vector and r0 = e2/mc2 ≈ 2.82 × 10−5 Å is the classical electron radius.

The X-ray magnetic scattering gives rise to two regimes, determined by the incident photon energy: the non-
resonant limit, which contains the energy independent part of the scattering amplitude and includes the Thomson
scattering amplitude f0 ∝ Zr0 and the magnetic scattering amplitude f magn., and the RXS regime which contains the
real f ′ and imaginary if ′′ part of the energy-dependent terms:

f = f0 + f magn. + f ′ + if ′′ (3)

The resonant terms, also called anomalous or dispersive terms, appear when the incident X-ray energy lies near an
absorption edge (i.e. K,L,M, . . . absorption edges) as a consequence of the photo-absorption effect, and correspond
to transitions of core electrons into available electronic states above the Fermi level. For the forward direction the
imaginary part of scattering amplitude f ′′(Q = 0) is related to the absorption cross section:

σ = 4π

|k| Im
[
ε̂∗ · f (Q = 0)

]
(4)

where Q is the scattering vector and k, ε̂ are the wave vector and the polarization of the incident photon beam,
respectively.

Photons are defined by the initial state |k, ε̂〉 characterized by wavevector k, polarization ε̂ and energy h̄ω. Initially
the electrons are found in the state |a〉, an eigenstate of Hel with energy Ea . The interaction between electrons and
photons creates a new final eigenstate |b〉 for the electrons with an energy Eb and a scattered photon in the state
|k′, ε̂′〉 with an energy h̄ω′. The probability of such a transition is given by the Fermi’s Golden Rule, which is used in
a second order perturbation treatment:

W = 2π

h̄

∣∣∣∣〈f |H′|i〉 +
∑
n

〈f |H′|n〉〈n|H′|i〉
Ei − Ef

∣∣∣∣
2

δ(Ei − Ef ) (5)

where |i〉 = |a;k, ε̂〉, |f 〉 = |b;k′, ε̂′〉, Ei = Ea + h̄ωk and Ef = Eb + h̄ω′
k . For Ea �= Eb we obtain inelastic scattering

and for Ea = Eb we obtain the elastic case. In the following we only consider elastic scattering.
The differential scattering cross-section is defined as:

d2σ = W · ρ(Ef )
(6)
dΩ dE I0
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with ρ(Ef ) being the density of final states accessible to the photon and I0 the incident photon flux, namely:

ρ(Ef ) = V

(2π)3

ω2
k′

h̄c3
and I0 = c

V
(7)

where V is a quantization volume.
Following the perturbative method developed by Blume [23], which considers an unperturbed system described by

the electron and non-interacting photon Hamiltonians, the total scattering amplitude for coherent elastic scattering of
X-rays can be calculated on the basis of the interaction Hamiltonian H′:

H′ = H′
1 +H′

2 +H′
3 +H′

4

= e2

2mc2

∑
j

A2(rj ) − e

mc

∑
j

A(rj ) · Pj − eh̄

mc

∑
j

sj · [∇ × A(rj )
]

− eh̄

2(mc)2

e

c2

∑
j

sj · [Ȧ(rj ) × A(rj )
]

(8)

where m, Pj and sj denote the electron mass, the momentum and the spin operators, respectively, and A(rj ) is the
vector potential which characterizes the radiation field. We are now in position to calculate, using Fermi’s Golden rule
Eq. (5), the transition probabilities for the different terms H′

i associated to the interacting Hamiltonian H′. Because
we are interested only in the elastic scattering process which leaves the solid in the same state as before the interaction
(scattering processes which conserve the number of photons), we will select the term which contains only both the
creation and annihilation of a photon and we neglect the others. The vector potential A(r) is linear in photon creation
and annihilation, so that the conservation of number of photons occurs for even degrees of A.

Therefore, in first order perturbation, only the terms which are quadratic in A (H′
1 and H′

4), are kept. The linear
terms in A (H′

2 and H′
3) contribute to second order in the perturbation. The Fermi’s Golden Rule can written as:

W = 2π

h̄

∣∣∣∣〈a;k′ε̂′|H ′
1 + H ′

4|a;kε̂〉 +
∑
n

〈a;k′ε̂′|H ′
2 + H ′

3|n〉〈n|H ′
2 + H ′

3|a;kε̂〉
Ea + h̄ωk − En

∣∣∣∣
2

(9)

In order to evaluate the coherent elastic scattering cross-section, the scattering amplitudes fn(k,k′, ε̂, ε̂′, h̄ωk)

can be developed in resonant and non-resonant scattering amplitudes, by assuming that the unperturbed radiation is
monochromatic, and the vector potential which characterizes the radiation field is a linearly polarized plane wave.
After some manipulations (see Ref. [23]) we can write:

fn(k,k′, ε̂, ε̂′, h̄ω) = 〈a|
∑
j

eiQ·rj |a〉ε̂′ · ε̂ − i
h̄ω

mc2
〈a|

∑
j

eiQ·rj

[
iQ × Pj

h̄k2
· A′ + sj · B′

]
|a〉

+ 1

m

∑
c

Ea − Ec

h̄ωk

(
−〈a|O+(k′)|c〉〈c|O(k)|a〉

Ea − Ec + h̄ωk − iΓc/2
+ 〈a|O(k)|c〉〈c|O+(k′)|a〉

Ea − Ec − h̄ωk

)
(10)

where the first term is the Thomson contribution f0, the second term the non-resonant X-ray magnetic scattering am-
plitude f magn., which will be made explicit in Section 3.2, and the third and fourth terms are the so-called anomalous
or resonant contribution f RXS = f ′ + if ′′. When the incoming photon energy h̄ω is very different from any character-
istic energy Ec −Ea of the system, we are in the non-resonant regime. If, however, the photon energy is tuned to such
a characteristic energy, we are in the resonant regime, where the resonant denominator 1

Ea−Ec+h̄ωk−iΓc/2 of Eq. (10)
plays the important role, giving rise to the typical enhancement of the magnetic intensities across the absorption edge.
The resonant process consists in promoting an electron from core levels into a valence shell (either partially occupied
or empty), and the subsequent decay into the same initial state result in an elastically re-emitted photon, were Γc is the
width of the excited level |c〉 with energy Ec and 2πh̄/Γc its life time. The operator O(k) will be analysed in detail
in Section 3.3.
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3.1. Thomson scattering and polarized photons

The first term of Eq. (10) describes the charge scattering, known as Thomson scattering. It is directly related to the
Fourier transform of the charge density:

f0(Q, ε̂, ε̂′) = 〈a|
∑
j

eiQ·rj |a〉 ε̂′ · ε̂ (11)

To describe the polarization of incident ε̂ and scattered ε̂′ beams various orthogonal polarization basis vectors can
be used. In diffraction experiments two characteristic directions are used to describe the linear polarization of the
radiation: the σ polarization perpendicular to the scattering plane and the π polarization lying in the plane.

Using the basis vectors shown in Fig. 2, a generic incident polarisation state can be written as �ε = σ ε̂σ + πε̂π ,
whereas the polarisation of the diffracted beam is �ε′ = σ ′ε̂′

σ + πε̂′
π . The scalar product between these two vectors,

determining the polarization dependence of the diffracted intensity, can then be written as:

�ε′ · �ε = (σ ′π)

(
1 0
0 cos(2θ)

)(
σ

π

)
(12)

where θ is the scattering angle. The polarization factor tells us that, if the incident radiation is purely polarized along
one of the basis vectors, then the charge scattering doesn’t change its polarization. This effect is used to select by a
single crystal polarization analyzer the linear polarization of the scattered photons, as represented in Fig. 2. A single
crystal analyzer is selected and oriented with a scattering angle of θan ≈ 45◦ and can be rotated about the scattering
vector k′ (angle η). In this specific case (or close to it), we have:

�ε′′ · �ε′ = (σ ′′π ′′)
(

1 0
0 ≈ 0

)(
σ ′
π ′

)
(13)

where �ε′′ is the photon polarization after diffraction from analyzer crystal.
We can easily see that, in the case of Thomson scattering, when the incident polarization is σ , the scattered intensity

is only detected when η = 0◦. The polarization analysis, combined with the rotation ψ of the sample about the
scattering vector Q = k′ − k (the so-called azimuthal rotation), are the basic method to separate the magnetic or RXS
intensities from the charge scattering.

Fig. 2. Description of the vertical scattering geometry with the polarization analysis setup. A crystal analyzer is selected and oriented for a given
energy with a Bragg scattering angle θan ≈ 45◦ , and it can be rotated about the scattered wavevector k′ (angle η). For scattered photons with
polarization ε̂′

σ (ε̂′
π ), the intensity is detected when η = 0◦ (η = 90◦).

Fig. 2. Description de la géométrie en diffraction verticale, avec le dispositif d’analyse de polarisation. Pour une énergie donnée, un cristal analyseur
est choisi et orienté avec un angle de Bragg θ ≈ 45◦ . Il peut tourner (angle η) autour du vecteur d’onde diffracté k′ . Pour les photons diffractés
dans la polarisation ε̂′

σ (ε̂′
π ), l’intensité est détectée à η = 0◦ (η = 90◦).
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3.2. Non-resonant X-ray magnetic scattering

Far from the characteristic energy (h̄ωk � Ec −Ea) the non-resonant terms f0 and f magn. in Eq. (10) are dominant.
We can write f magn. in term of the Fourier transform of the orbital and spin magnetization density S(Q) and L(Q),
respectively:

S(Q) = 〈a|
∑
j

sj eiQ·rj |a〉 (14)

L(Q) = 〈a|
∑
j

lj eiQ·rj |a〉 (15)

Then the f magn. amplitude is given by:

f magn. = −i
h̄ω

mc2

(
1

2
L(Q) · A′′ + S(Q) · B′

)

= −i
h̄ω

mc2

(
Mσσ Mπσ

Mσπ Mππ

)
(16)

where A′′ and B′ are vectors which describe the polarization and wavevector dependence of the magnetic scattering
process and the magnetic scattering amplitudes Mi,j are decomposed in the basis of vectors ûi represented in Fig. 2
as follows:

Mσσ = S2 sin 2θ (17)

Mπσ = −2 sin2 θ
[
(cos θ)(L1 + S1) − S3 sin θ

]
(18)

Mσπ = 2 sin2 θ
[
cos θ(L1 + S1) + S3 sin θ

]
(19)

Mππ = sin 2θ [2L2 sin2 θ + S2] (20)

Here Si and Li are the components of S(Q) and L(Q) are defined in the coordinate system of ûi . It can be seen that
by taking advantage of the different geometrical prefactors for spin and orbital moments, X-ray magnetic scattering
provides the possibility to separate spin and orbital moment contributions to the total magnetization density. In par-
ticular, there is no contribution of L to the σ–σ polarization channel. More generally, the prefactors can be adjusted
by changing either the scattering geometry or the X-ray polarization. The separation of L and S presents a distinct
difference to neutron scattering, where only the total magnetic moment is probed. Moreover, the L/S ratio can be
probed in the ordered state, like in antiferromagnetic systems or in modulated structures.

In the case of localized electron systems, Li and Si can easily be related to the spin μs and orbital μl magnetic
moments of the i-atom:

Si = fs(Q)μi
s

gsμB

(21)

Li = fl(Q)μi
l

glμB

(22)

with gl and gs being the appropriate Landé factors and μB the Bohr magneton. In the spherical dipole approximation
the spin and orbital form factors fl and fs are usually expressed as:

fs(Q) = 〈
j0(Q)

〉
(23)

fl(Q) = 〈
j0(Q)

〉 + 〈
j2(Q)

〉
(24)

where 〈ji(Q)〉 are radial integrals used in the theoretical development of the magnetic form factors. The orbital
magnetic moment, created by the orbital currents, is more localized than the spin magnetization, therefore its form
factor falls down less rapidly in reciprocal space.

The method of separation of L/S has been applied successfully on simple transition metal oxides [24,25], in
actinides [26], Jahn–Teller cuprates [27], strongly correlated electron systems [17].
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Fig. 3. Left: Azimuthal dependence of antiferromagnetic reflection (005) taken at 11 K in non-resonant regime (E = 5.128 keV). The maximum
of σ–σ ′ intensity corresponds to the moment direction μ pointing along the 〈110〉 direction. Right: L/S ratio in KCuF3 as a function of scattering
vector Q [27].

Fig. 3. A gauche : dépendance azimutale de la réflexion antiferromagnétique (005) mesurée à 11 K dans le régime non résonnant (E = 5,465 keV).
Le maximum de l’intensité σ–σ ′ correspond à la direction des moments μ pointant le long de 〈110〉. A droite : le rapport L/S dans KCuF3 en
fonction du vecteur de diffusion Q [27].

For example, the Mott–Hubbard KCuF3 insulator is one of those rare examples where one-dimensional magnetic
properties are manifested within a pseudo-cubic crystal structure. The magnetic structure was determined by neutron
elastic scattering measurements, and corresponds to the type-I antiferromagnetic below TN = 38 K, with the magnetic
moment direction perpendicular to the cubic c-axis [28]. Far from the absorption edge, a forbidden lattice reflection
appears below the Néel temperature with a propagation vector qm = (001). Magnetic reflections like (001), (003)
(005) can be reached by orienting the crystal along the axis 〈00l〉. In this experiment the vertical scattering geometry
was used. The azimuthal scans show well defined maxima and minima (Fig. 3-left), which prove that a single magnetic
domain was probed. For this particular geometry, and by analyzing the sinusoidal dependence of scattered signal, it is
easy to determine the magnetic moment directions in the plane, directed along the 〈110〉 direction of the pseudo-cubic
perovskite cell.

Because the Cu magnetic moments lie in the basal plane (S3 = 0), in this case only two non-resonant X-ray
scattering amplitudes associated to the channel σ–σ ′ and σ–π ′ can be considered:

Mσσ = S2 sin 2θ (25)

Mπσ = −2 sin2 θ
[
(cos θ)(L1 + S1)

]
(26)

The ratio of orbital L(Q) and spin S(Q) moments are thus given by the simplified expression:

L(Q)

S(Q)
= tan(ρ − π

4 )

sin θ

√
Iσπ

Iσσ

− 1 (27)

where ρ is defined as the angle between the [100] direction and the û1 direction. By measuring the intensity ratios
between different magnetic reflections, it is possible calculate the values L/S as a function of scattering wavevector Q,
as shown in Fig. 3-right. The extrapolation to Q = 0 suggest a ratio of 〈L〉/2〈S〉 = 0.14±0.08 between orbital angular
momentum and spin contributions to the magnetic moment [27].

The non-resonant X-ray scattering regime has also important applications in the domain of spin-density waves
[29], charge density waves [30] or surface magnetism that exploits surface refraction effects of the charge scattering,
in order to disentangle the magnetic and structural contributions from magnetic surfaces [31].

3.3. Resonant X-ray scattering

The RXS amplitude f RXS associated to the third term of Eq. (10) depends on the intermediate states |c〉 of the
atomic system and has a specific dependence on the incident photon energy h̄ωk . Each numerator of the anomalous
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term contains a dependence on the features of an intermediate state |c〉 (an eigenstate of the unperturbed solid).
This dependence is enclosed in two matrix elements of the interaction Hamiltonian, in such a way that this physical
phenomenon can be viewed as a virtual transition of the matter, initially lying in the |a〉 state, to and from the |c〉 state.
This experience involves the promotion of a core electron to a higher unoccupied level, and its decay to the original
core level. Conversely, during this process, the photon is first absorbed, then re-emitted with a different direction and
polarization. The sensitivity to magnetic moments comes from the Pauli’s principle and the spin–orbit interaction.
The Pauli’s principle ensures the availability of the intermediate states near the resonance energy. The spin–orbit
interaction play a role both in the core levels with non-vanishing orbital moment l �= 0, as in the case of L2- and
L3-edges of rare earths, or in the much weaker spin–orbit interaction of valence states, as in the case of K-edge
of transition metals, where the s core levels have no spin–orbit interaction. The consequence is that the anomalous
scattering is an important tool to investigate not only the local site anisotropy of an atom within a crystalline structure,
but it is also sensitive to the degeneracy of electronic states with specific orbital character. In fact, the atomic scattering
amplitude can vary substantially depending on the occupation of selected spin and orbital states, and therefore on their
availability to serve as intermediate states in the second order scattering process.

Starting from the third term in Eq. (10) containing the resonant contribution, we can express the resonant scattering
amplitude as:

f RXS = − 1

m

∑
c

Ea − Ec

h̄ωk

·
[
h̄2

〈a|∑j e−ik′·rj (k′ × ε′) · sj |c〉〈c|∑j eik·rj (k × ε) · sj |a〉
Ea − Ec + h̄ωk − iΓc/2

+ h̄

( 〈a|∑j e−ik′·rj ε′ · Pj |c〉〈c|∑j eik·rj (k × ε) · sj |a〉
Ea − Ec + h̄ωk − iΓc/2

− 〈a|∑j e−ik′·rj (k′ × ε′) · sj |c〉〈c|∑j eik·rj ε · Pj |a〉
Ea − Ec + h̄ωk − iΓc/2

)

+ 〈a|∑j e−ik′·rj ε′ · Pj |c〉〈c|∑j eik·rj ε · Pj |a〉
Ea − Ec + h̄ωk − iΓc/2

]
(28)

The first term depends only on the spin. It is proportional to S2 and therefore does not give rise to a pure antifer-
romagnetic Bragg peak, but it contributes however to anomalous scattering. The second term, which has been used
by Namikawa et al. [14] to describe resonant phenomena in ferromagnetic nickel, is smaller, by a factor of h̄ω/mc2

compared to last term and can be neglected. In addition this term vanishes at Q = 0 and thus cannot induce a magnetic
circular dichroism signal.

Usually in resonant X-ray magnetic scattering only the last term is taken into account to discuss the magnetic
resonant scattering amplitudes. Its physical nature arises from the scalar product A · Pj in the original Hamiltonian
(Eq. (8)):

f RXS = − 1

m

∑
c

Ea − Ec

h̄ωk

· 〈a|∑j e−ik′·rj ε′ · Pj |c〉〈c|∑j eik·rj ε · Pj |a〉
Ea − Ec + h̄ωk − iΓc/2

(29)

Eq. (29) was developed by Hannon et al. [15] in term of dipole approximation, i.e. by developing eik·rj ≈ 1 + ik ·
rj − (k · rj )

2/2 + · · · as a power series and retaining only the two first dominant contributions.
Note that the usual optical approximation, based on the fact that k · rj � 1, cannot be assumed in this case. In

fact, at X-ray frequencies, the wave vector is of the same order of magnitude than the atomic sizes. The Hannon’s
term in Eq. (29) can be rewritten in four distinct terms by using the previous relations and the dipole

∑
j rj and the

quadrupole
∑

j
i rj (k′ · rj ) operators:
2
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f RXS ≈ m
∑

c

(Ec − Ea)
3

h̄3ωk (Ea − Ec + h̄ωk − iΓc/2)

×
[
ε̂′ · 〈a|

∑
j

rj |c〉〈c|
∑

i

ri |a〉 · ε̂ − iε̂′ · 〈a|
∑
j

1

2
rj (k′ · rj )|c〉〈c|

∑
i

ri |a〉 · ε̂

+ iε̂′ · 〈a|
∑
j

rj |c〉〈c|
∑

i

1

2
ri (k · ri )|a〉 · ε̂ + ε̂′ · 〈a|

∑
j

1

2
rj (k′ · rj )|c〉〈c|

∑
i

1

2
ri (k · ri )|a〉 · ε̂

]

= f RXS(dd) + f RXS(dq) + f RXS(qq) (30)

where the different contribution are thus classified in the following way:

• f RXS(dd): (E1–E1) dipole–dipole;
• f RXS(dq): (E1–E2) dipole–quadrupole;
• f RXS(qq): (E2–E2) quadrupole–quadrupole.

The different terms are composed by factors which show a different set of symmetries under inversion, rotation
and time-reversal.

Using the Cartesian reference coordinate system defined in Eq. (13) for the photon polarization, we can develop
the scalar product of Eq. (30). The scattering amplitude for RXS can be written in the form:

f RXS ≈ m
∑

c

(Ec − Ea)
3

h̄3ωk (Ea − Ec + h̄ωk − iΓc/2)

×
[∑

αβ

ε′ ∗
α εβ Dαβ − i

2

∑
αβγ

ε′ ∗
α εβ(kγ Iαβγ − k′

γ I ∗βαγ ) + 1

4

∑
αβγ δ

ε′ ∗
α εβk′

γ kδQ
αβγ δ

]
(31)

where α, β , γ , δ are indexes which vary independently over the three Cartesian directions x, y, z, and we have used
the following shorthand notation for the transition matrix elements:

Dαβ = 〈a|
∑
j

rα
j |c〉〈c|

∑
i

r
β
i |a〉 (32)

Iαβγ = 〈a|
∑
j

rα
j |c〉〈c|

∑
i

r
β
i r

γ

i |a〉 (33)

Qαβγ δ = 〈a|
∑
j

rα
j r

β
j |c〉〈c|

∑
i

r
γ

i rδ
i |a〉 (34)

where the transition matrix elements Dαβ , Iαβγ and Qαβγ δ associated to E1–E1, E1–E2 and E2–E2 contributions of
Eq. (31) turn out to be characterized by Cartesian tensors of second, third and fourth rank, respectively [18].

3.4. Symmetries

It is important to determine the invariant behavior of the tensors D, I and Q under the following symmetry trans-
formations of the coordinate system:

• Space inversion or parity;
• Rotation;
• Time-reversal.

In fact, the magnetic atoms in the unit cell are related by symmetry operations and the site symmetry of the indi-
vidual atoms has important implications for the possible allowed resonant transitions defined by the matrix elements
of Eq. (34).
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3.4.1. Space inversion
Both tensors D and Q are even under the inversion symmetry. In fact, they can be expressed as a product of two

matrix elements both containing an odd or even number of coordinates ri . This leads to an even final product. This
is not true in the case of the tensor I which is odd under inversion symmetry operation, as it is made up of an odd
number of position operators.

As a result, if an atom sits in an inversion center, the I tensor must be zero, or, in other words, dipole–quadrupole
transition (E1–E2) are only allowed for atoms breaking the inversion symmetry.

3.4.2. Rotation
Let us recall that in general, when acting with the rotation group on a rank-n Cartesian tensor, we represent the

evolution of the 3n elements of the tensor by a 3n × 3n matrix, which transforms them from their initial values to
the rotated ones. If the tensor is reducible, by making an appropriate basis change in the tensor space, we can block
diagonalize the rotation matrix into smaller subsets (the so-called irreducible components). This operation corresponds
to find the bases of all independent subspaces within the tensor space: each projection of the total tensor into a subspace
transforms within that space, under the effect of the rotation group. It can be demonstrated, by a study of the rotation
group in three spatial dimensions, that every irreducible representation is labeled by an integer value j : for a given j ,
the dimension of the representation (in the tensor space) is 2j + 1.

The new n2 elements, expressed in the irreducible bases, are found as linear combination of the initial ones, and are
re-arranged in several sub-groups labeled by j . Within each group, the 2j + 1 parameters transform under rotation as
the 2j + 1 components of the spherical harmonic function Ym

j (θ,φ), where m assumes the values −j, . . . , j . It means
they are examples of spherical tensors of rank j .

In conclusion, if we decompose each tensor element Dαβ (or Iαβγ , or Qαβγ δ) into its irreducible components, and
substitute it in Eq. (31), then we have a picture of the behavior of the atomic part of the scattering amplitude under
rotation, i.e. about its rotational symmetries.

For example, in the case of E1–E1 term the decomposition of a rank-two tensor (9 parameters) leads to three
irreducible representation of rank j = 0 (1 parameter), 1 (3 parameters), 2 (5 parameters), in order to have 9 = 1 +
3 + 5. The decomposition is unique, given a reference axis z:

j = 0: (35)

T
(0)
0 = 1

3
(Dxx + Dyy + Dzz)

j = 1: (36)

T
(1)
0 = 1

2
(Dxy − Dyx)

T
(1)
±1 = ∓ 1

2
√

2

[
(Dyz − Dzy) ∓ i(Dxz − Dzx)

]
j = 2: (37)

T
(2)
0 = Dzz − T

(0)
0

T
(2)
±1 = ∓

√
2

3

1

2

[
(Dxz + Dzx) ∓ i(Dyz + Dzy)

]
T

(2)
±2 = 1√

6

[
2Dxx − 2Dyy ± i(Dxy + Dyx)

]
Then, one should re-arrange the result, by coupling together the terms with the same T

(j)
m ; this leads to the following

final formula:

f RXS(dd) ∝
∑
αβ

ε′ ∗
α Dαβ =

∑
j=0,1,2

j∑
m=−j

(−1)j+mP
(j)
−mT

(j)
m (38)

where P (j) are spherical tensors constructed from the polarization vectors ε and ε′ starting with the Cartesian com-
ponents ε′ ∗

α and εβ , and developing it in spherical tensors, just as was done for Dαβ .
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This result is of importance because, even if we do not have an explicit expression for the scattering amplitude, we
can at least recognize that, when the atom is rotated with respect to the radiation field:

• The j = 0 term in the summation is a scalar invariant;
• The three terms j = 1 vary as a vector;
• The five terms j = 2 vary as a spherical rank two tensor.

The analysis of the other terms E1–E2 and E2–E2 term is carried out in the same way, although the decomposition
is no longer unique.

3.4.3. Time-reversal
The time-reversal symmetry exchange the incident and the scattered wavevectors, which corresponds to exchanging

the (α,β, γ, δ) indexes in Eq. (30). For example, in the case of E1–E1 transitions, the j = 0 and j = 2 terms involve
only symmetric components in the form D

αβ
+ = Dαβ + Dβα . Conversely, the j = 1 term involves only antisymmetric

components, which have the form D
αβ
− = Dαβ − Dβα . The conclusion is that the j = 1 term is the only one which

is sensitive to the magnetism of the atom, and identifies to a vector which turns to have all the characteristics of a
magnetic moment (axial under inversion, odd under time reversal). The j = 0 term does not depend on magnetism
and, moreover, shows no anisotropic character: so, it is just charge-sensitive, like the Thomson term. The j = 2 term is
also independent on magnetism, but its anisotropic behavior suggests a sensitivity to the orientation of the electronic
wavefunctions in space and to their symmetries.

The same analysis can be developed for E1–E2 and E2–E2 contributions, and the resonant X-ray scattering ampli-
tude can be expressed in general as a scalar product of two irreducible spherical tensors:

f RXS
j =

∑
p,q

(−1)qX
(p)
−q F

(p)
q (j ;ω) (39)

where X
(p)
q depends only on the incident and scattered polarization and wavevector, while F

(p)
−q (j ;ω) is associated to

the tensorial properties of the j -atom, and can be represented in terms of multipole expansion. The rank p defines the
order of multipole in the electromagnetic field expansion and the projection q can take (2p + 1) values that satisfy
(−p � q � p). p = even tensors are time-even, i.e. invariant under time reversal, whereas p = odd tensor are time-
odd [32].

The classification of E1–E2 transitions which involve the operator I has been developed in Refs. [20,18]. The
classification of the tensors associated to the multipole expansion are summarized in Table 2 [21].

Table 2
Identification of properties under time-reversal T̂ and parity P̂ of tensors associated to the multipole expansion

Tableau 2
Propriétés de symétrie dans les inversion de temps T̂ et d’espace P̂ , des tenseurs associés au développement en multipôles

Tensor rank T̂ P̂ Type Multipole

F(0) (E1–E1) 0 + + charge monopole
F(0) (E2–E2) 0 + + charge monopole
F(1) (E1–E1) 1 − + magnetic dipole
F(1) (E2–E2) 1 − + magnetic dipole
F(1+) (E1–E2) 1 + − electric dipole
F(1−) (E1–E2) 1 − − polar toroidal dipole
F(2) (E1–E1) 2 + + electric quadrupole
F(2) (E2–E2) 2 + + electric quadrupole
F(2+) (E1–E2) 2 + − axial toroidal quadrupole
F(2−) (E1–E2) 2 − − magnetic quadrupole
F(3) (E2–E2) 3 − + magnetic octupole
F(3+) (E1–E2) 3 + − electric octupole
F(3−) (E1–E2) 3 − − polar toroidal octupole
F(4) (E2–E2) 4 + + electric hexadecapole
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The physics of multipole ordered states is one of the most exciting research domain of investigation of electronic
and magnetic properties of condensed matter. In particular, a possible link between the magnetoelectric effects and
toroidal moments in Shubnikov group can be applied to derive a possible origin of superconductivity in electric and
magnetic crystals [33].

4. Experiments

The different terms involved in the multipolar expansions E1–E1, E1–E2 and E2–E2 contain tensors of different
rank. As a result, the tensorial character of different scattering amplitude in Eq. (2) can lead to a breakdown of the
extinction rules valid for the crystal structure, giving rise to a forbidden lattice reflections measurable in Bragg diffrac-
tion only when the photon energy corresponds to the characteristic energy of the atomic system under investigation.
For example, the case of RXS on V2O3 is indicative to describe the complexity of the theoretical interpretation of
RXS results but also the potentiality of the RXS methods to study the physics of strongly correlated electron sys-
tems. At room temperature vanadium sesquioxide crystallizes in the α-corundum structure as α-Fe2O3 (space group
R3̄c), which can be described with a pseudo-hexagonal space group. The stoichiometric compound V2O3 undergoes a
strong volume contraction from paramagnetic metal (PM) to antiferromagnetic insulating state (AFI) at TN = 150 K,
with a monoclinic (space group I2/a) first order transition. Chromium doping induces a Mott transition into a para-
magnetic insulating (PI) state at room temperature, whereas the AFI state arises at TN = 180 K, with a moderate
volume contraction [17]. At room temperature (300 K) forbidden lattice reflections (00.l)H with l = 3(n + 1) appear
at the V K pre-edge, as shown in Fig. 4 for the reflection (00.3)H (defined in the pseudo-hexagonal space group).
This feature is common to all the Corundum sesquioxides as α-Fe2O3 and Cr2O3 [35]. These energy scans show well
defined resonances in a narrow energy range of about 2 eV around 5.465 keV, with the azimuthal scans showing the
3-fold symmetry. These amplitudes are associated to the 1s → 3d (electric quadrupole transition E2), whereas the
electric dipole (E1) transitions 1s → 4p are forbidden for this class of reflections [36]. The analysis of the azimuthal
and polarization dependence of these resonances showed that they can be attributed to the parity-even and high order
multipoles associated to the electric hexadecapole F(4) (E2–E2) and to the parity-odd electric octupole F(3+) (E1–E2)
due to the lack of inversion symmetry at the V-site [37].

In the low-temperature AFI phase, the 3-fold symmetry is lost due to the monoclinic transition and the equivalent
forbidden reflection (101̄)m shows a dominant contribution due to the electric quadrupole F(2+) (E1–E1) in a broad
energy region of about 20 eV around 5.475 keV. The F(4) (E2–E2) and F(3+) (E1–E2) contributions are also present
in the pre-edge, but they are strongly affected by the interference effect due to the F(2+) (E1–E1) contribution. All
these effects are due to the anomalous tensor susceptibility (ATS), called also Templeton scattering, and at the K-edge
these class of resonance can be found when local site symmetry breaking is reproduced in a cell by a glide plane or a
screw axis. The symmetry breaking can be associated to Jahn–Teller distortions, as in the case of orbital ordering in
manganites [38].

In the AFI state, two new classes of reflections appear, with the intensities several order of magnitude lower than
the previous one, and associated to the magnetic part of scattering amplitude, i.e. they are time odd. For example, the
reflection (22̄1)m corresponds to the class defined by the selection rule k + l = even and h = even, and corresponds
to the magnetic reflections found also by neutron scattering. In fact, the non-resonant magnetic intensity is present far
from the absorption edge, as we can see from the low energy part of the spectra. The broad resonance observable in
the σ–π ′ channel only is due to the magnetic dipole F(1) (E1–E1) and associated to the magnetic polarization of the
4p V bands, whereas the pre-edge region contains a resonance centered at E = 5.465 keV which appears in both the
polarization channels. This last resonance contains probably both the time odd magnetic octupole F(3) (E2–E2) and
the parity even magnetic quadrupole, but the analysis of the tensorial character of this resonance is complicated by
the presence of the strong interference with the dominant magnetic dipole term F(1) (E1–E1). The forbidden lattice
reflections with k + l = even and h = odd are visible only when we tune the incident photon energy around the narrow
pre-edge, and they are a direct observation of orbital magnetization in the V 3d valence shell [17]. This is because
of the selection rules, the E1–E1 dipole electric multipoles associated to the virtual transitions toward the 4p states
are absent, and only high order multipoles contribute to these class of reflections, as in the case of the (33̄1)m. The
azimuthal dependence shows a peculiar polarization behavior on both the polarization channels, and considerations
based on the chemical and magnetic space groups, determined previously by neutron diffraction [39], have lead to the
conclusion that these resonant reflections are assigned to a parity-odd high order multipoles, specifically to the toroidal
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Fig. 4. Energy scans across the V K-edge (left) and the corresponding azimuthal dependence (right) of different classes of forbidden lattice
reflections found at room temperature and in the low-temperature antiferromagnetic phase (T = 100 K) of 2.8% Cr-doped V2O3. Black (white)
dots refer to the σ–π ′ (σ–σ ′) polarization channel [17,34].

Fig. 4. Dépendances en énergie mesurées au seuil K du Vanadium (à gauche) et en azimuth relatif (à droite) pour différentes classes de réflexions
interdites par le groupe d’espace et observées à température ambiente et dans la phase antiferromagnétique à basse température (T = 100 K) de
V2O3 dopé à 2,8 % de Cr. Les points noirs (blancs) représentent le canal de polarisation σ–π ′ (σ–σ ′) [17,34].

octupole F(3−) (E1–E2) and to the magnetic octupole F(3) (E2–E2) [18,19]. The observation of these reflections and
their interpretation in term of time-reversal and parity breaking symmetries have opened a large debate during the last
years, acting as a driving force to improve theories and experiments. The advance of calculations and prediction using
ab-initio simulations, based on multiple scattering theory and a relativistic extension of the Schrödinger expansion
[40], have opened the avenue to a new class of experiments, in which more degrees of freedom have been introduced
to disentangle the high order multipole resonances, as for example the use of phase plate polarimetry to change the
incident linear polarization and the full analysis of the Stokes parameters of the scattered light [41].

The chemical selectivity of the RXS cross-sections can be exploited to extract information on the magnetic structure
of materials with two sublattice magnetization, as in the case of the non-collinear structure of Co-doped CeFe2,
represented in Fig. 5. The Fe sublattice can be studied by exploiting the Fe K-edge and the Ce sublattice by tuning
the incident energy at the Ce L3-edge. In this system the dominant resonant process in both the edges is the magnetic
dipole F(1) (E1–E1), and the azimuthal dependence in this case have simple relationship with the incident and scattered
polarization, allowing the determination of the sublattice magnetization in the single magnetic domain probed by the
experiment [48].

The evolution of the RXS technique with the introduction of an external degree of freedom such as low temper-
atures, high magnetic field and high pressure open new possibilities of investigation of complex magnetic materials
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Fig. 5. Left: Azimuthal dependence of the antiferromagnetic reflections in Ce(Co0.07Fe0.93)2 taken at Ce L3-edge (top panel) and Fe K-edge
(bottom panel). The inserts show their energy dependence at Ce L-edge (top) and Fe K-edge (bottom). Right: Magnetic structure determined by
combining RXS and neutron scattering results, showing the non-collinear Fe sublattice [48].

Fig. 5. A gauche : dépendance azimutale des réflexions antiferromagnétiques mesurées dans Ce(Co0,07Fe0,93)2 au seuil Ce L3 (cadre supérieur) et
Fe K (cadre inférieur). Les cadres insérés montrent les dépendances en énergie de ces réflexions aux mêmes seuils. A droite : structure magnétique
déterminée en combinant les résultats de diffraction magnétique résonnante des rayons X et de diffraction de neutrons ; on voit le sous-réseau de
Fe, non collinéaire [48].

which simultaneously display several types of long-range electronic order. The combination of an external applied
magnetic field and RXS gives unique possibilities to investigate the complex relationships between the correlated
microscopic properties of magnetic materials. Magnetic fields act directly on the exchange interactions between the
magnetic elements and allows fine tuning of the delicate balance between different correlation effects: influence the
domain formation (magnetic annealing, single domain studies), induce magnetic phase transitions (metamagnetism,
frustrated magnetism in low-dimensional magnets), remove the degeneracy of complex magnetic structures (multi-k
magnetic structures). Recently, new families of rare-earth transition metal oxides have been discovered which display
a surprisingly large coupling between the ferroelectric and magnetic order parameters, the so-called multi-ferroics.
This opens up novel possibilities to control magnetism with electric fields, or correspondingly to manipulate fer-
roelectricity by magnetic fields. Combining the advantages of RXS with the new magnet facility developed on the
ID20 beamline [42] allowed the phase diagram of TbMnO3 to be studied in great detail (Fig. 6). For example,
for all of the phases identified by the bulk studies we were able to study the underlying chemical and magnetic
structures. As a result, the different commensurate (C) and incommensurate (IC) phases can be studied in details,
and the contribution to the X-ray diffraction signals from Tb of Mn electrons can be distinguished as well as the
corresponding magnetic and electronic modulations within each phase. This allowed us, amongst other things, to
establish that the flop of the polarization along the a-axis is driven by an incommensurate to commensurate transi-
tion [43].

The application of high pressures at low temperatures on strongly correlated electron systems leads to variations
manifested in the electronic structure. By acting on the lattice parameter, hydrostatic pressure may vary the overlap of
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Fig. 6. Left: Magnetic field dependence of RXS at the Tb L3-edge for (5 k 0) satellite reflections at 2 K (top) and the corresponding H–T

phase diagram (bottom). Right: Evolution of the intensity (top) and the wavevector (bottom) of the satellite reflection (5 k 0) as a function of the
temperature, under an applied magnetic field of 8 T [43].

Fig. 6. A gauche : dépendance par rapport au champ magnétique, de la diffusion résonnante des rayons X au seuil Tb L3 pour la réflexion satellite
(5 k 0) à 2 K (en haut) et diagramme de phase H–T correspondant (en bas). A droite : évolution de l’intensité (en haut) et du vecteur d’onde (en
bas) pour la réflexion satellite (5 k 0) en fonction de la température, sous un champ magnétique appliqué de 8 T [43].

orbitals, thus altering the balance of competing magnetic and electronic interactions that are responsible for anomalous
low temperature thermodynamic and transport properties, thus playing an essential role in elucidation of physical
properties [44]. RXS could therefore be an ideal technique to be combined with hydrostatic pressure in order to
determine structural and electronic order parameters as a function of bond lengths. The scattering geometry for the
pressure set-up on ID20 is unique with respect to other high pressure devices, since scattering occurs via a Beryllium
gasket, which is highly transparent to X-rays in the energy range exploited for RXS, and the sample scattering surface
is limited to 100 × 300 µm2 [45]. Fig. 7 shows recent experimental achievements in the detection of the small resonant
magnetic signal at the Ce L3-edge in 10% doped CeFe2 [46]. These first results are encouraging and show clearly
the feasibility of this technique, opening a large field of applications where low-temperatures and low energies are
required, as for most of resonant and absorption spectroscopies [47].

5. Conclusions and perspectives

The knowledge of electric and magnetic multipoles of both parities under space-inversion and time-reversal can be
of great importance in the understanding of the physics of strongly correlated electron systems, and their investigation
has been a common theme of research during the last 20 years. In the light of this interpretation, the RXS technique
can be applied to the investigation of many complex materials, such as Mott insulators, colossal magnetoresistive
materials, actinides, high-Tc superconductors, multiferroics, heavy fermions and other transition metal oxides, in
which orbital or multi-polar hidden order parameters coexist and influence the phase transitions [49–52].
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Fig. 7. High pressure RMXS experiments on Ce(Co0.1Fe0.9)2. Top: Antiferromagnetic reflection ( 5
2 , 5

2 , 5
2 ) taken at low temperatures at Ce L3-edge

(E = 5.720 keV) in π–σ ′ polarization channel. Bottom: Temperature dependence of ( 5
2 , 5

2 , 5
2 ) at different pressures (from Ref. [46]).

Fig. 7. Expérience à haute pression de diffraction magnétique résonnante des rayons X sur Ce(Co0,1Fe0,9)2. En haut : réflexion antiferroma-

gnétique ( 5
2 , 5

2 , 5
2 ) à basse température au seuil Ce L3 dans le canal depolarisation π–σ ′ . En bas : dépendance en temperature de la réflexion

antiferromagnétique ( 5
2 , 5

2 , 5
2 ) à différentes pressions (d’après [46]).

The azimuthal dependence is a method which directly measures the symmetries of the tensors involved in res-
onant scattering amplitudes by measuring the diffracted X-ray linear polarization upon rotating the sample around
the scattering vector. This technique has been essential in a number of high-profile cases, as for example the orbital
ordering in transition metals [17,27,53], charge ordering and metal-insulator transitions [54,55], frustrated magnetism
in low-dimensional systems [56] or induced magnetism in non-magnetic elements [57]. The azimuthal dependence
can also be used to discriminate the magnetic domain populations in the non-resonant X-rays scattering regime, in
order to determine the ratio between the ordered orbital and spin magnetic moment as well as their reciprocal di-
rections [25,26,58]. Interesting Physics can also be addressed in multi-k antiferromagnets in which quadrupolar and
magneto-vibrational interactions are far from negligible [59,60].

The possibility to control the incident beam polarization by diamond phase plates and to analyze the polarization of
the scattered photons as a function of the azimuthal scattering geometry and the incident energy will play an important
role in the future of this technique, providing a way to obtain information on the symmetry of the ordered structure
when several multipole interactions close in energy contribute to the same transition [41].

High magnetic fields, pressures and low temperatures are fundamental parameters to study complex phase tran-
sitions and to disentangle competing electronic interactions in advanced materials. The development of extreme
conditions in RXS will provide new powerful tools for investigating quantum phase transitions and the peculiar elec-
tronic behavior of strongly correlated electron systems.
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