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Abstract

We present new theoretical concepts for Fresnel phase matching. A guided wave approach is described, which allows us to
intrinsically take into account all the physical processes involved. To cite this article: M. Raybaut et al., C. R. Physique 8 (2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Quasi-accord de phase par biréfringence de Fresnel : une technique d’accord de phase universelle. Nous présentons de
nouveaux concepts théoriques pour l’accord de phase par biréfringence de Fresnel. Ces nouveaux modèles sont basés sur une
approche modale, nous permettant de prendre en compte de manière intrinsèque tous les processus physiques intervenant lors de
cette interaction paramétrique. Pour citer cet article : M. Raybaut et al., C. R. Physique 8 (2007).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
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1. Introduction

Three waves mixing in a nonlinear optical material provide a convenient way to generate largely tunable coherent
radiations, particularly in the mid-infrared regime where such sources are scarce. Three waves of complex amplitudes
�Ei(�r, t) = �Ei(�r)ei(ωi t−�ki �r) exchange energy via the nonlinear susceptibility tensor χ (2). In this latter expression, ωi are
the optical pulsations, �ki the wavevectors, �Ei(�r) the slowly varying envelope functions, i = 1,2,3. The energy transfer
will be efficient if two conditions are met: energy and photon momentum conservation, i.e.:

ω3 = ω1 + ω2 (1)

��k = �k3 − �k1 − �k2 = 0
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Because of optical dispersion, these two conditions cannot be naturally fulfilled. In that case, there is a growing phase
lag ei��k�r between the three waves as they propagate and interact in the nonlinear materials. Consequently, energy will
flow back and forth between the waves with a spatial periodicity given by the coherence length Λc = π/�k.

Many schemes have been proposed in order to alleviate this problem [1–3]. One of the most popular one is the
quasi-phase matching scheme: Every coherence length, the sign of the effective nonlinearity in the beam direction is
reversed, adding a π phase to the relative phase �kΛc and preventing destructive interaction from taking place.

Typical coherence lengths range from few microns to few tens of microns, depending on the interacting wave-
lengths. The sign reversal of the materials nonlinearity thus calls for complex metallurgical processes, such as
molecular bonding, patterned growth or ferroelectric poling.

In their pioneering work, Armstrong et al. proposed to use total internal reflection to provide this sign reversal
of the effective nonlinearity [4]. The advantage of this technique is that it does not require complex technological
processes and can be considered as universal. It is particularly useful in optically isotropic materials where birefrin-
gence phase matching is not feasible. Though attractive, this proposal has been given very little attention and stayed
largely unexplored, both experimentally and theoretically [5,6]. The purpose of this article is to describe the recent
developments of this technique.

2. Fresnel phase matching: a plane wave approach

In the Fresnel phase matching scenario, the interacting waves are trapped by total internal reflection in a nonlinear
material, such as a cubic semiconductor (GaAs, GaP, ZnSe, . . . ). The fundamental waves are launched in the wafer
through a bevelled facet (see Fig. 1). At total internal reflection at the air-material interface, each wave i experiences
a phase change φi

F (Fresnel phase shift) which depends on their different polarisation and wavelength. Using a simple
ray description and assuming that the waves are collinear, it is straightforward to demonstrate that the amount of
power I1 generated by, e.g., difference frequency between two waves of power I3 and I2 is given by:

I1 = Z0

2c2

(ω1deffLN)2

n1n2n3

(
sin c

�kL

2

)2 (sin N�Φ
2 )

(N sin �Φ
2 )2

2

I3I2 (2)

In the above expression, Z0 is the vacuum impedance (377 	), c is the velocity of light, N is the number of bounces in
the wafer, L is the distance travelled by the beams between two bounces (L = t/ cos θ where t is the wafer thickness
and θ is the propagation angle), sinc is the cardinal function (sincx = sinx/x) and deff is the effective nonlinear
coefficient in the direction of propagation. For instance, for the geometrical case described in Fig. 1, for different
states of polarization of the waves 3,2,1 (s = perpendicular, p = parallel), deff can be given by:

deff spp = d.

(
1

2
cos2 θ.[1 + 3 cos 2ϕ] + sin2 θ

)
. sinϕ

deff pss = 1

4
d.(cosϕ + 3 cos 3ϕ). cos θ (3)

which shows that, indeed, the behaviour of deff at reflection can be rather complicated.
More importantly, �Φ is the total phase shift between the interacting waves due to the contribution of: (i) the phase

mismatch (�kL); (ii) the relative Fresnel phase shift at total internal reflection (�φF = φ3
F − φ1

F − φ2
F ); and (iii) the

change in the value of the effective susceptibility deff at reflection:

�Φ = �kL + �φF + επ (4)

Fig. 1. Geometry of the Fresnel phase-matched plate: (a) side view for geometrical description; and (b) view from above for angle definition.



M. Raybaut et al. / C. R. Physique 8 (2007) 1205–1212 1207
Fig. 2. Resonant (a) and nonresonant (b) Fresnel phase matching.

For instance, ε = 0 (ε = 1 respectively) if the value of deff is unchanged (reversed respectively) at reflection. Finally,
the value of Fresnel phase shift φF is given by [7]:

�φi
F = −2 arctan

( ((1 − q) + qn2
i )

√
n2

i sin2 θ − 1

ni cos θ

)
(5)

This latter expression shows that the value of the Fresnel phase shift can be fairly large (from 0 to π , particularly
near the critical angle θi

c = Arcsin 1
ni

) so that any phase mismatch can be compensated by a slight change in the
propagation angle θ : this is the basic idea of Fresnel phase matching.

One can notice that the phase matching conditions in expression (2) are composed of two terms: the first one de-
scribes the phase mismatch between two bounces, the second one describes the coherent summation of the parametric
interaction while the waves bounce back and forth between the wafer surface. Clearly, two different kinds of phase
matching occur, depending whether the two terms are resonant or not (see Fig. 2).

2.1. Resonant Fresnel phase matching (FPM)

In order to maximize both of the terms in (2), two conditions must be met:

�k(ω1,2,3).L(t, θ) = mπ

�φF (θ,P1,2,3) + ε(θ,P1,2,3)π = π (6)

where P1,2,3 symbolizes the different polarization of the waves, and m is an odd number. In these latter equations,
the influence of the optical dispersion on the Fresnel phase shift (i.e. influence of ωi ) is neglected since it is shown
that they play a secondary role [6]. Fig. 3 shows a graphical solution of Eq. (6) for a given set of fundamental waves
((1.9 µm, 2.3 µm) −→

DFG
11 µm) in GaAs.

There are pros and cons for resonant FPM. On the one hand, this configuration yields the maximum conversion
efficiency, with an amount of converted light given by:

I out
1 = 2Z0

π2c2

(ω1.deff)
2

n1n2n3
Λ2

CN2I in
3 I in

2 (7)

where Λc is the coherence length of the parametric process and N is the number of bounces. On the other hand, for
a given polarization combination and a given plate thickness t , these two conditions impose a relation between the
pump, waves ω2,3 and the angle θ which restricts the tunability of the system [6].

2.2. Nonresonant Fresnel phase matching

In this case, a single condition must be met:

�k(ω2,3)L(θ, t) + �φF (θ,P1,2,3) + ε(θ,P1,2,3)π = π (8)

Now, on the one hand, the conversion efficiency is not optimum between two bounces but the parametric conversion
is still constructive while the beams bounce back and forth in the plate. On the other hand, the phase matching
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Fig. 3. Fresnel phase shift �φF computed for various polarization con-
figurations in GaAs plates for a (1.9 µm, 2.3 µm) −→

DFG
11 µm process.

Fig. 4. A single GaAs plate is enough to cover the whole
9–13 µm spectral range. The only resonant cases are high-
lighted (circular points), in order to demonstrate that the hyper-
wide tunability is obtained thanks to the nonresonant technique.

conditions are now dramatically alleviated so that the tunability of the FPM becomes very large. Moreover, new
crystallographic orientations can be phase matched in the nonresonant configuration, which can benefit from a higher
effective nonlinearity deff.

Fig. 4 shows some experimental results [6]. The ω3 and ω2 waves are generated by a type I optical parametric
oscillation in a Nd-YAG pumped LiNbO3 crystal. The fine tuning is obtained by rotation of the LiNbO3 crystal,
whereas the linewidth narrowing (2 cm−1) is achieved by a Littrow grating inside the oscillating cavity. The waves
are then sent inside a GaAs semiconductor plate and generate, by difference frequency mixing, a third wave at ω1.
By tuning the values of the circular frequencies ω1 and ω2 inside the oscillating cavity, and rotating the GaAs plate
to the adequate Fresnel phase-matching angle, nonresonant FPM allows to continuously tune the ω3 signal from 7 to
13 µm. The different polarization configurations are indicated in the inset (s = perpendicular, p = parallel). As shown
in this figure, only two sets of values would have been obtained in the resonant FPM scheme, thus highlighting the
great interest in the nonresonant configuration. Fresnel phase matching has been implemented in GaAs, GaP, ZnSe [6]
without any problem, showing the universal character of this phase matching scheme.

2.3. Fresnel phase matching—basic limitations

Fig. 5 shows the experimental and theoretical FPM conversion efficiency as a function of the GaAs plate length.
Clearly, the efficiency does not grow quadratically with the sample length, as expected from Eq. (7) and even exhibits
a maximum. In fact, three different effects are mainly involved in this phenomenon:

(i) Goos–Hänchen shifts [8]: at total internal reflection, the waves penetrate in the forbidden region (evanescent wave
in the air) and emerge back in the plate at a different place (see Fig. 6(a)). The shift is a function of the wavelength
and the polarization so that the three waves walk off gradually as they propagate in the plate (Fig. 6(b)).

(ii) Nonlinear reflection [9]: because of the conservation of the k vector parallel to the surface, the nonlinear waves
generated at the interfaces are reflected at a different angle than the fundamental ones. For instance for second
harmonic generation, assuming plane waves, the nonlinear law of reflection reads:

nω sin θω = n2ω sin θ2ω (9)

with obvious notations, so that there is a noncollinear angle δθ between the beams given by:

δθ ≈ −δn

n
tg θω (10)

This noncollinear angle is typically in the few degrees, leading also to a walk-off between the waves (see Fig. 7).



M. Raybaut et al. / C. R. Physique 8 (2007) 1205–1212 1209
Fig. 5. Evolution of the amount of DFG power extracted from a GaAs plate as a function of the plate length for a (1.9 µm, 2.3 µm) −→
DFG

11 µm

process: comparison between the experimental points and the plane wave theory.

Fig. 6. (a) The Goos–Hanchen effect and (b) Effect of the Goos–Hänchen shift on the three interacting waves (‘walk-off’ effect).

Fig. 7. Nonlinear total internal reflection.

(iii) Finally, diffraction is important and also contributes to the loss of collinearity between the waves.

All these effects are extremely difficult to take into account in the plane wave approach, but are naturally described
in a guided wave approach.
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3. Fresnel phase matching: a guided wave approach

It might seem ironic to call for a guided wave approach since the plate thickness is so large compared to the
interacting beam wavelengths. Indeed, the plates are typically few 100 s of micron thick for 1 µm optical beam
wavelength, so that hundreds of modes are envisaged. However, a straightforward calculation shows that, for Gaussian
beams, only 5 to 10 modes are actually excited in the plate so that the guided wave calculation for the three waves
mixing is feasible on a desktop computer. Moreover, once again, this is the only approach which can take into account
such effects as Goos–Hanchen shifts, nonlinear reflection and diffraction in a build-in way. We illustrate the formalism
in a TEω → TE2ω second harmonic generation (SHG) situation.

The pump and SHG electric field distributions functions are respectively given by:

�Eω
y (x, z, t) =

∑
l

Aω
l,y(z)E

ω
l,y(x)ei(ωt−βω

l z)�ey + cc (11)

and

�E2ω
y (x, z, t) =

∑
m

A2ω
m,y(z)E

2ω
m,y(x)ei(2ωt−β2ω

m z)�ey + cc (12)

In these expressions, Eω
l,y(x) are the lth single mode TE wave functions, solutions of the linear Maxwell equa-

tions [10]. For instance, the propagation constant βω
l is solution of the implicit equation:

tan
(
α

ωt

l

) = 2
κω
l αω

l

(αω
l )2 − (κω

l )2
(13)

where αω
l =

√
(nωkω)2 − βω2

l and κω
l =

√
βω2

l − k2
ω are the transverse and the evanescence wavenumber respectively.

In a ray tracing interpretation, it corresponds to a zigzag angle θω
l (with the same geometry as Fig. 8(a)) given by:

sin θω
l = βω

l

nωkω
. The Aω

l (z) are the slowly varying amplitudes of the fundamental modes. Their value at z = 0 is
obtained by the projection of the input Gaussian field on the waveguide modes.

In the undepleted pump approximation (Aω
l (z) ≈ Aω

l (0) = Aω
l ), the mode coupling equation which describes the

energy transfer between the fundamental and the harmonic wave is easily derived [11]:

A2ω
m,x(z) = −ωε0

p0
χ(2)

yyy

∑
l′

∑
l

Sl,l′,m
(
Aω

l,yA
ω
l′,y

)
L

(
eiδβl,l′,mL − 1

δβl,l′,mL

)
(14)

Fig. 8. (a) Geometry of the GaAs plate as a highly multimode planar waveguide, (b) Evolution of the amount of SHG (8 µm) −→
SHG

4 µm power as

a function of distance in a GaAs plate (log scale). One clearly sees that the SGH gradually fills the plate while Goos–Hänchen shift and nonlinear
reflection walk off the beams.
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Fig. 9. Evolution of the amount of DFG power extracted from a GaAs plate as a function of the plate length for a (1.9 µm, 2.3 µm) −→
DFG

11 µm

process: result of the guided wave calculation. The general features of Fig. 5 are obtained.

p0 is a normalizing power constant which is such that the amplitude of the Poynting vector �S given by:

S = 1

μ0

+∞∫
−∞

�E × �B dx = βω
l

2ωμ0

+∞∫
−∞

∣∣Eω
l,y

∣∣2 dx = p0 (15)

which corresponds to a power of 1 W m−1 in the y direction. Sl,l′,m is the overlap integral between the modes:

Sl,l′,m =
+∞∫

−∞
Eω

l,y(x)Eω
l′,y(x)E2ω

m,y(x)dx (16)

and δβl,l′,m are the mismatch in the propagation constants:

δβl,l′,m = β2ω
m − βω

l − βω
l′ (17)

The normalization constant in Eq. (14) is such that the total amount of harmonic power generated by unit length along
y axis is given by the summation over each mode contribution m:

P2ω(z) =
∑
m

∣∣A2ω
m,y(z)

∣∣2 (18)

A careful examination of Eq. (14) shows that the different phase matching conditions derived in Section 2 can be
found again in the guided wave approach. For instance, the nonlinear Law of reflection (10), the phase matching
condition (5) and (6) may be derived after some cumbersome series expansion and algebra.

Fig. 8(b) shows the calculated evolution of the SHG signal in the GaAs plate for a (8 µm) −→
SHG

4 µm interaction.

One clearly sees that, due to the different effects described in Section 3.3, the SHG gradually walk off from the
fundamental waves and fills the whole volume of the plate. Fig. 9 shows the output energy as a function of plate
length for a (1.9 µm, 2.3 µm) −→

DFG
11 µm interaction. The general features of experimental results (as seen in Fig. 5)

are observed, i.e., a destructive recombination of the waves after some distance due to the different walk off processes.

4. Conclusions

Fresnel phase matching is a very versatile and universal way to phase match second order parametric interaction,
particularly in isotropic materials where birefringence phase matching is not feasible. Limitations come mostly from
walk-off effects, due to Goos–Hänchen shifts and nonlinear reflection at the interfaces. A guided wave description
has been developed, which does take into account all these phenomena in a built in way and thus will allow optimum
structures to be designed and tested in a near future.
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