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Abstract

When an alloy is irradiated, atomic transport can occur through the two types of defects which are created: vacancies and
interstitials. Recent developments of the self-consistent mean field (SCMF) kinetic theory could treat within the same formalism
diffusion due to vacancies and interstitials in a multi-component alloy. It starts from a microscopic model of the atomic transport
via vacancies and interstitials and yields the fluxes with a complete Onsager matrix of the phenomenological coefficients. The jump
frequencies depend on the local environment through a ‘broken bond model’ such that the large range of frequencies involved in
concentrated alloys is produced by a small number of thermodynamic and kinetic parameters. Kinetic correlations are accounted
for through a set of time-dependent effective interactions within a non-equilibrium distribution function of the system. The different
approximations of the SCMF theory recover most of the previous diffusion models. Recent improvements of the theory were to
extend the multi-frequency approach usually restricted to dilute alloys to diffusion in concentrated alloys with jump frequencies
depending on local concentrations and to generalize the formalism first developed for the vacancy diffusion mechanism to the more
complex diffusion mechanism of the interstitial in the dumbbell configuration. To cite this article: M. Nastar, C. R. Physique 9
(2008).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Diffusion et couplage de flux dans les alliages concentrés sous irradiation : une approche de champ moyen auto-cohérente.
Dans un alliage sous irradiation, le transport des atomes est contrôlé par deux types de défauts créés, les lacunes et les interstitiels.
Les récents développements de la théorie de champ moyen auto-cohérente (SCMF) permettent de traiter dans le même formalisme
la diffusion des lacunes et des interstitiels dans un alliage multi-composant. A partir d’un modèle de fréquence de saut atomique,
la théorie (SCMF) en déduit les coefficients phénoménologiques de la matrice d’Onsager et les flux de matière associés. Les
fréquences de saut dépendent de l’environnement local par un modèle dit « de liaisons coupées », ce qui permet de prédire la
grande variété de fréquences impliquées dans un alliage concentré à partir d’un petit nombre de paramètres thermodynamiques
et cinétiques. Les corrélations cinétiques sont prises en compte par un ensemble d’interactions effectives dépendant du temps
et introduites dans une fonction de distribution du système hors d’équilibre. Les différentes approximations de la théorie SCMF
incluent la plupart des autres modèles de diffusion. Les derniers progrès furent d’étendre l’approche multi-fréquence habituellement
réservée aux alliages dilués aux alliages concentrés avec des fréquences de saut qui dépendent de l’environnement local et de
généraliser le formalisme initialement développé pour le mécanisme de diffusion lacunaire à celui plus complexe de l’interstitiel
dans la configuration dissociée (dumbbell). Pour citer cet article : M. Nastar, C. R. Physique 9 (2008).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
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1. Introduction

When a metallic alloy is irradiated with particles, the atomic transport is not only supported by vacancies but also by
interstitials, both concentrations being fixed by the irradiation conditions. Those point defects in supersaturation tend
to eliminate at point defect sinks like grain-boundaries, surfaces, dislocations and cavities, producing atomic fluxes.
The coupling between point defect and atomic fluxes sustained by irradiation determines the variations of composition
(also called segregations) we may observe close to point defect sinks. It can be formulated and quantified by means
of the Onsager matrix (Lij ) within the framework of thermodynamics of irreversible processes [1]. A characteristic
of open systems like the irradiated ones is that not only the kinetic path but also the final steady state depends on
the details of the Onsager matrix. The terms of the matrix are written as the product of an uncorrelated transport
coefficient, L

(0)
ii , multiplied by a correlation function that is the problematic term to calculate: Lij = L

(0)
ii f

(i)
ij . The

latter measures the deviation of the atomic migration paths from a random path due to the correlations between the
successive jumps inherent to the diffusion mechanism. These correlations usually slow down a kinetics and in some
cases block the reaction [2] or lead to an inversion of atomic fluxes with respect to the vacancy flux [3]. Although there
is an experimental procedure to determine the Lij , experiments are usually performed at high temperature, for a few
compositions, and only some terms of the Onsager matrix are measured. The previous models relating the diffusion
coefficients of isotopes with the Lij turn out to be less and less valid as the Monte Carlo simulations become a more
reliable test [4]. An irradiation induced grain boundary segregation implies knowing the variation of the Lij with local
composition within a large range of composition and at low temperature. For the interstitial diffusion, except for a few
values of effective migration energies deduced from resistivity measurements at low temperature, there is almost no
experimental data. This is perhaps the reason why phenomenological approaches like the DICTRA software widely
used to predict phase transformation kinetics never tried to simulate kinetics of irradiated systems. On the other hand,
first principle methods are now able to provide us with accurate values of jump frequencies in alloys not only for the
vacancy diffusion mechanism [5] but also for the interstitials in the split configuration (dumbbell) [6–8]. Therefore an
appropriate solution to estimate the Lij is to start from an atomic diffusion model for which the parameters are fitted
on first principle calculations. The time evolution of the system is then described by a master equation.

Several methods have adopted this point of view but only two of them are general enough to account for the
different diffusion mechanisms and short range order effects over a wide range of compositions explored by the alloys
under irradiation: the Path Probability Method (PPM) [9,10] and the self-consistent mean field (SCMF) theory [3].
However, the PPM has been mainly applied to diffusion of vacancy in body centered cubic alloys (BCC). Numerical
approaches like Monte Carlo simulations have proved their efficiency, however, the achievement of a predictive model
by these methods is limited to short ranges of composition and temperature and they become rapidly unworkable when
for example binding energies between interstitials and neighbouring atoms are significant [8,11]. We present the self-
consistent mean field theory (SCMF) which was proved to be general enough to recover the results of the previous
theories [12,13,2] and to provide diffusion models including short range effects when they were lacking as for example
the diffusion of interstitials in a multi-component body centered alloy [14,11,15,16] and the diffusion of vacancies in
a face centered cubic alloy (FCC) [13,3].

The principles and results of the SCMF theory are detailed in the previous articles cited above. Section 2 will begin
with a presentation of the diffusion atomic models, followed by an introduction of the SCMF theory. The third section
is a short presentation of selected results both for vacancies and interstitials, and the last section is a description of the
main alternative diffusion models in the objective of comparing them with the present SCMF theory.

2. The SCMF theory

2.1. Atomic diffusion models

The large set of jump frequencies associated to species α in a concentrated alloy is assumed to follow a classical
thermally activated form:

wα = γα exp
(−βE

mig
α

)
(1)
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where β is the inverse of the Boltzmann’s constant multiplied by temperature T . γα is the attempt frequency which
is assumed to depend only on the jumping atom, and the term in the exponential is the ‘migration enthalpy’, that is
the difference between the total energy of the system in the initial configuration and when the jumping atom is at
the saddle point. wα depends on local concentration. We assume a bond breaking model for both energies limited
to nearest neighbour (nn) pair interactions of the migration energy. Such a model satisfies the detailed balance and
insures a consistency between kinetics and thermodynamics [9,17]. Therefore, the migration energy depends on the
chemical species of the jumping and surrounding atoms:

E
mig
α = β

(∑
k,β

γ s
i′kV

s
αβn

β
k −

∑
k,β

γ s
ikVαβn

β
k

)
(2)

where the first term in the exponential corresponds to the new binding energies created by the atom at the saddle point
and the second term to the binding energies to be cut by the exchanging species at the initial state. γ s

i′k is equal to 1 if
site k is an nn site of atom α at the saddle point and zero otherwise; and γ s

ik is equal to 1 if lattice sites i and k are nn.
Occupation of a site i is specified by a set of occupation numbers (nα

i ): nα
i is equal to 1 if site i is occupied by α and 0

otherwise. Note that the mean occupancy of site i by species α is the ensemble average 〈nα
i 〉. The interactions are fitted

on first principle calculations and on existing experimental data (mainly phase diagrams and diffusion coefficients).
This type of model was applied to real systems with vacancy like the ferritic steels [18] and the aluminium alloys
[19,20]. It should be noted that first principle methods are now able to compute the whole atomic jump frequency
[6–8,18].

An adaptation of this breaking bond model for the complex interstitial jump mechanism was recently introduced in
a body centered cubic (BCC) alloy [15,16]. A first part was devoted to an extension of the Cluster Variation Method
(CVM) [21] to take into account the dumbbell configuration of interstitial defects followed by a calculation of the
relative amount of dumbbell compositions and the averaged local surrounding of a given species as a function of
nominal composition and temperature [15]. Single jumps of the defect involve the displacement of one atom of the
dumbbell toward a target atom to form a new defect while the remaining atom is left in substitutional position:

ABα + C → A + BCβ (3)

where we can see that the defect can change composition and orientation within one jump. We take the example of
Fe-rich or Fe–Cr BCC alloys, where the stable configuration of the dumbbell has a 〈110〉 orientation (cf. Fig. 1). Two
types of jump are allowed, i.e. a simple translation T with α = β and a rotation–translation RT which combines a
translation and a rotation of 60 degrees.

To determine the jump frequency corresponding to Eq. (3), we consider every bond involved in the initial config-
uration AB‖C and that is broken during the jump. For convenience, we will denote k = 1,7 the neighbours of the

Fig. 1. Nearest neighbours of an AB‖C configuration. In the text, neighbours of the dumbbell are denoted k and neighbours of C are denoted k′;
black atoms k = 1,2 are on target sites for A, k = 7 is a target for B , and white atoms are on nn non-target sites.

Fig. 1. Plus proches voisins d’une configuration AB‖C. Dans le texte, les voisins du dumbbell sont notés k et ceux de C k′ ; les atomes noirs
k = 1,2 sont sur les sites cibles de A, k = 7 est un site cible de B , et les atomes blancs sont les sites plus proches voisins et non-cibles du dumbbell.
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dumbbell and k′ = 1,7 the neighbours of the target atom, and use the numeration of Fig. 1. The migration energy
associated to a given configuration is:

E
mig
AB/C = E(s) −

∑
D,k′=1,7

VCDnD
k′ − εAB − VAB‖C −

∑
D,k=1,2

VBA‖DnD
k −

∑
D,k=3,6

VAB⊥DnD
k

−
∑

D,k=7

VAB‖DnD
k (4)

where E(s) is a contribution of the saddle point position. Note that the binding energy of the dumbbell itself εAB must
not be forgotten. The attempt frequency introduced in Eq. (1) is assumed to depend only on the moving atom B .

2.2. The phenomenological coefficients Lij

In the SCMF theory, the phenomenological coefficients are calculated using a non-equilibrium function of a sys-
tem submitted to an homogeneous, constant in time, and vanishingly low gradient of chemical potential. Following
Vaks [22], we express the non-equilibrium distribution function in terms of the equilibrium distribution function plus
a time dependent effective Hamiltonian ĥ(t):

P̂ (n, t) = P̂0(n)P̂1(n, t) (5)

where P̂0(n) = exp[β(Ω + ∑
i,A NA

i μA − H)] is the equilibrium distribution function with Ω a normalization con-
stant and μA the chemical potential of chemical species A. The interactions of the Hamiltonian H are the binding
energies introduced in Eqs. (2) and (4). Also, P̂1(n, t) = exp{β[δΩ(t)+∑

α,i δμ
α
i (t)nα

i − ĥ(t)]} is the non-equilibrium
contribution which is equal to one at equilibrium.

By analogy with the physical Hamiltonian, the time-dependent effective Hamiltonian may be written as a polyno-
mial function of the occupation numbers1

ĥ(t) = 1

2!
∑

αβ,i �=j

v(2)αβ

ij (t)nα
i n

β
j + 1

3!
∑

αβγ,i �=j �=k

v(3)αβγ

ijk (t)nα
i n

β
j n

γ

k + · · · (6)

where v(N)αβ···
ij ··· (t) are time dependent N -body effective interactions, which are unknown and must be obtained by

solving the master equation:

dP̂ (n, t)

dt
=

∑
ñ

[
Ŵ (ñ → n)P̂ (ñ, t) − Ŵ (n → ñ)P̂ (n, t)

]
(7)

where Ŵ (n → ñ) is the transition probability from a configuration n to a configuration ñ per time unit: it is defined
in terms of the microscopic frequencies controlling the diffusion of atoms (see Eq. (1)).

To solve the master equation it is convenient to multiply Eq. (7) by the occupation numbers nα
i , nα

i n
β
j , nα

i n
β
j n

γ

k , etc.
and average the products over all the configurations. That yields the kinetic equations for the mean occupations 〈nα

i 〉,
〈nα

i n
β
j 〉, 〈nα

i n
β
j n

γ

k 〉, etc. Under steady state conditions those kinetic equations should be equal to zero. A pair effective

interaction v
αβ
ij is introduced and calculated to satisfy the stationarity of the mean two-site occupations 〈nα

i n
β
j 〉. The

obtained values give then an estimation of the correlation contribution to the Lij . Indeed a careful treatment of the
mean two-site occupations by means of these pair effective interactions allows to take into account a possible jump
back of a point defect after a first jump which corresponds to a correlated event in the jump sequence. Note that, if
stationarity is also required for the mean three-site occupations, in addition to the pair effective interactions the triplet
effective interactions are to be considered. Those triplets become non negligible in alloys with high disparities of jump
frequencies between two atomic species (frequency ratios greater than 103) [2].

A level of approximation of the SCMF theory will be fixed by two hierarchies. The first one is determined by
the number of effective interactions used to describe the kinetic correlations. It determines the number of kinetic
equations to solve. Whereas for the vacancy mechanism the first effective interaction to be considered is between

1 Referred to the ‘cluster expansion theorem’ [23], any quantity which is a function of configuration only can be written in the form of Eq. (6).
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two nearest neighbours, for the interstitial it is between the two atoms forming a dumbbell. In a binary alloy, the first
shell approximation which considers the first pair effective interaction leads to analytical expressions of the transport
coefficients. The second level of approximation concerns the statistical approximation used to calculate the average
over all the configurations of the jump probabilities multiplied by the occupation numbers. In opposition to a point
approximation, a pair approximation keeps the variation of jump frequencies with local concentrations including short
range order effects. As a result, a pair approximation of the SCMF theory recovers the exact Lij of the multi-frequency
diffusion models of dilute binary alloys [24] and predicts their variation as a function of the solute concentration. Both
approximations, point and pair approximations were first developed for the vacancy diffusion mechanism [13,3] and
generalized to the more complex diffusion mechanism of the interstitial dumbbell configuration [15,16].

3. Some examples of results

Successive approximations of the SCMF theory were used to study the convergence of the results with different
values of interactions and attempt frequencies. As explained above, for a good description of short range order effects
it is necessary to use a better statistical approximation than the point approximation. These short range effects were
recognized to be essential for the calculation of the uncorrelated part of the phenomenological coefficients. Indeed,
errors of several orders of magnitude could be avoided by using a statistical pair approximation instead of the point
approximation in particular to calculate the probability of forming atom-point defect pairs on nn sites [3,16]. Fig. 2
is an illustration of this point for the interstitial diffusion mechanism in BCC alloys (the details of the simulations
and calculations are given in [16]). One observes that a statistical pair approximation of the uncorrelated part of the
phenomenological coefficients is required to converge to the exact results of the Monte Carlo simulations, whereas a
point approximation is sufficient to predict collective correlation coefficients in good agreement with the Monte Carlo
simulations.

The variation of a vacancy–atom exchange frequency with local composition may produce strong correlation ef-
fects as for example a negative sign of the off-diagonal correlation coefficients with the extreme case of an atomic
flux inversion. A statistical pair approximation of the SCMF theory did predict this effect in specific FCC alloys with
nn interactions (cf. Fig. 3 and [3] for the details of the calculation). Anthony [25] was the first one to deduce the

Fig. 2. Transport coefficients as a function of the concentration C(B)in a BCC solid solution AB with an interstitial concentration cI = 0.002:

(a) uncorrelated transport coefficients L
(0)
AA

and L
(0)
BB

in the reduced unit of the attempt frequency multiplied by the square of the lattice parameter,
divided by the atomic volume and temperature; and (b) the correlation coefficients. Interaction energies are all equal to zero except the one between
an AA dumbbell and a B substitutional target atom (βVAA‖B = −2). The attempt frequencies are equal and the temperature is equal to 1200 K.
The symbols stand for Monte Carlo simulations, the solid lines for the point approximation and dashed lines for the pair approximation. In (b) only
curves associated to the point approximation are plotted since the pair approximation curves are almost the same.

Fig. 2. Coefficients de transport dans une solution solide cubique centré AB en fonction de la concentration C(B) avec une concentration d’inter-

stitiel égale à cI = 0,002 : (a) coefficients non-corrélés L
(0)
AA

et L
(0)
BB

avec pour unité réduite la fréquence d’attaque associée à l’atome A multiplée
par le carré du paramètre de maille divisé par le volume atomique ; (b) coefficients de corrélation. Les énergies d’interaction sont toutes égales
à zero sauf celle entre le dumbbell AA et l’atome cible substitutionel B (βVAA‖B = −2). Les fréquences d’attaque de A et B sont égales. La
température est égale à 1200 K. Les simulations Monte Carlo sont représentées par les symboles, l’approximation de point par les lignes continues
et l’approximation de paire par les lignes pointillées. Dans (b) seules les courbes associées à l’approximation de point sont représentées puisque
celles associées à l’approximation de paire sont pratiquement confondues.
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Fig. 3. Transport coefficients as a function of the concentration cB in a FCC solid solution AB with a vacancy concentration cV = 10−8: (a) col-

lective correlation coefficients f
(B)
BA

; and (b) phenomenological coefficient LAB and the sum (LAB + LBB) in the reduced unit of the attempt
frequency of atom A multiplied by the square of the lattice parameter, divided by the atomic volume and temperature. Interaction energies are

all equal to zero except the interaction of a migrating A atom at the saddle point with a nearest neighbour B atom: βV
(s)
AB

= −1.55. The attempt
frequency ratio νB/νA is equal to 16. The temperature is equal to 3000 K. The symbols stand for Monte Carlo simulations, the solid lines for the
pair approximation and dashed line for the point approximation.

Fig. 3. Coefficients de transport en fonction de la concentration cB dans une solution solide cubique à faces centrées avec une concentration de

lacunes cV = 10−8 : (a) coefficient de corrélation f
(B)
BA

; (b) coefficient phénoménologique LAB et la somme (LAB +LBB) avec pour unité réduite
la fréquence d’attaque associée à l’atome A multiplée par le carré du paramètre de maille divisé par le volume atomique. Les énergies d’interaction

sont toutes égales à zero sauf celle entre l’atome qui saute en position de col avec un atome B en position de plus proche voisin : βV
(s)
AB

= −1,55.
Le rapport des fréquences d’attaque νB/νA est égal à 16. La température est égale à 3000 K. Les simulations Monte Carlo sont représentées par
les symboles, l’approximation champ moyen de point par la ligne pointillée et l’approximation de paire par les lignes continues.

complete Onsager matrix of FCC dilute aluminum alloys from an ensemble of diffusion and solute segregation ex-
periments. He related the amount of solute segregation observed at the proximity of cavities formed at the interface
between the alloy and the aluminum oxide to the flux of solutes. For a binary alloy AB , he formulated the solute flux
JB in terms of the gradient of vacancy chemical potential ∇μv and the phenomenological transport coefficients Lij :

JB = (LAB + LBB)∇μv = L
(0)
BB(f

(B)
BA + fBB)∇μv (8)

whereas the vacancy flux is equal to the opposite sum of the atomic fluxes. In Anthony’s experiments, the gradient
of vacancy chemical potential, ∇μv , was formed during a quench from high temperature but could also be produced
by irradiation. Usually we observe an inverse Kirkendall effect which means that atomic fluxes are in the opposite
direction to the vacancy flux. But it can be that an atomic species follows the vacancy flux. It happens when f

(B)
BA and

the sum of the correlation coefficients appearing in Eq. (8) are negative. Anthony observed both negative and positive
sign of the off-diagonal coefficient f

(B)
BA depending on the chemical nature of solute B in aluminum A. Such a type of

measurement does not exist in concentrated alloys. Recent first principle calculations of atomic jump frequencies in
dilute alloys Fe(Cu) [26] and Fe(P) [27,7] lead to a negative sign of the sum entering Eq. (8). Although the calculation
for P is partly based on empirical potentials and would require a new calculation with the recent first principle data
of Ref. [7]. Thus under irradiation, P and Cu are expected to be dragged by vacancies and segregated at point defect
sinks as long as P and Cu concentrations remain low. Indeed, Fig. 3 shows an example where f

(B)
BA and related LAB

are negative over a large range of solute concentration but the sum of the phenomenological coefficients (LAB +LBB)

determining the sign of the solute flux becomes positive as soon as cB is greater than 0.01.

4. The diffusion models

A phenomenological approach like DICTRA was developed to simulate diffusion-controlled phase transformations
using thermodynamic and kinetic data of CALPHAD [28]. The starting point for the model is an atomic mobility for
element B defined as the tracer diffusion coefficient DB∗ divided by temperature and fitted on the experimental data
of DB∗. The diagonal term of the Onsager matrix LBB is assumed to be proportional to DB∗. In other words the
corresponding correlation terms, fB and fBB , are considered to be equal and the off-diagonal terms of the Onsager
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matrix are neglected. Although this method is claimed to be assessed kinetically it may produce wrong predictions
when extrapolated to other alloy compositions and temperatures especially in concentrated alloys for which fB differs
from fBB . But, in concentrated alloys, there is no experimental work for which every term of the Onsager matrix
is measured. It is then difficult to validate or invalidate a diffusion model. In the limited case of dilute alloys, the
experimental work of Anthony is an example which invalidates the CALPHAD technique since non-zero negative
or positive off-diagonal terms are observed [25]. The previous section emphasized the importance of the amplitude
and the sign of those off-diagonal terms for the prediction of grain-boundary segregation induced by irradiation. Note
that the phase field method widely used to describe microstructure evolutions uses the same diffusion formalism than
DICTRA, although recently some authors succeeded in constructing phase field equations from a microscopic model
of direct exchange between atomic species [29]. In principle, this approach should lead to the definition of a complete
Onsager matrix for a point defect diffusion mechanism.

The first models starting from vacancy jump frequencies were restricted to dilute binary solutions in which a lim-
ited number of frequencies were involved and only the mixing enthalpy between vacancy and atomic species was
accounted for [30,24]. In concentrated alloys, the number of distinct jump frequencies becomes very large. To over-
come such a difficulty Manning [31] (and earlier references cited therein) based his theory on a random lattice gas
model where atoms do not interact and where vacancies jump at a frequency which only depends on the species they
exchange with (two frequencies in a binary alloy). Using complex arguments Manning could express the correlation
factors as a function of the few jump frequencies [31]. His expressions were reformulated and improved using a self-
consistent formalism and extended to finite vacancy concentrations [32,2]. Such diffusion models which consider a
limited number of jump frequencies already make appear spectacular correlation effects like a percolation limit when
the host atoms are immobile. But they provide with a very simplified view of thermodynamics and are not appropriate
to study kinetics of phase transformation controlled by both the transport properties and the thermodynamic driving
force. Some attempts were made to incorporate short range order in a Manning type formulation of the phenomeno-
logical coefficients Lij but coherency with thermodynamics was not guaranteed [33,34].

In the case of a vacancy diffusion in a BCC alloy, the first shell and pair approximations of the SCMF theory lead to
the same kinetic equations than the PPM ones [9]. Although, those two mean-field like approximations use different
approaches. The SCMF theory introduces pair effective interactions to ensure the steady state conditions for the mean
occupation of a pair of nn sites. The PPM considers the ensemble of one jump transition variables of a pair of species
on two nn sites and associates to it a so-called free energy. The transport coefficients are deduced from the most
probable path by minimizing this so-called free energy with respect to the transition variables of the pair of sites under
the constraint that the sum of transition variables is normalized to one. The concepts introduced by both approaches
remind us the two methods to establish the CVM for thermodynamics [21]. First one consists in decomposing the
total distribution function in local distribution variables associated to pairs of nn sites. This pair distribution is defined
in terms of the interaction between the two atoms forming the pair and effective pair interactions accounting for the
interactions between the atoms of the pair and the atoms outside. Those effective interactions are calculated in such
a way that an appropriate product of these pair distributions is equal to the total distribution function. The second
derivation of the CVM is a variational approach where the free energy of the system is an approximate function
of pair macro-variables (mean occupations of a pair of nn sites). The equilibrium free energy is assumed to be the
minimum of the approximate free energy with respect to the pair macro-variables under the constraint that the sum of
macro-variables related to a pair of sites is normalized to one.

The particularity of the SCMF formalism is to separate the statistical approximation used to calculate the thermo-
dynamic quantities from the kinetic approximation used to calculate the correlation effects. While the PPM considers
a statistical pair approximation both for the equilibrium averages and for the calculation of the most probable path
between two successive times, the SCMF theory uses a statistical point approximation for the equilibrium averages
and a pair approximation like for the kinetic correlations to calculate the exact value of the self-diffusion correlation
factor [12] or a ‘multiplet approximation like’ with N -body effective interactions to study percolation effects in alloys
with high jump frequency ratios [2]. That flexibility allows one to tackle complex diffusion mechanisms and to be the
first theory to propose a calculation of the transport coefficients for the dumbbell mechanism in BCC concentrated
alloys [14–16]. We justify this two-level treatment by the fact that correlations between kinetic paths and correlations
between thermodynamic variables are fundamentally different. For example, at high temperature the thermodynamic
correlations are negligible although the kinetic correlations can be high.
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5. Conclusion

The SCMF theory based on a microscopic model of vacancy and interstitial jumps yields general expressions of
the Lij . It allows a sound description of diffusion and coupled fluxes of atoms and point defects in multi-component
alloys. The limitations and future improvements of the SCMF approach are easily related to the statistical approxima-
tion of the thermodynamic correlations and to the time-dependent effective interactions used to describe the kinetic
correlations. A first example of application emphasizes the importance of using a better statistical approximation than
the point approximation to estimate the probability of an atom-point defect pair and the resulting transport coefficients.
As a second example of application, the SCMF theory tackles the variation of sign of an off-diagonal Lij and predicts
a possible inversion of solute flux with respect to the vacancy flux in concentrated alloys. Finally, the SCMF theory is
compared to the main existing models and is shown to be essential to describe diffusion in alloys under irradiation.
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